首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The egg jelly-induced acrosome reaction of sea urchin sperm requires the presence of Ca2+ and Na+ in seawater at its normal pH 8. Sperm suspended in seawater at pH 9 undergo the acrosome reaction in the absence of jelly. We have attempted to understand the role of external Na+ in this reaction. Sperm were suspended in Na+-free seawater and the percentage of acrosome reaction and the amount of Ca2+ uptake were determined as a function of external pH. High pH (9.0) in Na+-free medium without jelly triggered a high percentage (above 65%) of sperm acrosome reactions and a two to fourfold increase in Ca2+ uptake. Both the percentage of acrosome reactions and the amount of Ca2+ uptake were similar to those induced by either jelly or pH 9 in Na+-containing seawater. On the other hand, the absence of Na+ in seawater inhibits jelly from inducing Ca2+ uptake and acrosome reactions at pH 8.0 and even at pH 8.5. These results indicate that the Na+ requirement for the acrosome reaction induced by jelly is lost when triggering is by high pH. In contrast, Ca2+ was strictly required since sperm did not react in Ca2+-free seawater at pH 9. We also found that like the jelly-induced acrosome reaction the high-pH-induced acrosome reaction and Ca2+ uptake in complete and Na+-free seawater were inhibited by D600. This finding suggests that the same transport system for Ca2+ uptake associated with the acrosome reaction operates at both triggering conditions, i.e., jelly or pH 9. Although D600 is not now considered a specific blocker, its effect has suggested the involvement of Ca2+ channels in the acrosome reaction. This proposal is supported by our results with nisoldipine, a highly specific inhibitor of calcium channels. The drug inhibited both the sperm acrosome reaction and Ca2+ uptake induced by jelly or pH 9 in complete seawater.  相似文献   

2.
The acrosome reaction of sperm of the sea urchin, Strongylocentrotus purpuratus, is accompanied by ion movements. When the reaction is induced by the addition of egg jelly to sperm suspended in sea water, there is an acid release and an uptake (or exchange) of calcium ions. Verapamil and D600, drugs which block Ca2+ channels, inhibit induction of the acrosome reaction, acid release, and 45Ca2+ uptake; this inhibition is reduced at higher concentrations of external Ca2+. Although acid release correlates temporally with extension of the acrosome filament, 45Ca2+ uptake continues after the acrosome reaction has been completed. Neither the acrosome reaction nor acid release is inhibited by cyanide, azide, dinitrophenol (DNP), or carbonyl cyanide m-chlorophenylhydrazone (CCCP), whereas these metabolic inhibitors partially inhibit Ca2+ uptake. Tetraethylammonium (TEA) chloride, an inhibitor of delayed axonal potassium currents, inhibits the acrosome reaction. An increase in 86Rb+ permeability accompanies the acrosome reaction, suggesting that movement of K+ is an important effector of the reaction. In support of this, the acrosome reaction may be triggered with nigericin, an ionophore that catalyzes the electrically neutral exchange of K+ and H+ across membranes. Induction of the acrosome reaction with nigericin can occur with either Na+ or K+ as the predominant external monovalent cation, while with jelly it requires external Na+. With nigericin, there is a delay in acid release, Ca2+ uptake, and filament extension, all of which follow a transient proton uptake. Taken together, these data suggest that triggering of the acrosome reaction involves linked permeability changes for monovalent and divalent ions.  相似文献   

3.
During the ascidian sperm reaction the single large cylindrical mitochondrion which lies next to the nucleus in the head swells, becomes spherical, and migrates along the tail to be lost when it reaches the end. This sequence is initiated by eggs, egg water, high pH, low Na+, or the ionophore X537A. Accompanying the sperm reaction induced by low Na+ are H+ efflux and Ca2+ influx in a ratio of near 100:1 as determined by 45Ca2+ and atomic absorption analysis. Simultaneous pH and Ca2+ electrode measurements suggest that the movement of H+ begins 10–13 sec before the movement of Ca2+. Ca2+ uptake can be inhibited by verapamil without affecting H+ efflux or the sperm reaction. Acid release and Ca2+ uptake are proportional to the initial pH of the medium when the reaction is triggered by high pH. Acid release initiated by low Na+ is proportional to Ca2+ concentrations above 2 mM. H+ and Ca2+ movements differ in magnitude, kinetics, and inhibition by verapamil, thus suggesting that H+ is probably not exchanged for Ca2+. Instead we propose that loss of H+ triggers the uptake of Ca2+, which initiates the sperm reaction.  相似文献   

