首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Phycobilisomes, isolated in 500 mM Sorensen's phosphate buffer pH 6.8 from the red alga, Porphyridium cruentum, were analyzed by selective dissociation at various phosphate concentrations. The results are consistent with a structural model consisting of an allophycocyanin core, surrounded by a hemispherical layer of R-phycocyanin, with phycoerythrin being on the periphery. Such a structure also allows maximum energy transfer.Intact phycobilisomes transfer excitation energy ultimately to a pigment with a fluorescence emission maximum at 675 nm. This pigment is presumed to be allophycocyanin in an aggregated state. Uncoupling of energy transfer among the pigments, and physical release of the phycobiliproteins from the phycobilisome follow a parallel time-course; phycoerythrin is released first, followed by R-phycocyanin, and then allophycocyanin. In 55 mM phosphate buffer, the times at which 50% of each phycobiliprotein has dissociated are: phycoerythrin 40 min, R-phycocyanin 75 min, and allophycocyanin 140 min.The proposed arrangement of phycobiliproteins within phycobilisomes is also consistent with the results from precipitation reactions with monospecific antisera on intact and dissociated phycobilisomes. Anti-phycoerythrin reacts almost immediately with intact phycobilisomes, but reactivity with anti-R-phycocyanin and anti-allophycocyanin is considerably delayed, suggesting that the antigens are not accessible until a loosening of the phycobilisome structure occurs. Reaction with anti-allophycocyanin is very slow in P. cruentum phycobilisomes, but is much more rapid in phycobilisomes of Nostoc sp. which contains 6–8 times more allophycocyanin. It is proposed that allophycocyanin is partially exposed on the base of isolated intact phycobilisomes of both algae, but that in P. cruentum there are too few accessible sites to permit a rapid formation of a precipitate with anti-allophyocyanin.Phycobilisome dissociation is inversely proportional to phosphate concentration (500 mM to 2 mM), and is essentially unaffected by protein concentration in the range used (30–200 μg/ml). Phycobiliprotein release occurs in the same order (phycoerythrin > R-phycocyanin > allophycocyanin) in the pH range 5.4–8.0.  相似文献   

2.
The wavelength-resolved fluorescence emission kinetics of the accessory pigments and chlorophyll a in Porphyridium cruentum have been studied by picosecond laser spectroscopy. Direct excitation of the pigment B-phycoerythrin with a 530 nm, 6 ps pulse produced fluorescence emission from all of the pigments as a result of energy transfer between the pigments to the reaction centre of Photosystem II. The emission from B-phycoerythrin at 576 nm follows a nonexponential decay law with a mean fluorescence lifetime of 70 ps, whereas the fluorescence from R-phycocyanin (640 nm), allophycocyanin (660 nm) and chlorophyll a (685 nm) all appeared to follow an exponential decay law with lifetimes of 90 ps, 118 ps and 175 ps respectively. Upon closure of the Photosystem II reaction centres with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and preillumination the chlorophyll a decay became non-exponential, having a long component with an apparent lifetime of 840 ps. The fluorescence from the latter three pigments all showed finite risetimes to the maximum emission intensity of 12 ps for R-phycocyanin, 24 ps for allophycocyanin and 50 ps for chlorophyll a.A kinetic analysis of these results indicates that energy transfer between the pigments is at least 99% efficient and is governed by an exp ?At12 transfer function. The apparent exponential behaviour of the fluorescence decay functions of the latter three pigments is shown to be a direct result of the energy transfer kinetics, as are the observed risetimes in the fluorescence emissions.  相似文献   

3.
Ley AC  Butler WL 《Plant physiology》1977,59(5):974-980
Allophycocyanin B was purified to homogeneity from the eukaryotic red alga Porphyridium cruentum. This biliprotein is distinct from the allophycocyanin of P. cruentum with respect to subunit molecular weights, and spectroscopic and immunological properties. The purified allophycocyanin B has a long wavelength absorption maximum at 669 nm at room temperature and at 675 nm at −196 C while the fluorescence emission maximum is at 673 nm at room temperature and 679 nm at −196 C. The emission spectrum of allophycocyanin shifted only 1 nm, from 659 to 660 nm, on cooling to −196 C, and was the same with allophycocyanin crystals as it was with pure solutions of the pigment. Phycobilisomes from P. cruentum have a major fluorescence emission band at 680 nm at −196 C which emanates from the small amount of allophycocyanin B present in the phycobilisomes. Light energy absorbed by the bulk of the biliprotein pigments is transferred to allophycocyanin B with high efficiency.  相似文献   

