首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RB60, a chloroplast protein disulfide isomerase, modulates the binding of RB47, chloroplast poly(A)-binding protein, to the 5'-UTR of the psbA mRNA using redox potential, allowing for a reversible switch capable of regulating psbA mRNA translation in a light/dark dependent manner. RB60 contains two thioredoxin-like domains with putative catalytic sites of -Cys-Gly-His-Cys- that are presumed to function as active sites for the redox-regulated changes in RNA-binding activity of RB47. To investigate whether these motifs are required for redox-regulated RNA binding, RNA-gel-mobility shift assays were performed with RB47 and mutant RB60 proteins with single cysteines changed to serines in the -Cys-Gly-His-Cys- motif. The results showed that each thioredoxin-like domain has independent catalytic function in the reactivation of RB47 binding and that a double active site mutant completely lacks the ability to activate RB47 RNA binding activity.  相似文献   

2.
Translation of psbA mRNA in Chlamydomonas reinhardtii chloroplasts is regulated by a redox signal(s). RB60 is a member of a protein complex that binds with high affinity to the 5'-untranslated region of psbA mRNA. RB60 has been suggested to act as a redox-sensor subunit of the protein complex regulating translation of chloroplast psbA mRNA. Surprisingly, cloning of RB60 identified high homology to the endoplasmic reticulum-localized protein disulfide isomerase, including an endoplasmic reticulum-retention signal at its carboxyl terminus. Here we show, by in vitro import studies, that the recombinant RB60 is imported into isolated chloroplasts of C. reinhardtii and pea in a transit peptide-dependent manner. Subfractionation of C. reinhardtii chloroplasts revealed that the native RB60 is partitioned between the stroma and the thylakoids. The nature of association of native RB60, and imported recombinant RB60, with thylakoids is similar and suggests that RB60 is tightly bound to thylakoids. The targeting characteristics of RB60 and the potential implications of the association of RB60 with thylakoids are discussed.  相似文献   

3.
Disulfides are conventionally viewed as structurally stabilizing elements in proteins but emerging evidence suggests two disulfide subproteomes exist. One group mediates the well known role of structural stabilization. A second redox‐active group are best known for their catalytic functions but are increasingly being recognized for their roles in regulation of protein function. Redox‐active disulfides are, by their very nature, more susceptible to reduction than structural disulfides; and conversely, the Cys pairs that form them are more susceptible to oxidation. In this study, we searched for potentially redox‐active Cys Pairs by scanning the Protein Data Bank for structures of proteins in alternate redox states. The PDB contains over 1134 unique redox pairs of proteins, many of which exhibit conformational differences between alternate redox states. Several classes of structural changes were observed, proteins that exhibit: disulfide oxidation following expulsion of metals such as zinc; major reorganisation of the polypeptide backbone in association with disulfide redox‐activity; order/disorder transitions; and changes in quaternary structure. Based on evidence gathered supporting disulfide redox activity, we propose disulfides present in alternate redox states are likely to have physiologically relevant redox activity.  相似文献   

4.
Binding of the chloroplast poly(A)-binding protein, RB47, to the psbA mRNA is regulated in response to light and is required for translation of this mRNA in chloroplasts. The RNA binding activity of RB47 can be modulated in vitro by oxidation and reduction. Site-directed mutations to individual cysteine residues in each of the four RNA binding domains of RB47 showed that changing single cysteines to serines in domains 2 or 3 reduced, but did not eliminate, the ability of RB47 to be redox-regulated. Simultaneously changing cysteines to serines in both domains 2 and 3 resulted in the production of RB47 protein that was insensitive to redox regulation but retained the ability to bind the psbA mRNA at high affinity. The poly(A)-binding protein from Saccharomyces cerevisiae lacks cysteine residues in RNA binding domains 2 and 3, and this poly(A)-binding protein lacks the ability to be regulated by oxidation or reduction. These data show that disulfide bond formation between RNA binding domains in a poly(A)-binding protein can be used to regulate the ability of this protein to bind mRNA and suggest that redox regulation of RNA binding activity may be used to regulate translation in organisms whose poly(A)-binding proteins contain these critical cysteine residues.  相似文献   