4.
Ascidia callosa sperm are triggered to undergo initiation of the sperm reaction (mitochondrial swelling) by increasing the pH or lowering the Na+ concentration of the medium. The optimal [Na+] for acid release is 20 mM with excellent correlation between acid release and initiation of morphological changes. Increasing the [K+] to around 20 mM inhibits acid release when applied up to 1 min after triggering the sperm but with less inhibition at 2 and 4 min, suggesting that K+ inhibits initiation of acid release rather than acid release itself. Acid release and the sperm reaction can also be triggered by Cl?-free (NO?3 or glutamate substituted) seawater (SW). Cl? efflux accompanies H+ efflux with twice as many Cl? being released as H+. Both H+ and Cl? release in Cl?-free SW are dependent upon CO2 being present in HCO?3-free medium, suggesting that H+ efflux is in part Cl? and HCO?3-mediated. However, the chloride channel blocking agent SITS has no effect on H+ release and augments Cl? release. Acid release results in a substantial increase in internal pH as determined by partitioning of 9-amino acridine. We envision acid release from ascidian sperm as involving two systems, the Na+-dependent acidification system of unreacted sperm and the Cl?- and HCO?3-mediated H+ release at activation. The mechanism controlling acid release would then involve inactivation of the internal acidification process and activation of the chloride-bicarbonate-mediated alkalinization process.  相似文献   

5.
The majority of the spermatozoa precapacitated in Ca2+-free medium underwent the acrosome raction rapidly when they were transferred to Ca2+-containing medium. The presence of Na+ and Ca2+ in the medium was essential for the acrosome reaction. The vast majority of spermatozoa failed to undergo the reaction in Ca2+ medium lacking monovalent ions, although they remained motile. At the concentration of 140 mM, Na+, K+, Rb+, and Cs+ all supported the reaction at the maximum level, but at 50 mM the latter three ions were not as effective as Na+. Li+ was least effective in supporting the reaction. Virtually no acrosome reactions took place when precapacitated spermatozoa were first exposed to Na+ medium (no Ca2+) and then to Ca2+ medium (no Na+). On the other hand, a considerably higher proportion of spermatozoa acrosome reacted when they were exposed to these media in the reverse order. The most efficient acrosome reactions took place when the medium contained both a monovalent ion (Na+) and Ca2+ simultaneously. Possible mechanisms by which monovalent and divalent cations participate in the acrosome reaction are discussed.  相似文献   

6.
Ca2+ transport was studied in membrane vesicles of alkalophilic Bacillus. When Na+-loaded membrane vesicles were suspended in KHCO3/KOH buffer (pH 10) containing Ca2+, rapid uptake of Ca2+ was observed. The apparent Km value for Ca2+ measured at pH 10 was about 7 μM, and the Km value shifted to 24 μM when measured at pH 7.4. The efflux of Ca2+ was studied with Ca2+-loaded vesicles. Ca2+ was released when Ca2+-loaded vesicles were suspended in medium containing 0.4 M Na+.Ca2+ was also transported in membrane vesicles driven by an artificial pH gradient and by a membrane potential generated by K+-valinomycin in the presence of Na+.These results indicate the presence of Ca2+/Na+ and H+/Na+ antiporters in the alkalophilic Bacillus A-007.  相似文献   