4.
别藻蓝蛋白藻蓝胆素发色团分子构象研究   总被引:1,自引:0,他引:1  
主要研究了蓝绿藻污棕席藻(Phormidium luridum)别藻蓝蛋白在不同 pH值条件下的吸收光谱和共振拉曼光谱.发现低聚化的结果导致了三聚体别藻蓝蛋白 650nm 特征吸收峰的消失和一些共振拉曼带强度和位置的移动.结果表明在低 pH 值作用下的低聚化的别藻蓝蛋白中藻蓝胆素发色团分子的构象和自由胆素分子类似,比三聚体的别藻蓝蛋白的发色团分子更趋于卷曲,折叠的构象态.而三聚体的别藻蓝蛋白,主要的拉曼带 1645cm-1是其发色团分子构象处于更线性延展的标志,其光谱行为和吸收光谱 Avis/Auv所表征的发色团分子构象的结果相一致.  相似文献   

5.
Redlinger T  Gantt E 《Plant physiology》1981,68(6):1375-1379
Purified phycobilisomes of Porphyridium cruentum were solubilized in sodium dodecyl sulfate and resolved by sodium dodecyl sulfate-acrylamide gel electrophoresis into nine colored and nine colorless polypeptides. The colored polypeptides accounted for about 84% of the total stainable protein, and the colorless polypeptides accounted for the remaining 16%. Five of the colored polypeptides ranging in molecular weight from 13,300 to 19,500 were identified as the α and β subunits of allophycocyanin, R-phycocyanin, and phycoerythrin. Three others (29,000-30,500) were orange and are probably related to the γ subunit of phycoerythrin. Another colored polypeptide had a molecular weight of 95,000 and the characteristics of long wavelength-emitting allophycocyanin. Sequential dissociation of phycobilisomes, and analysis of the polypeptides in each fraction, revealed the association of a 32,500 molecular weight colorless polypeptide with a phycoerythrin fraction. The remaining eight colorless polypeptides were in the core fraction of the phycobilisome, which also was enriched in allophycocyanin. In addition, the core fraction was enriched in a colored 95,000 dalton polypeptide. Inasmuch as a polypeptide with the same molecular weight is found in thylakoid membranes (free of phycobilisomes), it is suggested that this polypeptide is involved in anchoring phycobilisomes to thylakoid membranes.  相似文献   

6.
Phycobilisomes, isolated in 500 mM Sorensen's phosphate buffer pH 6.8 from the red alga, Porphyridium cruetum, were analyzed by selective dissociation at various phosphate concentrations. The results are consistent with a structural model consisting of an allophycocyanin core, surrounding by a hemispherical layer of R-phycocyanin, with phycoerythrin being on the periphery. Such a structure also allows maximum energy transfer. Intact phycobilisomes transfer excitation energy ultimately to a pigment with a fluorescence emission maximum at 675 nm. This pigment is presumed to be allophycocyanin in an aggreagated state. Uncoupling of energy transfer among the pigments, and physical release of the phycobiliproteins from the phycobilisome follow a parallel time-course; phycoerythrin is released first, followed by R-phycocyanin, and then allophycocyanin. In 55 mM phosphate buffer, the times at which 50% of each phycobiliprotein has dissociated are: phycoerythrin 40 min, R-phycocyanin 75 min, and allophycocyanin 140 min. The proposed arrangement of phycobiliproteins within phycobilisomes is also consistent with the results from precipitation reactions with monospecific antisera on intact and dissociated phycobilisomes. Anti-phycoertythrin reacts almost immediately with intact phycobilisomes, but reactivity with anti-R-phycocyanin and anti-allophycocyanin is considerably delayed, suggesting that the antigens are not accessible until a loosening of the phycobilsome structure occurs. Reaction wbilisomes, but is much more rapid in phycobilisomes of Nostoc sp. which contains 6-8 times more allophycocyanin. It is proposed that allophycocyanin is partially exposed on the base of isolated intact phycobilisomes of both algae, but that in P. cruentum there are too few accessible sites to permit a rapid formation of a precipitate with anti-allophyocyanin.  相似文献   