5.
In the major pathway for protein disulfide-bond formation in the endoplasmic reticulum (ER), oxidizing equivalents flow from the conserved ER-membrane protein Ero1p to secretory proteins via protein disulfide isomerase (PDI). Herein, a mutational analysis of the yeast ERO1 gene identifies two pairs of conserved cysteines likely to form redox-active disulfide bonds in Ero1p. Cys100, Cys105, Cys352, and Cys355 of Ero1p are important for oxidative protein folding and for cell viability, whereas Cys90, Cys208, and Cys349 are dispensable for these functions. Substitution of Cys100 with alanine impedes the capture of Ero1p-Pdi1p mixed-disulfide complexes from yeast, and also blocks oxidation of Pdi1p in vivo. Cys352 and Cys355 are required to maintain the fully oxidized redox state of Ero1p, and also play an auxiliary role in thiol-disulfide exchange with Pdi1p. These results suggest a model for the function of Ero1p wherein Cys100 and Cys105 form a redox-active disulfide bond that engages directly in thiol-disulfide exchange with ER oxidoreductases. The Cys352-Cys355 disulfide could then serve to reoxidize the Cys100-Cys105 cysteine pair, possibly through an intramolecular thiol-disulfide exchange reaction.  相似文献   

6.
The thermostable sweet protein brazzein consists of 54 amino acid residues and has four intramolecular disulfide bonds, the location of which is unknown. We found that brazzein resists enzymatic hydrolysis at enzyme/substrate ratios (w/w) of 1:100-1:10 at 35–40°C for 24–48 h. Brazzein was hydrolyzed using thermolysin at an enzyme/substrate ratio of 1:1 (w/w) in water, pH 5.5. for 6 h and at 50°C. The disulfide bonds were determined, by a combination of mass spectrometric analysis and amino acid sequencing of cystine-containing peptides, to be between Cys4-Cys52, Cys16-Cys37, Cys22-Cys47, and Cys26-Cys49. These disulfide bonds contribute to its thermostability. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Ladenstein R  Ren B 《The FEBS journal》2006,273(18):4170-4185
Disulfide bonds are required for the stability and function of a large number of proteins. Recently, the results from genome analysis have suggested an important role for disulfide bonds concerning the structural stabilization of intracellular proteins from hyperthermophilic Archaea and Bacteria, contrary to the conventional view that structural disulfide bonds are rare in proteins from Archaea. A specific protein, known as protein disulfide oxidoreductase (PDO) is recognized as a potential key player in intracellular disulfide-shuffling in hyperthermophiles. The structure of this protein shows a combination of two thioredoxin-related units with low sequence identity which together, in tandem-like manner, form a closed protein domain. Each of these units contains a distinct CXXC active site motif. Due to their estimated conformational energies, both sites are likely to have different redox properties. The observed structural and functional characteristics suggest a relation to eukaryotic protein disulfide isomerase. Functional studies have revealed that both the archaeal and bacterial forms of this protein show oxidative and reductive activity and are able to isomerize protein disulfides. The physiological substrates and reduction systems, however, are to date unknown. The variety of active site disulfides found in PDOs from hyperthermophiles is puzzling. Nevertheless, the catalytic function of any PDO is expected to be correlated with the redox properties of its active site disulfides CXXC and with the distinct nature of its redox environment. The residues around the two active sites form two grooves on the protein surface. In analogy to a similar groove in thioredoxin, both grooves are suggested to constitute the substrate binding sites of PDO. The direct neighbourhood of the grooves and the different redox properties of both sites may favour sequential reactions in protein disulfide shuffling, like reduction followed by oxidation. A model for peptide binding by PDO is proposed to be derived from the analysis of crystal packing contacts mimicking substrate binding interactions. It is assumed, that PDO enzymes in hyperthermophilic Archaea and Bacteria may be part of a complex system involved in the maintenance of protein disulfide bonds. The regulation of disulfide bond formation may be dependent on a distinct interplay of thermodynamic and kinetic effects, including functional asymmetry and substrate-mediated protection of the active sites, in analogy to the situation in protein disulfide isomerase. Numerous questions related to the function of PDO enzymes in hyperthermophiles remain unanswered to date, but can probably successfully be studied by a number of approaches, such as first-line genetic and in vivo studies.  相似文献   