7.
Two types of Na+-independent Mg2+ efflux exist in erythrocytes: (1) Mg2+ efflux in sucrose medium and (2) Mg2+ efflux in high Cl media such as KCl-, LiCl- or choline Cl-medium. The mechanism of Na+-independent Mg2+ efflux in choline Cl medium was investigated in this study. Non-selective transport by the following transport mechanisms has been excluded: K+,Cl- and Na+,K+,Cl-symport, Na+/H+-, Na+/Mg2+-, Na+/Ca2+- and K+(Na+)/H+ antiport, Ca2+-activated K+ channel and Mg2+ leak flux. We suggest that, in choline Cl medium, Na+-independent Mg2+ efflux can be performed by non-selective transport via the choline exchanger. This was supported through inhibition of Mg2+ efflux by hemicholinum-3 (HC-3), dodecyltrimethylammonium bromide (DoTMA) and cinchona alkaloids, which are inhibitors of the choline exchanger. Increasing concentrations of HC-3 inhibited the efflux of choline and efflux of Mg2+ to the same degree. The Kd value for inhibition of [14C]choline efflux and for inhibition of Mg2+ efflux by HC-3 were the same within the experimental error. Inhibition of choline efflux and of Mg2+ efflux in choline medium occurred as follows: quinine>cinchonine>HC-3>DoTMA. Mg2+ efflux was reduced to the same degree by these inhibitors as was the [14C]choline efflux.  相似文献   

8.
The uptake of K+ and Ca2+ in Dunaliella salina is mediated by two distinct carriers: a K+ carrier with a high selectivity against Na+, Li+, and choline+ but not towards Rb+, K+, Cs+, or NH4+, and a Ca2+ carrier with a high selectivity against Mg2+. The latter is specifically blocked by La3+ and by Cd2+. Apparent Km values for K+ and Ca2+ uptake are 2.5 and 0.8 millimolar, respectively, and their maximal calculated fluxes are 22 and 0.8 nanomoles per square meter per second, respectively. Effects of permeable ions and ionophores on K+ and Ca2+ uptake suggest that the driving force for their uptake is the transmembrane electrical potential. Inhibitors of ATP production, typical inhibitors of plasma membrane H+-ATPases and protonionophores inhibit K+ and Ca2+ uptake and accelerate K+ efflux. The results suggest that an H+-ATPase in the cell membrane provides the driving force for K+ and Ca2+ uptake. Efflux measurements from 86Rb+ and 45Ca2+ loaded cells suggest that part of the intracellular K+ and most of the intracellular Ca2+ is nonexchangeable with the extracellular pool. Correlations between phosphate and K+ contents and the effect of phosphate on K+ efflux suggest intracellular associations between K+ and polyphosphates. On the basis of these results, it is suggested that: (a) K+ and Ca2+ uptake in D. salina is driven by the transmembrane electrical potential which is generated by the action of an H+-ATPase of the plasma membrane. (b) Part of the intracellular K+ is associated with polyphosphate bodies, while most of the intracellular Ca2+ is accumulated in intracellular organelles in the algal cells.  相似文献   

9.
Petr Paucek  Martin Jab?rek 《BBA》2004,1659(1):83-91
The Na+/Ca2+ antiporter was purified from beef heart mitochondria and reconstituted into liposomes containing fluorescent probes selective for Na+ or Ca2+. Na+/Ca2+ exchange was strongly inhibited at alkaline pH, a property that is relevant to rapid Ca2+ oscillations in mitochondria. The effect of pH was mediated entirely via an effect on the Km for Ca2+. When present on the same side as Ca2+, K+ activated exchange by lowering the Km for Ca2+ from 2  to 0.9 μM. The Km for Na+ was 8 mM. In the absence of Ca2+, the exchanger catalyzed high rates of Na+/Li+ and Na+/K+ exchange. Diltiazem and tetraphenylphosphonium cation inhibited both Na+/Ca2+ and Na+/K+ exchange with IC50 values of 10 and 0.6 μM, respectively. The Vmax for Na+/Ca2+ exchange was increased about fourfold by bovine serum albumin, an effect that may reflect unmasking of an autoregulatory domain in the carrier protein.  相似文献   