7.
Phycobilisomes in Griffithsia pacifica are closely spaced on the thylakoid membrane. By negative staining, attached and isolated phycobilisomes have been shown to have a block shaped appearance. They are 63 nm long, 38 nm high, and 38 nm wide, making them the largest thus far reported. Isolated phycobilisomes, shown to be functionally intact by their 675 nm fluorescence emission (excitation 545 nm) were stable for more than a day. Phycobiliproteins from dissociated phycobilisomes, separated on sucrose gradients and by polyacrylamide electrophoresis, yielded large (R-) and small (r-) molecular weight species of phycoerythrin (ca. 4:1 respectively) constituting 89% of the phycobiliprotein content, with R-phycocyanin 8%, and allophycocyanin 3% accounting for the rest. Phycobilisomes of Griffithsia pacifica and Porphyridium purpureum (Bory) Drew and Ross (P. cruentum) are structurally very similar with phycoerythrin being on the outside and surrounding a core of R-phycocyanin and allophycocyanin.  相似文献   

8.
9.
Summary Porphyridium cruentum extract was treated with rivanol for the precipitation and elimination of the polysaccharide typical for this alga, while all phycobiliproteins remained solubilized. After their precipitation with ammonium sulphate, B-phycoerythrin was differentially separated from the other phycobiliproteins, and rivanol was removed by Sephadex G-25 gel filtration. The purity of B-phycoerythrin was proved.Abbreviations B-PE B-phycoerythrin - b-PE b-phycoerythrin - R-PC R-phycocyanin - APC allophycocyanin - PBP phycobiliproteins  相似文献   

10.
Phycobilisomes of Porphyridium cruentum. I. Isolation   总被引:10,自引:1,他引:9       下载免费PDF全文
A procedure was developed for the isolation of phycobilisomes from Porphyridium cruentum. The cell homogenate, suspended in phosphate buffer (pH 6.8), was treated with 1% Triton X-100, and its supernatant fraction was centrifuged on a sucrose step gradient. Phycobilisomes were recovered in the 1 M sucrose band. The phycobilisome fraction was identified by the characteristic appearance of the phycobilisomes, and the absorbance of the component pigments: phycoerythrin, R-phycocyanin, and allophycocyanin Isolated phycobilisomes had a prolate shape, with one particle axis longer than the other. Their size varied somewhat with their integrity, but was about 400–500 A (long axis) by 300–320 A (short axis). Phycobilisome recovery was determined at six phosphate buffer concentrations from 0.067 M to 1.0 M. In 0.5 M phosphate, phycobilisome yield (60%) and preservation were optimal. Such a preparation had a phycoerythrin 545 nm/phycocyanin 620 nm ratio of 8.4. Of the detergents tested (Triton X-100, Tween 80, and sodium deoxycholate), Triton X-100 gave the best results Freezing of the cells caused destruction of phycobilisomes.  相似文献   

11.
By immuno-electron microscopy it was shown that phycoerythrin is located on the outer surface of the phycobilisome and allophycocyanin is on the inside near the photosynthetic membrane in the red alga Porphyridium purpureum (Bory) Drew & Ross (P. cruentum). These findings are consistent with the idea that the phycobilisome junctions as a light harvesting antenna and energy sink, which directs the energy to chlorophyll in the photosynthetic membrane. A technique was devised in which unfixed phycobilisomes, attached to thylakoid vesicles, were separately reacted with three monospecific antisera (to B-phycoerythrin, R-phycocyanin and allophycocyanin) and the reaction products were secondarily marked by reaction with ferritin-conjugated goat-antirabbit gamma globulin fraction. This was subsequently followed by glutaraldehyde fixation and staining with phosphotungstic acid. The entire procedure was carried out on an electron microscope grid. The results confirm the previously proposed phycobilisome structural model.  相似文献   

12.
The transfer of excitation energy between phycobiliproteins in isolated phycobilisomes has been observed on a picosecond time scale. The photon density of the excitation pulse has been carefully varied so as to control the level of exciton interactions induced in the pigment bed. The 530 nm light pulse is absorbed predominantly by B-phycoerythrin, and the fluorescence of this component rises within the pulse duration and shows a mean 1/e decay time of 70 ps. The main emission band, centred at 672 nm, is due to allophycocyanin and is prominent because of the absence of energy transfer to chlorophyll. Energy transfer to this pigment from B-phycoerythrin via R-phycocyanin produces a risetime of 120 ps to the fluorescence maximum. The lifetime of the allophycocyanin fluorescence is found to be about 4 ns using excitation pulses of low photon densities (1013 photons · cm?2), but decreases to about 2 ns at higher photon densities. The relative quantum yield of the allophycocyanin fluorescence decreases almost 10 fold over the range of laser pulse intensities, 1013–1016 photons · cm?2. Fluorescence quenching by exciton-exciton annihilation is only observed in allophycocyanin and could be a consequence of the long lifetime of the single exciton in this pigment.  相似文献   