8.
TF (tissue factor) is a transmembrane cofactor that initiates blood coagulation in mammals by binding Factor VIIa to activate Factors X and IX. The cofactor can reside in a cryptic configuration on primary cells and de-encryption may involve a redox change in the C-terminal domain Cys(186)-Cys(209) disulfide bond. The redox potential of the bond, the spacing of the reduced cysteine thiols and their oxidation by TF activators was investigated to test the involvement of the dithiol/disulfide in TF activation. A standard redox potential of -278 mV was determined for the Cys(186)-Cys(209) disulfide of recombinant soluble TF. Notably, ablating the N-terminal domain Cys(49)-Cys(57) disulfide markedly increased the redox potential of the Cys(186)-Cys(209) bond, suggesting that the N-terminal bond may be involved in the regulation of redox activity at the C-terminal bond. Using As(III) and dibromobimane as molecular rulers for closely spaced sulfur atoms, the reduced Cys(186) and Cys(209) sulfurs were found to be within 3-6 ? (1 ?=0.1 nm) of each other, which is close enough to reform the disulfide bond. HgCl2 is a very efficient activator of cellular TF and activating concentrations of HgCl2-mediated oxidation of the reduced Cys(186) and Cys(209) thiols of soluble TF. Moreover, PAO (phenylarsonous acid), which cross-links two cysteine thiols that are in close proximity, and MMTS (methyl methanethiolsulfonate), at concentrations where it oxidizes closely spaced cysteine residues to a cystine residue, were efficient activators of cellular TF. These findings further support a role for Cys(186) and Cys(209) in TF activation.  相似文献   

9.
In order to understand the unusual heat resistance of LamB protein (the outer membrane component of the maltose transport system in Escherichia coli and its receptor for bacteriophage lambda), we investigated the role of its 2 cysteinyl residues. Our studies show that Cys22 and Cys38 form an intrasubunit disulfide bond which contributes to the heat stability of the LamB protein trimer. Physical evidence for the disulfide was obtained by using site-directed mutagenesis to convert Asn36 to Met, which allowed cyanogen bromide cleavage between the 2 cysteines. Upon reduction one of the N36M fragments migrated as two pieces, resolved by two-dimensional polyacrylamide gel electrophoresis. Other mutagenized LamB proteins, in which 1 or both Cys residues were converted to Ser, exhibited a sharp loss of thermal stability. In contrast to wild-type LamB protein trimer, which does not dissociate to monomers even after 60 min at 100 degrees C, only 10-15% of the mutant LamB proteins remain trimeric after boiling 10 min. The disulfide bond in LamB protein is not required for its transport function, since both mutagenized LamB protein and N-ethylmaleimide-labeled LamB protein exhibit normal uptake of sugars in proteoliposomes. Finally, the disulfide bond must not be between subunits of the LamB trimer since reversible dissociation of trimer is achieved by low pH or denaturants in the absence of reducing agent.  相似文献   