10.
Using confocal microscopy, X‐ray microanalysis and the scanning ion‐selective electrode technique, we investigated the signalling of H2O2, cytosolic Ca2+ ([Ca2+]cyt) and the PM H+‐coupled transport system in K+/Na+ homeostasis control in NaCl‐stressed calluses of Populus euphratica. An obvious Na+/H+ antiport was seen in salinized cells; however, NaCl stress caused a net K+ efflux, because of the salt‐induced membrane depolarization. H2O2 levels, regulated upwards by salinity, contributed to ionic homeostasis, because H2O2 restrictions by DPI or DMTU caused enhanced K+ efflux and decreased Na+/H+ antiport activity. NaCl induced a net Ca2+ influx and a subsequent rise of [Ca2+]cyt, which is involved in H2O2‐mediated K+/Na+ homeostasis in salinized P. euphratica cells. When callus cells were pretreated with inhibitors of the Na+/H+ antiport system, the NaCl‐induced elevation of H2O2 and [Ca2+]cyt was correspondingly restricted, leading to a greater K+ efflux and a more pronounced reduction in Na+/H+ antiport activity. Results suggest that the PM H+‐coupled transport system mediates H+ translocation and triggers the stress signalling of H2O2 and Ca2+, which results in a K+/Na+ homeostasis via mediations of K+ channels and the Na+/H+ antiport system in the PM of NaCl‐stressed cells. Accordingly, a salt stress signalling pathway of P. euphratica cells is proposed.  相似文献   

11.
+ and Na+ transport in RBCs from control mice (C57Bl/6J) and a transgenic (αHβSMDD]) mouse line that expresses high levels of human αH and βS-chains and has a small percent dense cells but does not exhibit anemia. In transgenic mouse RBCs (n= 5) under oxygenated conditions, K+ efflux was 0.22 ± 0.01 mmol/L cell × min and Na+ influx was 0.17 ± 0.02 mmol/L cell × min. Both fluxes were stimulated by 10 min deoxygenation in transgenic but not in control mice. The deoxy-stimulated K+ efflux from transgenic mouse RBCs was about 55% inhibited by 5 nm charybdotoxin (CTX), a blocker of the calcium activated K+-channel. To compare the fluxes between human and mouse RBCs, we measured the area of mouse RBCs and normalized values to area per liter of cells. The deoxy-simulated CTX-sensitive K+ efflux was larger than the CTX-sensitive K+ efflux observed in RBCs from SS patients. These results suggest that in transgenic mice, deoxygenation increases cytosolic Ca2+ to levels which open Ca2+-activated K+ channels. The presence of these channels was confirmed in both control and transgenic mice by clamping intracellular Ca2+ at 10 μm with the ionophore A23187 and measuring Ca2+-activated K+ efflux. Both types of mouse had similar maximal rates of CTX-sensitive, Ca2+-activated K+ efflux that were similar to those in human SS cells. The capacity of the mouse red cell membrane to regulate cytosolic Ca2+ levels was examined by measurements of the maximal rate of calmodulin activated Ca2+-ATPase activity. This activity was 3-fold greater than that observed in human RBCs thus indicating that mouse RBC membranes have more capacity to regulate cytosolic Ca2+ levels. In summary, transgenic mouse RBCs exhibit larger values of deoxy-stimulated K+ efflux and Na+ influx when compared to human SS cells. They have a similar Ca2+-activated K+ channel activity to human SS cells while expressing a very high Ca2+ pump activity. These properties may contribute to the smaller percent of very dense cells and to the lack of adult anemia in this animal model. Received: 23 October/Revised: 15 May 1997  相似文献   

12.
A rapid loss of accumulated Ca2+ is produced by addition of H+ to isolated heart mitochondria. The H+-dependent Ca+ efflux requires that either (a) the NAD(P)H pool of the mitochondrion be oxidized, or (b) the endogenous adenine nucleotides be depleted. The loss of Ca2+ is accompanied by swelling and loss of endogenous Mg2–. The rate of H+-dependent Ca2+ efflux depends on the amount of Ca2+ and Pi taken up and the extent of the pH drop imposed. In the absence of ruthenium red the H+-induced Ca2+-efflux is partially offset by a spontaneous re-accumulation of released Ca2+. The H+-induced Ca2+ efflux is inhibited when the Pi transporter is blocked withN-ethylmaleimide, is strongly opposed by oligomycin and exogenous adenine nucleotides (particularly ADP), and inhibited by nupercaine. The H+-dependent Ca2+ efflux is decreased markedly when Na+ replaces the K+ of the suspending medium or when the exogenous K+/H+ exchanger nigericin is present. These results suggest that the H+-dependent loss of accumulated Ca2+ results from relatively nonspecific changes in membrane permeability and is not a reflection of a Ca2+/H+ exchange reaction.  相似文献   

