首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Under ultra-violet excitation, intact leaves generate a strong blue-green fluorescence emission with several bands. Their integrated energy is 6 to 11 times the energy released by chlorophyll a bands (Chappelle et al. 1984, Applied Optics 23, 134–138). This paper provides evidence that the blue-green fluorescence emission comes mainly from outer epidermal layers of the leaves and can be transferred on a quartz lamina by quickly dipping the leaves in organic solvents with subsequent solvent evaporation. Blue-green fluorescence displays a diffusion-controlled quenching of fluorescence intensity between 4°C (high fluorescence) and 37°C (low fluorescence). The blue-green fluorescence emissivity is not linked to short-term metabolic effects other than leaf temperature, but epidermis adaptations both to drought and to excessive radiation increase emissivity.  相似文献   

2.
The fluorescence spectra of several dansyl derivatives (dansylamide, ?-N-dansyl-l-lysine, dansyl-l-alanine, and α-N-dansyl-l-alanine amide) bound to anti-dansyl antibodics (induced by an α-N-dansyl-poly d,l-alanine-poly l-lysine conjugate) are shifted by about 60 nm to the blue, and the quantum yields are markedly enhanced, compared to their respective fluorescence properties in water. The light emitted by the bound haptens is partly circularly polarized, reflecting the asymmetry induced in the bound chromophores by the antibody combining site. In contradistinction, the fluorescence spectrum of 1-dansyl-2-alanine diaminoethane bound to anti-alanine antibodies is similar to that of the free fluorophore in water and lacks circular polarization. These results imply that in this case the fluorophore of the hapten protrudes out of the site into the aqueous solvent. No circular dichroism is observed in the 300 to 400 nm region for the dansyl-anti-dansyl complex. Thus a change in the mode of interaction between the chromophore and its binding site takes place upon electronic excitation. The heterogeneity of the antibody binding sites is expressed by the dependence of the circular polarization of fluorescence on excitation wavelength. Differences in the circular polarization of luminescence were also observed when the residues attached to the dansyl group have been varied. This may reflect differences in the alignment of the fluorophore within the binding sites for the different dansyl derivatives.The linear polarization of dansylamide dissolved in glycerol is not constant across the emission band, indicating that the transition dipole moments related to the various vibronic states do not have the same spatial directions. Vibronic mixing of the emitting excited state with higher electronic states is thus indicated. Dansyl-l-alanine bound to anti-dansyl antibodies exhibitsan even more pronounced variation of the linear polarization across the emission band. In this case, the dependence of the linear polarization of the emitted light on excitation wavelength is anomalous, which is again a reflection of the heterogeneity of the population of the antibody molecules. The implications of these results to the studies of the fluorescence polarization of dansyl-protein complexes are discussed.  相似文献   

3.
Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches-SYBR Green I (a double-stranded DNA intercalating dye), 5'-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)-were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and the IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.  相似文献   

4.
The photosynthetic changes evaluated by oxygen evolution, chlorophyll fluorescence, photoacoustics, and delayed fluorescence (DF) were studied in leaves of grown in vitro for 8 weeks grapevine plants (Vitis vinifera) infected by grapevine leafroll-associated virus 3 (GLRaV-3). The infected leaves were characterized during the viral infection without visible disease symptoms. The symptomless infection led to a decrease in plant biomass. The non-photochemical fluorescence quenching, qN, declined, whereas the photochemical quenching, qP, and the Chl a/b ratio were not significantly affected. Photoacoustic and oxygen evolution measurements showed that the energy storage and oxygen evolution rate decreased in the infected leaves. Enhanced alternative electron sinks during the symptomless viral infection were also estimated. The changes in fluorescence and DF temperature curves demonstrated an enhanced stability of the thylakoid membranes in the infected leaves. This effect was clearly expressed at high actinic light intensities. The viral infected in vitro grown grapevine plants were used in the present study as a simplified model system that allow to avoid the involvement of different environmental factors that could interfere with the GLRaV infection and the virus-grapevine interactions. Thus, the 'pure' impact of the viral infection on photosynthesis could be investigated.  相似文献   