13.
《Process Biochemistry》2014,49(10):1757-1766
The present study probes into the purification of phycobiliproteins, and characterization of their in vitro anti-oxidant activity. Moreover, the study also demonstrates the use of antioxidant virtue of phycoerythrin in moderating the phenomenon of aging in Caenorhabditis elegans. Phycoerythrin, phycocyanin and allophycocyanin were purified successfully from Lyngbya sp. A09DM by ammonium sulfate fractionation appended with Triton X-100 intercession. The success of protocol was examined by a series of biochemical characterization like SDS-PAGE, native-PAGE, UV–visible spectroscopy and fluorescence spectroscopy ensuring purity, integrity and functionality of purified phycoerythrin, phycocyanin and allophycocyanin. Purified phycobiliproteins were evaluated for antioxidant and metal ion chelating activity by various in vitro antioxidant assay systems. Results showed significant and dose-dependent antioxidant as well as metal chelating potential of all phycobiliproteins in decreasing order of phycoerythrin > phycocyanin > allophycocyanin. Expansion in lifespan and improvement in pharyngeal pumping of C. elegans were noticed upon pre-treatment with phycoerythrin (100 μg ml−1). Moreover, phycoerythrin mediated increase in worm survival under oxidative stress revealed that the life expansion effect of phycoerythrin on nematode is in part by an action of its antioxidant virtue. These results collectively added up evidence in favor of the ‘free-radical theory of aging’. The present report, for the first time, describes antioxidant potential of phycoerythrin and its use in extending life-span of C. elegans.  相似文献   

14.
Allophycocyanin was purified from the extremely thermophilic blue-green alga Synechococcus lividus. It was shown to be more stable to thermal or urea denaturation than allophycocyanin from a mesophilic organisms. Its amino acid composition and spectroscopic response to pH were investigated. An analysis was made of the relatively low fluorescence polarization of allophycocyanin compared to that of a comparable sized aggregate of the biliprotein, C-phycocyanin. A rather speculative conclusion was reached that suggests that the lower polarization of allophycocyanin may be caused by orientations or positioning of the chromophores that are more favorable for intra-protein energy transfer.  相似文献   

15.
Phycobilisome Heterogeneity in the Red Alga Porphyra umbilicalis   总被引:1,自引:0,他引:1       下载免费PDF全文
Phycobilisomes were isolated from Rhodophyceae brought from the field (Porphyra umbilicalis) or grown in culture under laboratory conditions (Antithamnion glanduliferum). In P. umbilicalis two kinds of well-coupled (ellipsoidal and hemidiscoidal) phycobilisomes were detected, in contrast to A. glanduliferum cultured algae in which only one kind of well-coupled, ellipsoidaltype phycobilisome appeared. The new phycobilisome-type particle detected in P. umbilicalis is characterized by an impoverishment in R-phycoerythrin and by sedimentation at lower density. The comparison between both phycobilisomes of P. umbilicalis allows determination of the presence of one colorless linker polypeptide (30 kilodaltons) associated with R-phycocyanin and allophycocyanin and two (40 and 38 kilodaltons) associated to R-phycoerythrin. The percentage of linker polypeptides associated with this pigment is low in the new phycobilisome-like particle detected. This suggests that part of the R-phycoerythrin is less strongly bound to the phycobilisome than the other pigments. This feature could probably explain the existence of two kinds of phycobilisomes as intermediary steps of phycobilisome organization in algae exposed to rapid changes in environmental factors. In contrast, algae growing in culture and adapted to specific conditions do not present intermediary organization steps. Polypeptide composition and identification are given for this phycobilisome-like particle.  相似文献   