13.
Rapid calcium exchange for protons and potassium in cell walls of Chara   总被引:3,自引:2,他引:1  
Net fluxes of Ca2+, H+ and K+ were measured from intact Chara australis cells and from isolated cell walls, using ion-selective microelectrodes. In both systems, a stimulation in Ca2+ efflux (up to 100 nmol m?2 s?1, from an influx of ~40 nmol m?2 s?1) was detected as the H+ or K+ concentration was progressively increased in the bathing solution (pH 7.0 to 4.6 or K+ 0.2 to 10mol m?3, respectively). A Ca2+ influx of similar size occurred following the reverse changes. These fluxes decayed exponentially with a time constant of about 10 min. The threshold pH for Ca2+ efflux (pH 5.2) is similar to a reported pH threshold for acid-induced wall extensibility in a closely related characean species. Application of NH4+ to intact cells caused prolonged H+ efflux and also transient Ca2+ efflux. We attribute all these net Ca2+ fluxes to exchange in the wall with H+ or K+. A theoretical treatment of the cell wall ion exchanges, using the ‘weak acid Donnan Manning’ (WADM) model, is given and it agrees well with the data. The role of Ca2+ in the cell wall and the effect of Ca2+ exchanges on the measured fluxes of other ions, including bathing medium acidification by H+ efflux, are discussed.  相似文献   

14.
At 0°C, when Na+ was the only cation present in the incubation medium, increasing the Na+ concentration from 3 to 10 mM enhanced the affinity of [3H]l-[2-(di-phenylmethoxy)ethyl]-4-(3-phenyl-2-propenyl)piperazine ([3H]GBR 12783) for the specific binding site present in rat striatal membranes without affecting the 5max. For higher Na+ concentrations, specific binding values plateaued and then slightly decreased at 130 mM Na+. In a 10 mM Na+ medium, the KD and the Bmax were, respectively, 0.23 nM and 12.9 pmol/mg of protein. In the presence of 0.4 nM [3H]GBR 12783, the half-maximal specific binding occurred at 5 mM Na+. A similar Na+ dependence was observed at 20°C. Scatchard plots indicated that K+, Ca2+, Mg2+, and Tris+ acted like competitive inhibitors of the specific binding of [3H]GBR 12783. The inhibitory potency of various cations (K+, Ca2+, Mg2+, Tris+, Li+ and choline) was enhanced when the Na+ concentration was decreased from 130 to 10 mM. In a 10 mM Na+ medium, the rank order of inhibitory potency was Ca2+ (0.13 mM) > Mg2+ > Tris+ > K+ (15 mM). The requirement for Na+ was rather specific, because none of the other cations acted as a substitute for Na+. No anionic requirement was found: Cl-, Br-, and F- were equipotent. These results suggest that low Na+ concentrations are required for maximal binding; higher Na+ concentrations protect the specific binding site against the inhibitory effect of other cations.  相似文献   

15.
It is now well established that mitochondria contain three antiporters that transport monovalent cations. A latent, allosterically regulated K+/H+ antiport appears to serve as a cation-extruding device that helps maintain mitochondrial volume homeostasis. An apparently unregulated Na+/H+ antiport keeps matrix [Na+] low and the Na+-gradient equal to the H+-gradient. A Na+/Ca2+ antiport provides a Ca2+-extruding mechanism that permits the mitochondrion to regulate matrix [Ca2+] by balancing Ca2+ efflux against influx on the Ca2+-uniport. All three antiports have well-defined physiological roles and their molecular properties and regulatory features are now being determined. Mitochondria also contain monovalent cation uniports, such as the recently described ATP- and glibenclamide-sensitive K+ channel and ruthenium red-sensitive uniports for Na+ and K+. A physiological role of such uniports has not been established and their properties are just beginning to be defined.  相似文献   