10.
11.
Thioredoxins and glutaredoxins as facilitators of protein folding   总被引:3,自引:0,他引:3  
Thiol-disulfide oxidoreductase systems of bacterial cytoplasm and eukaryotic cytosol favor reducing conditions and protein thiol groups, while bacterial periplasm and eukaryotic endoplasmatic reticulum provide oxidizing conditions and a machinery for disulfide bond formation in the secretory pathway. Oxidoreductases of the thioredoxin fold superfamily catalyze steps in oxidative protein folding via protein-protein interactions and covalent catalysis to act as chaperones and isomerases of disulfides to generate a native fold. The active site dithiol/disulfide of thioredoxin fold proteins is CXXC where variations of the residues inside the disulfide ring are known to increase the redox potential like in protein disulfide isomerases. In the catalytic mechanism thioredoxin fold proteins bind to target proteins through conserved backbone-backbone hydrogen bonds and induce conformational changes of the target disulfide followed by nucleophilic attack by the N-terminally located low pK(a) Cys residue. This generates a mixed disulfide covalent bond which subsequently is resolved by attack from the C-terminally located Cys residue. This review will focus on two members of the thioredoxin superfamily of proteins known to be crucial for maintaining a reduced intracellular redox state, thioredoxin and glutaredoxin, and their potential functions as facilitators and regulators of protein folding and chaperone activity.  相似文献   

12.
The redox properties of periplasmic protein disulfide isomerase (DsbA) from Escherichia coli were analyzed by measuring the equilibrium constant of the oxidation of reduced DsbA by oxidized glutathione. The experiments are based on the finding that the intrinsic tryptophan fluorescence of DsbA increases about threefold upon reduction of the enzyme, which can be explained by the catalytic disulfide bridge quenching the fluorescence of a neighboring tryptophan residue. From the specific fluorescence of DsbA equilibrated in the presence of different ratios of reduced and oxidized glutathione at pH 7, an equilibrium constant of 1.2 x 10(-4) M was determined, corresponding to a standard redox potential (E'0) of DsbA of -0.089 V. Thus, DsbA is a significantly stronger oxidant than cytoplasmic thioredoxins and its redox properties are similar to those of eukaryotic protein disulfide isomerase. The equilibrium constants for the DsbA/glutathione equilibrium were found to be strongly dependent on pH and varied from 2.5 x 10(-3) M to 3.9 x 10(-5) M between pH 4 and 8.5. The redox state-dependent fluorescence properties of DsbA should allow detailed physicochemical studies of the enzyme as well as the quantitative determination of the oxidized protein by fluorescence titration with dithiothreitol and open the possibility to observe bacterial protein disulfide isomerase "at work" during catalysis of oxidative protein folding.  相似文献   

13.
14.
Light has been proposed to stimulate the translation of Chlamydomonas reinhardtii chloroplast psbA mRNA by activating a protein complex associated with the 5' untranslated region of this mRNA. The protein complex contains a redox-active regulatory site responsive to thioredoxin. We identified RB60, a protein disulfide isomerase-like member of the protein complex, as carrying the redox-active regulatory site composed of vicinal dithiol. We assayed in parallel the redox state of RB60 and translation of psbA mRNA in intact chloroplasts. Light activated the specific oxidation of RB60, on the one hand, and reduced RB60, probably via the ferredoxin-thioredoxin system, on the other. Higher light intensities increased the pool of reduced RB60 and the rate of psbA mRNA translation, suggesting that a counterbalanced action of reducing and oxidizing activities modulates the translation of psbA mRNA in parallel with fluctuating light intensities. In the dark, chemical reduction of the vicinal dithiol site did not activate translation. These results suggest a mechanism by which light primes redox-regulated translation by an unknown mechanism and then the rate of translation is determined by the reduction-oxidation of a sensor protein located in a complex bound to the 5' untranslated region of the chloroplast mRNA.  相似文献   