5.
An experimental study of the cationic lipid-DNA binding affinity is presented. The binding free energy was determined by monitoring lipoplex dissociation under conditions of increasing salt concentration. The primary procedure was based on the extent of quenching by energy transfer of fluorophores on DNA molecules by fluorophore on a lipid as these molecules came into close association in the lipoplex. Titration calorimetry on the Dickerson dodecamer was also done, with results that were in agreement with the fluorescence data. Measurements on short oligonucleotides allowed estimation of the binding energy per nucleotide. The binding free energy is approximately 0.6 kcal/mole nucleotide for the Dickerson dodecamer and declines for longer oligonucleotides. The entropy gained upon complex formation is approximately 1 entropy unit per released counterion. The method was applied to long DNA molecules (herring and lambda-phage DNA) and revealed that complete dissociation occurs at 750 mM NaCl. Likely contributions of macromolecular desolvation and DNA flexibility to the binding energy are discussed.  相似文献   

6.
Photoacoustic spectroscopy was used to monitor photo synthetic electron transfer in native and immobilized thylakoid membranes. The photoacoustic parameter phi(r)' (the percentage of absorbed energy that is stored in photo chemical intermediates) and i(50) (the half-saturation modulated light intensity) were directly correlated to electron transfer rates. As previously shown, thylakoids immobilized in an albumin-glutaraldehyde matrix were more resistant to aging. The inhibitory effects of the immobilization procedure and of aging at 4 degrees C were detected as a decrease in i(50) values. In analogy with enzyme kinetic analysis, the effect could be characterized as a competitive type of inhibition. Photoacoustic measurements are performed in conditions similar to a working bioreactor cell with regards to the sample preparation.  相似文献   

7.
Gould JM 《Plant physiology》1982,70(5):1521-1525
Photoacoustic spectroscopy is a recently developed nondestructive analytical technique that provides ultraviolet, visible, and infrared absorption spectra from intensely light scattering, solid, and/or optically opaque materials not suitable for conventional spectrophotometric analysis. In wood and other lignocellulosics, the principal ultraviolet absorption bands, in the absence of photosynthetic pigments, arise from the aromatic lignin component of the cell walls. Photoacoustic spectra of extracted lignin fragments (milled wood lignin) and synthetic lignin-like polymers contain a single major absorption band at 280 nanometers with an absorption tail extending beyond 400 nanometers. Photoacoustic spectra of pine, maple, and oak lignin in situ contain a broad primary absorption band at 300 nanometers and a longer wavelength shoulder around 370 nanometers. Wheat lignin in situ, on the other hand, exhibits two principle absorption peaks, at 280 nanometers and 320 nanometers. The presence of absorption bands at wavelengths greater than 300 nanometers in intact lignin could result from (a) interacting, nonconjugated chromophores, or (b) the presence of more highly conjugated structural components formed as the result of oxidation of the polymer. Evidence for the latter comes from the observation that, on the outer surface of senescent, field-dried wheat culms (stems), new absorption bands in the 350 to 400 nanometer region predominate. These new bands are less apparent on the outer surface of presenescent wheat culms and are virtually absent on the inner surface of either senescent or presenescent culms, suggesting that the appearance of longer wavelength absorption bands in senescent wheat is the result of accumulated photochemical modifications of the ligin polymer. These studies also demonstrate photoacoustic spectroscopy to be an important new tool for the investigation of insoluble plant components.  相似文献   

8.
Planner  A.  Hara  M.  Miyake  J.  Waszkowiak  A.  Klaczyńska  K.  Frąckowiak  D. 《Photosynthetica》2000,38(2):259-266
Photoacoustic spectra (PAS) were obtained for the cyanobacterium Synechococcus (Anacystis nidulans) cells embedded in isotropic and stretched polyvinyl alcohol films. The polarized radiation with the electric vector changing in 30° intervals with respect to given direction in a sample plane was used. Two cyanobacterium strains, one with very low biliprotein content, second with normal amount of biliproteins were investigated. The polarized absorption and fluorescence spectra were also measured. Conclusions were drawn about the thermal deactivation occurring in differently oriented pools of chromophores and about mutual orientation of their transition moments. Thermal deactivation in carotenoids (Cars) of both strains was different. The ratio of Car thermal deactivation to the thermal deactivation of chlorophyll (Chl) was higher in cyanobacteria with lower content of biliproteins than in the strain with normal amount of these complexes. Hence biliproteins can play the role in excitation energy transfer from Cars to Chls. For complex biological samples, polarized PAS can be a more sensitive method to investigate the directions of the absorption transition moments than the widely used polarized absorption spectra.  相似文献   

