首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
2.
Bacterial pathogenesis relies on regulators that activate virulence genes. Some of them act, in addition, as repressors of specific genes. Intracellular-growth-attenuator-A (IgaA) is a Salmonella enterica membrane protein that prevents overactivation of the RcsC-YojN-RcsB regulatory system. This negative control is critical for growth because disruption of the igaA gene is only possible in rcsC, yojN or rcsB strains. In this work, we examined the contribution of this regulatory circuit to virulence. Viable igaA point mutant alleles were isolated and characterized. These alleles encode IgaA variants leading to different levels of activation of the RcsC-YojN-RcsB system. IgaA-mediated repression of the RcsB-YojN-RcsC system occurred at the post-translational level, as shown by chromosomal epitope tagging of the rcsC, yojN and rcsB genes. The activity of the RcsC-YojN-RcsB system, monitored with the product of a tagged gmd-3xFLAG gene (positively regulated by RcsC-YojN-RcsB), was totally abolished by wild-type bacteria in mouse target organs. Such tight repression occurred only in vivo and was mediated by IgaA. Shutdown of the RcsC-YojN-RcsB system is a requisite for Salmonella virulence since all igaA point mutant strains were highly attenuated. The degree of attenuation correlated to that of the activation status of RcsC-YojN-RcsB. In some cases, the attenuation recorded was unprecedented, with competitive index (CI) values as low as 10(-6). Strikingly, IgaA is a protein absolutely dispensable for virulence in mutant strains having a non-functional RcsC-YojN-RcsB system. To our knowledge, IgaA exemplifies the first protein that contributes to virulence by exclusively acting as a negative regulator upon host colonization.  相似文献   

3.
Mutants of Salmonella enterica carrying the igaA1 allele, selected as able to overgrow within fibroblast cells in culture, are mucoid and show reduced motility. Mucoidy is caused by derepression of wca genes (necessary for capsule synthesis); these genes are regulated by the RcsC/YojN/RcsB phosphorelay system and by the RcsA coregulator. The induction of wca expression in an igaA1 mutant is suppressed by mutations in rcsA and rcsC. Reduced motility is caused by lowered expression of the flagellar master operon, flhDC, and is suppressed by mutations in rcsB or rcsC, suggesting that mutations in the igaA gene reduce motility by activating the RcsB/C system. A null igaA allele can be maintained only in an igaA(+)/igaA merodiploid, indicating that igaA is an essential gene. Lethality is suppressed by mutations in rcsB, rcsC, and yojN, but not in rcsA, suggesting that the viability defect of an igaA null mutant is mediated by the RcsB/RcsC system, independently of RcsA (and therefore of the wca genes). Because all the defects associated with igaA mutations are suppressed by mutations that block the RcsB/RcsC system, we propose a functional interaction between the igaA gene product and either the Rcs regulatory network or one of its regulated products.  相似文献   

4.
The Rcs phosphorelay is a multicomponent signaling system that positively regulates colanic acid synthesis and negatively regulates motility and virulence. We have exploited a spontaneously isolated mutant, IgaA(T191P), that is nearly maximally activated for the Rcs system to identify a vast set of genes that respond to the stimulation, and we report new regulatory properties of this signaling system in Salmonella enterica serovar Typhimurium. Microarray data show that the Rcs system normally functions as a positive regulator of SPI-2 and other genes important for the growth of Salmonella in macrophages, although when highly activated the system completely represses the SPI-1/SPI-2 virulence, flagellar, and fimbrial biogenesis pathways. The auxiliary protein RcsA, which works with RcsB to positively regulate colanic acid and other target genes, not only stimulates but also antagonizes the positive regulation of many genes in the igaA mutant. We show that RcsB represses motility through the RcsB box in the promoter region of the master operon flhDC and that RcsA is not required for this regulation. Curiously, RcsB selectively stimulates expression of the flagellar type 3 secretion genes fliPQR; an RcsAB box located downstream of fliR influences this regulation. We show that excess colanic acid impairs swimming and inhibits swarming motility, consistent with the inverse regulation of the two pathways by the Rcs system.  相似文献   

5.
6.
Regulation of capsular polysaccharide synthesis in Escherichia coli K12   总被引:39,自引:12,他引:27  
  相似文献   

7.
8.
9.
10.
11.
12.
The Rcs phosphorelay pathway is a complex signaling pathway involved in the regulation of many cell surface structures in enteric bacteria. In response to environmental stimuli, the sensor histidine kinase (RcsC) autophosphorylates and then transfers the phosphate through intermediary steps to the response regulator (RcsB), which, once phosphorylated, regulates gene expression. Here, we show that Salmonella biofilm development depends on the phosphorylation status of RcsB. Thus, unphosphorylated RcsB, hitherto assumed to be inactive, is essential to activate the expression of the biofilm matrix compounds. The prevention of RcsB phosphorylation either by the disruption of the phosphorelay at the RcsC or RcsD level or by the production of a nonphosphorylatable RcsB allele induces biofilm development. On the contrary, the phosphorylation of RcsB by the constitutive activation of the Rcs pathway inhibits biofilm development, an effect that can be counteracted by the introduction of a nonphosphorylatable RcsB allele. The inhibition of biofilm development by phosphorylated RcsB is due to the repression of CsgD expression, through a mechanism dependent on the accumulation of the small noncoding RNA RprA. Our results indicate that unphosphorylated RcsB plays an active role for integrating environmental signals and, more broadly, that RcsB phosphorylation acts as a key switch between planktonic and sessile life-styles in Salmonella enterica serovar Typhimurium.  相似文献   