15.
HIV-1 enters cells via interaction of the viral glycoprotein gp120, the host cell surface receptor CD4 and the co-receptors CCR5 or CXCR4. For entry, gp120 undergoes conformational changes that depend on the reduction of one or more disulfides. Previous studies indicate that protein disulfide isomerase (PDI), thioredoxin-1 (Trx1), and glutaredoxin-1 (Grx1) catalyze gp120 reduction, but their specific disulfide targets are not known. Here, it was demonstrated that PDI and Trx1 have similar gp120 disulfide targets as determined by labeling after reduction, but with some pattern differences, including overall stronger labeling with Trx1 than with PDI. Furthermore, uneven labeling of the residues of a disulfide may reflect altered accessibility by conformational changes upon the reduction process. Since both PDI and Trx1 may be involved in viral entry, compounds that target the host redox system or the viral gp120 were tested in vitro to investigate whether redox regulation is a target for anti-HIV therapy. Carbohydrate binding agents (CBAs), previously shown to bind gp120 and inhibit HIV entry, were now demonstrated to inhibit gp120 disulfide reduction. Auranofin, an inhibitor of thioredoxin reductase 1 (TrxR1), also showed inhibitory activity towards HIV infection, although close to its cytotoxic concentration. Our results demonstrate that both the host redox system and the viral surface glycoproteins are of interest for the development of new generations of anti-HIV therapeutics.  相似文献   

16.
Certain disulfide bonds present in leucocyte membrane proteins are labile and can be reduced in inflammation. This can cause structural changes that result in downstream functional effects, for example, in integrin activation. Recent studies have shown that a wide range of membrane proteins have labile disulfide bonds including CD132, the common gamma chain of the receptors for several cytokines including interleukin-2 and interleukin-4 (IL-2 and IL-4). The Cys(183)-Cys(232) disulfide bond in mouse CD132 is susceptible to reduction by enzymes such as thioredoxin (TRX), gamma interferon-inducible lysosomal thiolreductase and protein disulfide isomerase, which are commonly secreted during immune activation. The Cys(183)-Cys(232) disulfide bond is also reduced in an in vivo lipopolysaccharide (LPS)-induced acute model of inflammation. Conditions that lead to the reduction of the Cys(183)-Cys(232) disulfide bond in CD132 inhibit proliferation of an IL-2-dependent T cell clone and concomitant inhibition of the STAT-5 signalling pathway. The same reducing conditions had no effect on the proliferation of an IL-2-independent T cell clone, nor did they reduce disulfide bonds in IL-2 itself. We postulate that reduction of the Cys(183)-Cys(232) disulfide in CD132 inhibits IL-2 binding to the receptor complex. Published data show that the Cys(183)-Cys(232) disulfide bond is exposed at the surface of CD132 and in close contact with IL-2 and IL-4 in their respective receptor complexes. In addition, mutants in these Cys residues in human CD132 lead to immunodeficiency and loss of IL-2 binding. These results have wider implications for the regulation of cytokine receptors in general, as their activity can be modulated by a 'redox regulator' mechanism caused by the changes in the redox environment that occur during inflammation and activation of the immune system.  相似文献   

17.
The heat shock protein Hsp33 is a very potent molecular chaperone with a distinctive mode of functional regulation; its activity is redox-regulated. In its reduced form all six cysteinyl residues of Hsp33 are present as thiols, and Hsp33 displays no folding helper activity. Exposure of Hsp33 to oxidizing conditions like H(2)O(2), however, rapidly converts Hsp33 into an efficient molecular chaperone. Activated Hsp33 binds tightly to refolding intermediates of chemically denatured luciferase and suppresses efficiently their aggregation in vitro. Matrix-assisted laser desorption/ionization-mass spectrometry peptide mapping in combination with in vitro and on target protein chemical modification showed that this activation process of Hsp33 is accompanied by the formation of two intramolecular disulfide bonds within Hsp33: Cys(232)-S-S-Cys(234) and Cys(265)-S-S-Cys(268). Cys(141), although not involved in disulfide bond formation, was found highly reactive toward chemical modifications. In contrast, Cys(239) is readily accessible under reducing conditions but becomes poorly accessible though still reduced when Hsp33 is in its active state. This indicates a significant conformational change during the activation process of Hsp33. Mass spectrometry, thus, unraveled a novel molecular mechanism by which alteration of the disulfide bond structure, as a result of changes in the cellular redox potential, results in the activation of a molecular chaperone.  相似文献   