9.
Fluorescence spectra and fluorescence lifetimes of protochlorophyll (Pchl) were measured in organic solvents having different physical and chemical properties and were analyzed taking into account the nonspecific (dependent on bulk solvent parameters), and specific (e.g. H bonds, Mg coordination) solvent–solute interactions. The energy of the fluorescence emission band decreased, while the Stokes shift increased for increasing solvent orientation polarizability, which is a function of both the dielectric constant (ε) and the refractive index (n). The extent of the dependence of the Stokes shift on solvent orientation polarizability was higher in protic (i.e. those able to form hydrogen-binding) than in aprotic solvents. High value of the Stokes shift was also observed in pyridine and methanol, i.e. in solvents hexacoordinating the central Mg atom. The fluorescence decay of Pchl was monoexponential in all of the investigated solvents. The fluorescence lifetime decreased for increasing solvent orientation polarizability from 5.5 ± 0.1 ns in 1,4-dioxane to 3.3 ± 0.1 ns in methanol. Longer lifetime values were observed in the case of aprotic solvents than in protic solvents. The hexacoordination of Mg had no effect on the fluorescence lifetime. The present data are discussed with respect to results found for protochlorophyllide (Pchlide) (My?liwa-Kurdziel et al. in Photochem Photobiol 79:62–67, 2004), and they indicate that the presence of phytol chain in the porphyrin ring influences the spectral properties of the whole chromophore. This is the first complex analysis comparing the fluorescence emission and fluorescence lifetimes of purified Pchl and Pchlide.  相似文献   

10.
We have used the enhanced green fluorescent protein (EGFP) to investigate the properties of surfactant-entrapped water pools in organic solvents (reversed micelles) with steady-state and time-resolved fluorescence methods. The surfactant used was sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and the organic solvents were isooctane and (the more viscous) dodecane, respectively. The water content of the water pools could be controlled through the parameter w0, which is the water-to-surfactant molar ratio. With steady-state fluorescence, it was observed that subtle fluorescence changes could be noted in reversed micelles of different water contents. EGFP can be used as a pH-indicator of the water droplets in reversed micelles. Time-resolved fluorescence methods also revealed subtle changes in fluorescence decay times when the results in bulk water were compared with those in reversed micelles. The average fluorescence lifetimes of EGFP scaled with the relative fluorescence intensities. Time-resolved fluorescence anisotropy of EGFP in aqueous solution and reversed micelles yielded single rotational correlation times. Geometrical considerations could assign the observed correlation times to dehydrated protein at low w0 and internal EGFP rotation within the droplet at the highest w0.  相似文献   

11.
Sulfonamide derivatives serve as potent inhibitors of carbonic anhydrases (CAs), and a few such inhibitors have been currently used as drugs for the treatment of different pathogenic conditions in humans. In pursuit of designing the isozyme-specific inhibitors of human CAs, we observed that the fluorescence spectral properties and binding profiles of a fluorogenic sulfonamide derivative, 5-(dimethylamino)-1-naphthalenesulfonamide (dansylamide, DNSA), were markedly different between the recombinant forms of human carbonic anhydrase I (hCA I) and II (hCA II). The kinetic evaluation of the overall microscopic pathways for the binding of DNSA to hCA I versus hCA II revealed that the protein isomerization step served as a major determinant of the above discrepancy. Arguments are presented that the detailed structural-functional investigations of enzyme-ligand interactions may provide insights into designing the isozyme-specific inhibitors of CAs.  相似文献   

12.
Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5′-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and the IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.  相似文献   