16.
A hitherto undescribed red fluorescent phycobiliprotein (maximum emission at ∼ 680 nm), characterized by long wavelength absorption maxima in the visible region at 671 nm (ε=172000 M−1·cm−1 per monomer of mol. wt. 30600) and 618 nm, has been purified to homogeneity from a unicellular cyanobacterium, Synechococcus sp., and from a filamentous cyanobacterium, Anabaena variabilis. The name allophycocyanin B has been proposed for the new protein. A. variabilis allophycocyanin B is characterized by a native molecular weight of 89000 ± 5000 (in 0.05 M phosphate at pH 7.2), an isoelectric point of 5.09, and a subunit molecular weight, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, of 15300. The protein contains one phycocyanobilin chromophore per subunit. In common with allophycocyanin from the same organism, allophycocyanin B does not contain either histidine or tryptophan. In other respects, the amino acid compositions of the two proteins are significantly different. Synechococcus sp. (Anacystis nidulans) allophycocyanin B gives two components of 16000 and 17000 mol. wt., of equal staining intensity, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Allophycocyanins B from both organisms cross-react with rabbit antisera directed against either Synechococcus sp. or Anabaena sp. allophycocyanin, but not with antisera against the phycocyanins of the same organisms. It is suggested that allophycocyanin B occupies a position between allophycocyanin and chlorophyll a in the energy transfer path from the accessory pigments to species of chlorophyll a with absorption maxima at λ>670 nm.  相似文献   

17.
Purification and N-terminal analyses of algal biliproteins   总被引:1,自引:0,他引:1       下载免费PDF全文
1. R-, B- and C-phycoerythrins and R- and C-phycocyanins were isolated and purified on a preparative scale by calcium phosphate chromatography, ammonium sulphate fractionation and crystallization. 2. The N-terminal residues of these biliproteins were analysed. Methionine is the only N-terminal residue of all the phycoerythrins, there being about 14 N-terminal residues per molecule of R- and B-phycoerythrins (mol.wt. 290000) and about 8 per molecule of C-phycoerythrin (mol.wt. 226000). Threonine (1 residue) is N-terminal in C-phycocyanin (mol.wt. 138000), and both threonine (about 1·3 residues) and methionine (5 residues) are N-terminal in R-phycocyanin (mol.wt. 273000). 3. Results suggest that the apoproteins of the various phycoerythrins are closely related, whereas C-phycocyanin has quite a different gross structure, and that R-phycocyanin contains two types of sub-unit, one related to C-phycocyanin and the other to the phycoerythrins.  相似文献   

18.
Czeczuga  B. 《Polar Biology》1985,4(3):179-181
Summary By means of Sephadex G-100 chromatography method, the phycobiliprotein content of Antarctic red alga-Leptosomia simplex was studied. The phycobiliproteins, R-phycoerythrin, R-phycocyanin and allophycocyanin were identified. The dominant pigment in this group was found to be R-phycoerythrin.Part VII in the series Studies on phycobiliproteins in algae  相似文献   

19.
Summary The pigments of the endosymbiotic algae in Cyanophora paradoxa (colorless cryptomonad) and Glaucocystis nostochinearum (colorless Chlorophyceae) and two Rhodophyceae, Porphyridium aerugineum and Asterocytis ramosa have been examined. Both endosymbionts contain chlorophyll a, -carotene, zeaxanthin, C-phycocyanin and small amounts of allophycocyanin. Porphyridium has been shown to contain chlorophyll a, -carotene and zeaxanthin, as does Asterocytis ramosa. The biliproteins of Porphyridium have not been examined, but evidence is presented to suggest that Asterocytis ramosa may contain R-phycocyanin and possibly C-phycocyanin. The taxonomic implications of these results have been discussed, especially with regard to cyanome symbionts and their evolution from and classification with the Cyanophyceae.  相似文献   

20.
Raps S 《Plant physiology》1990,92(2):358-362
Microcystis aeruginosa, a unicellular cyanobacterium, contains small phycobilisomes consisting of C-phycocyanin, allophycocyanin, and linker polypeptides. SDS-polyacrylamide gels of the phycobilisomes were examined for fluorescent bands before and after spraying with a solution of ZnSO4, followed by Coomassie brilliant blue staining for protein. This procedure provides a rapid and sensitive method for detecting small amounts of phycobilin-containing polypeptides and distinguishing them from other tetrapyrrole-containing polypeptides and from `colorless' ones. Three polypeptide bands, in addition to the α and β phycobiliprotein subunits, have been detected under these conditions. An 85 kilodalton polypeptide was identified as a phycobiliprotein due to its enhanced fluorescence in the presence of ZnSO4. The other polypeptides do not contain chromophores and are colorless. They are approximately 34.5 and 30 kilodaltons in size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号