18.
Cytoplasmic desulfothioredoxin (Dtrx) from the anaerobe Desulfovibrio vulgaris Hildenborough has been identified as a new member of the thiol disulfide oxidoreductase family. The active site of Dtrx contains a particular consensus sequence, CPHC, never seen in the cytoplasmic thioredoxins and generally found in periplasmic oxidases. Unlike canonical thioredoxins (Trx), Dtrx does not present any disulfide reductase activity, but it presents instead an unusual disulfide isomerase activity. We have used NMR spectroscopy to gain insights into the structure and the catalytic mechanism of this unusual Dtrx. The redox potential of Dtrx (-181 mV) is significantly less reducing than that of canonical Trx. A pH dependence study allowed the determination of the pK(a) of all protonable residues, including the cysteine and histidine residues. Thus, the pK(a) values for the thiol group of Cys(31) and Cys(34) are 4.8 and 11.3, respectively. The His(33) pK(a) value, experimentally determined for the first time, differs notably as a function of the redox states, 7.2 for the reduced state and 4.6 for the oxidized state. These data suggest an important role for His(33) in the molecular mechanism of Dtrx catalysis that is confirmed by the properties of mutant DtrxH33G protein. The NMR structure of Dtrx shows a different charge repartition compared with canonical Trx. The results presented are likely indicative of the involvement of this protein in the catalysis of substrates specific of the anaerobe cytoplasm of DvH. The study of Dtrx is an important step toward revealing the molecular details of the thiol-disulfide oxidoreductase catalytic mechanism.  相似文献   

19.
To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivo by non-invasive fluorimetric measurements. The 1.5 A crystal structure of the oxidized protein revealed a disulfide bond-induced distortion of the beta-barrel, as well as a structural reorganization of residues in the immediate chromophore environment. By combining this information with spectroscopic data, we propose a detailed mechanism accounting for the observed redox state-dependent fluorescence. The redox potential of the cysteine couple was found to be within the physiological range for redox-active cysteines. In the cytoplasm of Escherichia coli, the protein was a sensitive probe for the redox changes that occur upon disruption of the thioredoxin reductive pathway.  相似文献   

20.
The disulfide structure of mouse lysosome-associated membrane protein 1   总被引:1,自引:0,他引:1  
The disulfide structure of mouse lysosome-associated membrane protein 1 has been determined by reverse-phase isolation and sequence analysis of the cysteine-containing tryptic fragments of the reduced and non-reduced deglycosylated protein. Half-cystines were distinguished (a) by their localization within tryptic or chymotryptic peptides that formed reverse-phase peaks unique to the reduced digests and (b) by their 3H-carboxymethylation only after reduction of the protein. The disulfide arrangement of the cysteines was assigned after isolation of disulfide-linked peptide pairs. Each pair chromatographed as a peak present in the nonreduced (but not the corresponding reduced) tryptic digest. NH2-terminal sequencing as well as reduction, alkylation, and rechromatography of the disulfide-linked fragments led to the following assignment of disulfide bonds: Cys11 and Cys50, Cys125 and Cys161, Cys198 and Cys235, and Cys303 and Cys340. This structure creates four 36-38-residue loops that are symmetrically placed within the two halves of the protein's intraluminal domain. The loops formed by the Cys11-Cys50 and Cys198-Cys235 bridges are homologous, and the Cys125-Cys161 and Cys303-cys340 loops form a second set of homologous domains. The conservation of cysteine residues among lysosome-associated membrane proteins 1 and 2 suggests that this disulfide arrangement is common to both members of this family of lysosomal membrane glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号