13.
Han F  Taulier N  Chalikian TV 《Biochemistry》2005,44(28):9785-9794
We employed ultrasonic velocimetry, high-precision densimetry, circular dichroism and fluorescence spectroscopy, and isothermal titration calorimetry to characterize the binding of Hoechst 33258 to the d(CGCGAATTCGCG)(2) oligomeric duplex at 25 degrees C. We used this experimental combination to determine the full thermodynamic profile for the binding of Hoechst 33258 to the DNA. Specifically, we report changes in binding free energy, enthalpy, entropy, volume, and adiabatic compressibility accompanying the binding. We interpret our volumetric data in terms of hydration and evaluate the number of waters of hydration that become released to or taken up from the bulk. Our calorimetric data reveal that the drug-DNA binding event studied in this work is entropy-driven and proceeds with an unfavorable change in enthalpy. The favorable binding entropy predominantly results from hydration changes. In contrast to a large and positive change in hydrational entropy, the binding-induced change in configurational entropy is insignificant. The latter observation is consistent with the "lock-and-key" mode of minor groove binding.  相似文献   

14.
Joly D  Carpentier R 《Biochemistry》2007,46(18):5534-5541
The effect of exogenous plastoquinone (PQ) on the different deexcitation pathways of photosystem I (PSI) was investigated. Addition of oxidized decyl-plastoquinone (dPQ) and PQ-2 strongly quenched the chlorophyll (Chl) emission spectra of PSI submembrane fractions over all wavelengths. This quenching increased with the concentration of exogenous PQ added and followed the modified Stern-Volmer law. The Stern-Volmer constants found for dPQ and PQ-2 were 1.25 x 10(6) M-1 and 0.55 x 10(6) M-1, respectively, and the fraction of fluorescence accessible to the quencher was 0.7 for both exogenous PQ. dPQ and PQ-2 also retarded the P700 photooxidation measured under limiting actinic light irradiances. Photoacoustic measurements showed that addition of dPQ increased the heat dissipation and decreased the photochemical capacity of PSI. From these results, exogenous oxidized PQ were shown to efficiently quench the Chl excited state in the PSI antenna and change the balance between Chl deexcitation pathways. Moreover, reduction of the endogenous PQ pool in whole thylakoid membranes by NADPH increased PSI fluorescence by 65%, indicating the importance of the redox state of the PQ pool on PSI energy dissipation.  相似文献   

15.
Complex formation of gramicidin (GA) and desformylgramicidin (des-GA) with sterols was investigated by measuring the intrinsic Trp fluorescence. In organic solvents, the Trp fluorescence of momeric GA was quenched upon binding either cholesterol or ergosterol, but that of monomeric des-GA was not quenched by adding cholesterol. Both dimeric GA and des-GA bound highly to ergosterol, but not to cholesterol, determined by quenching of Trp fluorescence. Furthermore, GA- and des-GA-loaded lysophosphatidylcholine micelles were incubated with phosphatidylcholine vesicles containing cholesterol or ergosterol. The results showed that both monomeric and dimeric peptides hardly bound to cholesterol incorporated into phospholipid vesicles, but markedly bound to ergosterol incorporated into the bilayer membranes. Interestingly, des-GA bound more specifically to the two sterols than GA. In addition, fluorescence resonance energy transfer analysis showed that des-GA bound more specifically to the two sterol than GA.  相似文献   

16.
We present a comparative study of the ultrafast photophysics of all-trans retinal in the protonated Schiff base form in solvents with different polarities and viscosities. Steady-state spectra of retinal in the protonated Schiff base form show large absorption-emission Stokes shifts (6500-8100 cm(-1)) for both polar and nonpolar solvents. Using a broadband fluorescence up-conversion experiment, the relaxation kinetics of fluorescence is investigated with 120 fs time resolution. The time-zero spectra already exhibit a Stokes-shift of approximately 6000 cm(-1), indicating depopulation of the Franck-Condon region in < or =100 fs. We attribute it to relaxation along skeletal stretching. A dramatic spectral narrowing is observed on a 150 fs timescale, which we assign to relaxation from the S(2) to the S(1) state. Along with the direct excitation of S(1), this relaxation populates different quasistationary states in S(1), as suggested from the existence of three distinct fluorescence decay times with different decay associated spectra. A 0.5-0.65 ps decay component is observed, which may reflect the direct repopulation of the ground state, in line with the small isomerization yield in solvents. Two longer decay components are observed and are attributed to torsional motion leading to photo-isomerization. The various decay channels show little or no dependence with respect to the viscosity or dielectric constant of the solvents. This suggests that in the protein, the bond selectivity of isomerization is mainly governed by steric effects.  相似文献   