16.
The mechanism of the protective effect of Ca2+ on cellular K+ content was studied by examination of the effect of Ca2+ on efflux of the K+ analog, 86Rb+, from preloaded cells with the use of compounds which interfere with monovalent cation movements. Ca2+ decreased 86Rb+ efflux to the same extent in the presence and absence of ouabain, suggesting that Ca2+ did not alter the activity of the (Na+ + K+)-adenosine triphosphatase pump. Ca2+ exerted a similar protective effect in the presence of furosemide, an inhibitor of K+-K+ exchange, indicative that Ca2+ was not inhibiting this pathway. Since Ca2+ did not influence these pathways, it is concluded that Ca2+ exerts its primary effect by slowing passive diffusion. In support of this, Ca2+ also slowed 22Na+ efflux. In addition, ethanol-induced leakage of 86Rb+ was reversed by extracellular Ca2+, suggestive of a Ca2+-membrane phospholipid interaction.  相似文献   

17.
Mechanical properties of catch connective tissue are greatly affected by its ionic environment. In order to understand the role of ions, a preparation was developed in which cellular activities were suppressed by treatment with 1% Triton X-100.The material used was body-wall dermis of the sea cucumber Holothuria leucospilota Brandt.The effects of the main cations in seawater (H+, Na+, K+, Ca2+, Mg2+) on the creep viscosity of the Triton model were compared with those of intact dermis.The comparison distinguished the site of action of ions. K+ had its main effect on cells that control the catch mechanism, whereas Ca2+ worked directly on extracellular materials. H+, Na+ and Mg2+ had both effects.  相似文献   

18.
Characterization of a H Efflux from Suspension-cultured Plant Cells   总被引:6,自引:4,他引:2       下载免费PDF全文
A readily assayed H+ efflux from sycamore (Acer pseudoplatanus), rye (Lolium perenne), and bean (Phaseolus vulgaris cultivars Red Kidney and Small White) suspension-cultured cells has been detected and partially characterized. The H+ efflux has been shown to require a source of energy, to be significantly stimulated by Na+ and Mg2+ but not by K+ and Ca2+, and to have a pH optimum at 7. The study of this H+ efflux was undertaken because the characteristics of auxin-induced growth and of H+-induced growth are sufficiently similar to suggest that a H+ efflux may be an intermediate in the mechanism of auxin-induced growth. However, the H+ efflux from these suspension-cultured cells was found to be insensitive to exogenously added hormones.  相似文献   

19.
The effect of external and internal K+ on Nao+-dependent Ca2+ efflux was studied in dialyzed squid axons under constant membrane potential. With axons clamped at their resting potentials, external K+ (up to 70 mM) has no effect on Na+?Ca2+ exchange. Removal of Ki+ causes a marked inhibition in the Nao+-dependent Ca2+ efflux component. Internal K+ activates the Na+?Ca2+ exchange with low affinity (K12 = 90 mM). Activation by Ki+ is similar in the presence or in the absence of Nai+, thus ruling out a displacement of Nai+ from its inhibitory site. Axons dialyzed with ATP also show a dependency of Ca2+ efflux on Ki+. The present results demonstrate that Ki+ is an important cofactor (partially required) for the proper functioning of the forward Na+?Ca2+ exchange.  相似文献   

20.
Plants have evolved complex mechanisms that allow them to withstand multiple environmental stresses, including biotic and abiotic stresses. Here, we investigated the interaction between herbivore exposure and salt stress of Ammopiptanthus nanus, a desert shrub. We found that jasmonic acid (JA) was involved in plant responses to both herbivore attack and salt stress, leading to an increased NaCl stress tolerance for herbivore-pretreated plants and increase in K+/Na+ ratio in roots. Further evidence revealed the mechanism by which herbivore improved plant NaCl tolerance. Herbivore pretreatment reduced K+ efflux and increased Na+ efflux in plants subjected to long-term, short-term, or transient NaCl stress. Moreover, herbivore pretreatment promoted H+ efflux by increasing plasma membrane H+-adenosine triphosphate (ATP)ase activity. This H+ efflux creates a transmembrane proton motive force that drives the Na+/H+ antiporter to expel excess Na+ into the external medium. In addition, high cytosolic Ca2+ was observed in the roots of herbivore-treated plants exposed to NaCl, and this effect may be regulated by H+-ATPase. Taken together, herbivore exposure enhance s A. nanus tolerance to salt stress by activating the JA-signalling pathway, increasing plasma membrane H + - ATPase activity, promoting cytosolic Ca2+ accumulation, and then restricting K+ leakage and reducing Na+ accumulation in the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号