13.
In the Escherichia coli pgsA null mutant, which lacks the major acidic phospholipids, the Rcs phosphorelay signal transduction system is activated, causing thermosensitive growth. The mutant grows poorly at 37 degrees C and lyses at 42 degrees C. We showed that the poor growth at 37 degrees C was corrected by disruption of the rcsA gene, which codes for a coregulator protein that interacts with the RcsB response regulator of the phosphorelay system. However, mutant cells still lysed when incubated at 42 degrees C even in the absence of RcsA. We conclude that the activated Rcs phosphorelay in the pgsA null mutant has both RcsA-dependent and -independent growth inhibitory effects. Since the Rcs system has been shown to positively regulate the essential cell division genes ftsA and ftsZ independently of RcsA, we measured cellular levels of the FtsZ protein, but found that the growth defect of the mutant at 42 degrees C did not involve a change in the level of this protein.  相似文献   

14.
We have shown previously that Escherichia coli K92 produces two different capsular polymers known as CA (colanic acid) and PA (polysialic acid) in a thermoregulated manner. The complex Rcs phosphorelay is largely related to the regulation of CA synthesis. Through deletion of rscA and rscB genes, we show that the Rcs system is involved in the regulation of both CA and PA synthesis in E. coli K92. Deletion of either rcsA or rcsB genes resulted in decreased expression of cps (CA biosynthesis cluster) at 19°C and 37°C, but only CA production was reduced at 19°C. Concerning PA, both deletions enhanced its synthesis at 37°C, which does not correlate with the reduced kps (PA biosynthesis cluster) expression observed in the rcsB mutant. Under this condition, expression of the nan operon responsible for PA catabolism was greatly reduced. Although RcsA and RcsB acted as negative regulators of PA synthesis at 37°C, their absence did not reestablish PA expression at low temperatures, despite the deletion of rcsB resulting in enhanced kps expression. Finally, our results revealed that RcsB controlled the expression of several genes (dsrA, rfaH, h-ns and slyA) involved in the thermoregulation of CA and PA synthesis, indicating that RcsB is part of a complex regulatory mechanism governing the surface appearance in E. coli.  相似文献   

15.
As part of our attempt to map the impact of acetyl phosphate (acetyl approximately P) on the entire network of two-component signal transduction pathways in Escherichia coli, we asked whether the influence of acetyl approximately P on capsular biosynthesis and flagellar biogenesis depends on the Rcs phosphorelay. To do so, we performed a series of epistasis experiments: mutations in the components of the pathway that controls acetyl approximately P levels were combined with mutations in components of the Rcs phosphorelay. Cells that did not synthesize acetyl approximately P produced no capsule under normally permissive conditions, while those that accumulated acetyl approximately P synthesized capsule under conditions previously considered to be non-permissive. Acetyl approximately P-dependent capsular biosynthesis required both RcsB and RcsA, while the lack of RcsC restored capsular biosynthesis to acetyl approximately P-deficient cells. Similarly, acetyl approximately P-sensitive repression of flagellar biogenesis was suppressed by the loss of RcsB (but not of RcsA), while it was enhanced by the lack of RcsC. Taken together, these results show that both acetyl approximately P-sensitive activation of capsular biosynthesis and acetyl approximately P-sensitive repression of flagellar biogenesis require the Rcs phosphorelay. Moreover, they provide strong genetic support for the hypothesis that RcsC can function as either a kinase or a phosphatase dependent on environmental conditions. Finally, we learned that RcsB and RcsC inversely regulated the timing of flagellar biogenesis: rcsB mutants elaborated flagella prematurely, while rcsC mutants delayed their display of flagella. Temporal control of flagella biogenesis implicates the Rcs phosphorelay (and, by extension, acetyl approximately P) in the transition of motile, planktonic individuals into sessile biofilm communities.  相似文献   

16.
17.
The phoP genetic locus is a two-component regulatory system (phoP-phoQ) that controls the expression of genes essential for Salmonella typhimurium virulence and survival within macrophages. Strains with a phoP constitutive mutation (phenotype PhoPC) showed up to 10-fold greater expression of phoP-activated genes (pag loci) than did strains with a wild-type phoP locus (phenotype PhoP+). While the phoP constitutive mutation resulted in increased expression of pag loci, it also dramatically reduced the expression of other protein species. Comparison of the protein content of PhoP+ and PhoPC strains by two-dimensional protein gel electrophoresis demonstrated that at least 40 separate protein species were changed in expression as a result of this mutation. The PhoPC S. typhimurium were found to be attenuated for virulence and survival within macrophages. This finding suggests that a balanced PhoP-PhoQ regulatory response, which allows expression of phoP-repressed as well as -activated genes, is required for full virulence of S. typhimurium. We have further shown that small numbers of PhoPC bacteria can be used as a live attenuated vaccine to protect against mouse typhoid. As few as 15 PhoPC bacteria protected mice against challenge with 10(5) 50% lethal doses of wild-type organisms, suggesting that important protective antigens are regulated by the PhoP-PhoQ virulence regulon.  相似文献   

18.
19.
20.
PhoP/PhoQ: macrophage-specific modulators of Salmonella virulence?   总被引:23,自引:3,他引:20  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号