17.
Isothermal titration calorimetry (ITC) has been applied to the determination of the activity of D-hydantoinase (EC 3.5.2.2) with several substrates by monitoring the heat released during the reaction. The method is based on the proportionality between the reaction rate and the thermal power (heat/time) generated. Microcalorimetric assays carried out at different temperatures provided the dependence of the catalytic rate constant on temperature. We show that ITC assay is a nondestructive method that allows the determination of the catalytic rate constant (kcat), Michaelis constant (KM), activation energy and activation Gibbs energy, enthalpy and entropy of this reaction.  相似文献   

18.
Quinine (QN) and quinidine (QD), the chief quinoline alkaloids of various species of cinchona bark, are stereoisomers to each other. In this study, a series of appropriate and efficient methods have been applied to compare the binding modes of QN and QD with bovine serum albumin (BSA). The isothermal titration calorimetry and room temperature phosphorescence results show that both QN and QD can interact with BSA at one binding site to form drug–protein complexes, mainly through enthalpic driving force with the binding affinity order: QN > QD. The fluorescence resonance energy transfer and time‐resolved fluorescence spectroscopy exhibits that QN has a larger energy transfer and more intensified binding capacity for BSA than QD. Data of dynamic light scattering reveal that the aggregate state of BSA is changed during this binding process, and the particle size distribution of QN‐BSA bioconjugate is larger than that of QD. Nuclear magnetic resonance analysis indicates that aromatic protons make more contribution during ligand‐protein complexation than that of aliphatic protons. The circular dichroism spectra exhibit different degrees of changes in BSA secondary structures in the presence of QN and QD, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A series of proteins has been examined using time-resolved, pulsed-laser volumetric photoacoustic spectroscopy. Photoacoustic waveforms were collected to measure heat release for calculation of fluorescence quantum yields, and to explore the possibility of photoinduced nonthermal volume changes occurring in these protein samples. The proteins studied were the green fluorescent protein (GFP); intestinal fatty acid binding protein (IFABP), and adipocyte lipid-binding protein (ALBP), each labeled noncovalently with 1-anilinonaphthalene-8-sulfonate (1,8-ANS) and covalently with 6-acryloyl-2-(dimethylamino)naphthalene (acrylodan); and acrylodan-labeled IFABP and ALBP with added oleic acid. Of this group of proteins, only the ALBP labeled with 1,8-ANS showed significant nonthermal volume changes at the beta = 0 temperature (approximately 3.8 degrees C) for the buffer used (10 mM Tris-HCI, pH 7.5) (beta is the thermal cubic volumetric expansion coefficient). For all of the proteins except for acrylodan-labeled IFABP, the fluorescence quantum yields calculated assuming simple energy conservation were anomalously high, i.e., the apparent heat signals were lower than those predicted from independent fluorescence measurements. The consistent anomalies suggest that the low photoacoustic signals may be characteristic of fluorophores buried in proteins, and that photoacoustic signals derive in part from the microenvironment of the absorbing chromophore.  相似文献   

20.
Four synthesized biocidal guanidine hydrochloride polymers with different alkyl chain length, including polyhexamethylene guanidine hydrochloride and its three new analogs, were used to investigate their interactions with phospholipids vesicles mimicking bacterial membrane. Characterization was conducted by using fluorescence dye leakage, isothermal titration calorimetry, and differential scanning calorimetry. The results showed that the gradually lengthened alkyl chain of the polymer increased the biocidal activity, accompanied with the increased dye leakage rate and the increased binding constant and energy change value of polymer-membrane interaction. The polymer-membrane interaction induced the change of pretransition and main phase transition (decreased temperature and increased width) of phospholipids vesicles, suggesting the conformational change in the phospholipids headgroups and disordering in the hydrophobic regions of lipid membranes. The above information revealed that the membrane disruption actions of guanidine hydrochloride polymers are the results of the polymer's strong binding to the phospholipids membrane and the subsequent perturbations of the polar headgroups and hydrophobic core region of the phospholipids membrane. The alkyl chain structure significantly affects the binding constant and energy change value of the polymer-membrane interactions and the perturbation extent of the phospholipids membrane, which lead to the different biocidal activity of the polymer analogs. This work provides important information about the membrane disruption action mechanism of biocidal guanidine hydrochloride polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号