首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a replicated field experiment mean yields of wheat from plots that, in the preceding 2 years, had carried oats, beans or potatoes were 39.2 and 42.6 cwt. per acre in 1954 for Holdfast and Cappelle, respectively; 42.8 and 55.8 in 1955 and 34.9 and 49.6 in 1956. Previous wheat crops had more effect than any other treatment in increasing the incidence of eyespot, take-all and weeds and in decreasing the number of ears per unit area and the yield of grain. In 1956 on plots carrying the first, second and third successive wheat crops the percentages of straws with eyespot were respectively 12, 54 and 42 and with take-all 0.1, 1 and 16. Cappelle was less severely infected by eyespot than Holdfast. The second and third successive wheat crops yielded an average of 23.3 cwt./acre less than the first wheat crop. Cappelle consistently yielded more than Holdfast, the mean difference being 13.8 cwt./acre after potatoes but only 3.8 cwt./acre after two wheat crops. The higher seed-rate gave an average increase in grain yield of 3.3 cwt./acre; but where eyespot and take-all were both severe the lower seed-rate yielded as much total and more dressed grain than the higher. Wheat given a spring top dressing of 6 cwt./acre Nitro-Chalk yielded an average of 4 cwt./acre more grain than wheat given 3 cwt./acre.  相似文献   

2.
In a replicated field experiment on light sandy loam at Woburn, where winter wheat is a very uncertain crop, Cappelle and Holdfast, grown after potatoes with dung, yielded 50 and 41 cwt./acre of grain, respectively, when given 6 cwt./acre of Nitro-Chalk in April, compared with 19 and 20 cwt./acre when unfertilized. The same fertilized plots yielded 29 and 19 cwt., respectively, in the second, and 25 and 17 cwt./acre, respectively, in the third year on the same land, whereas unfertilized plots of both varieties yielded only 9 and 5 cwt./acre. The decrease in mean yield from 27 cwt. in the first, to 15 and 10 cwt./acre in the second and third crops was associated with a decrease in ear number from 16.7 to 14.6 and 12.2, respectively, and with a striking decrease in weight of grain per ear, caused partly by a large increase in the proportion of small grains. Eyespot ( Cercosporella herpotrichoides Fron.) although present each year did not become prevalent; an increase in the percentage straws affected by take-all ( Ophiobolus graminis Sacc.) from 9 to 15 and 26%, respectively, and a severe increase in weed infestation ( Agrostis gigantea ) appeared to be the main factors reducing yield.
Nitro-Chalk applied in April yielded most grain every year, and wheat fertilized at this time had less eyespot and take-all than that fertilized in March. Fertilizer applied in May increased weed growth, failed to decrease take-all and yielded fewer ears, less grain, and a higher proportion of tailcorn than did earlier applications.  相似文献   

3.
An experiment was made on the fourth, fifth and sixth successive crops of winter wheat to determine the effects of various treatments on the troubles which result from close cereal cropping. Eyespot and lodging were prevalent in the first year (1946); weeds in the second; eyespot, lodging, take-all and weeds in the third.
Spraying with H2SO4 reduced the incidence of eyespot, lodging and weeds, and increased yield of grain on plots which received sulphate of ammonia (by 2.7, 2.2 and 10.0 cwt./acre in successive years).
Sulphate of ammonia increased the incidence at harvest of eyespot and lodging, reduced take-all and consistently increased yield of straw. Eyespot and lodging reduced the effect of the fertilizer on yield of grain, take-all increased it.
Increase in seed rate increased the incidence of severe eyespot and of take-all; it increased lodging except when plants were dwarfed by take-all.
Weight of straw and percentage straws with severe eyespot lesions independently affected lodging, together accounting for 51% of the variance in percentage area lodged at harvest and 64 % of that lodged 33 days earlier.
Mean yields of grain on untreated plots sown with 3.3 1/2 bushels seed/acre fell from 26.0 to 22.5 to 11.7 cwt./acre in successive years, whereas yields of 28.4, 29.9 and 29.1 cwt./acre were obtained on sprayed plots sown with 1 1/2.2 bushels seed/acre which received 4 cwt./acre sulphate of ammonia, showing that high yields were maintained when eyespot, lodging, take-all and weeds were controlled.
By 1948 yields of grain on unsprayed plots had fallen to the level of those on similarly manured plots on the continuous wheat experiment on Broadbalk field. Spraying increased grain by amounts similar to those resulting from one year's fallow on Broadbalk; but fallow had its greatest effects on plots with low nitrogen, spraying on those with high nitrogen.  相似文献   

4.
Smaller amounts of D–D (6–12 gal/acre) (68–135 1/ha) or ethylene dibromide (9 gal/acre) (100 1/ha) than are customarily used to disinfest field soils killed many root-parasitic nematodes (Trichodorus, Pratylenchus, Tylenchorhynchus and Longidorus attenuatus) when injected 6–8 in (15–20 cm) deep during early autumn in rows 10 in (25 cm) apart in well-drained sandy soils. They also increased the yield of sugar beet grown in fields infested with Trichodorus or Longidorus attenuatus, without affecting sugar percentage or juice purity of the roots, and in some places increased the yield of barley grown after the beet. D–D was much less effective when injected 8–12 in deep during late autumn or winter. Increasing nitrogen dressings to the seedbed from 1·5 to 3 cwt/acre (188 to 376 kg/ha) increased sugar beet yield in one field, decreased it in another and decreased juice purity in both. In two other experiments extra nitrogen did not affect sugar beet yield. Even smaller amounts of the nematicides ‘placed’ in the rows, before or after sowing sugar beet in them, killed many of the nematodes and also increased sugar yield. Phytotoxic nematicides can be placed in the rows during autumn, winter or spring but placement is simpler during spring, when the treated rows are indicated by the position of the marks of the tractor wheels left when the nematicide was applied. When applied during autumn or winter, the rows need to be indicated by drilling wheat or grass.  相似文献   

5.
In experiments with spring and winter wheat at Rothamsted and Woburn during 4 years CCC increased yield at close spacing (4 in) (10 cm) more than at usual spacing (8 in) (20 cm), but there was no interaction between spacing and yield. Some experiments tested up to 2·4 cwt/acre (300 kg/ha) N to see whether yields continued to increase with more than usual amounts of N, when CCC prevented lodging. There was no evidence of this. When a short dry spell occurred at ear emergence, yield of spring wheat was increased by 6 cwt/acre (750 kg/ha) by CCC and 10 cwt (1250 kg) by irrigation. CCC probably improves yield in these conditions because the larger root system it causes enables more ear-bearing shoots to survive. CCC increases yield in two ways, either by increasing ears or grain per ear. In an unlodged crop CCC usually makes the grains smaller, but by preventing lodging it can also increase size. Usually CCC decreases the leaf area per shoot. The flag leaf may be smaller, unchanged or larger than those of untreated plants. There was no obvious connexion between flag-leaf area and grain yield; when CCC decreased flag-leaf area duration by 25 %, grain yield was unchanged. The results suggest that using CCC gives a more than even chance of a profitable yield increase.  相似文献   

6.
The control of Aphis fabae Scop, on spring-sown field beans (Vicia faba L.)   总被引:1,自引:0,他引:1  
Disulfoton or phorate granules or demeton-S-methyl, menazon and vamidothion sprays, applied once in early June as preventive treatments before heavy aphid colonies developed, gave good control of Aphis fabae Scop, on field beans. Phosalone gave relatively poor results and DDT was ineffective. Applications in June to crops sown in February and early March were made with minimal wheel damage to the crop and are known to be less harmful to bees than sprays at flowering time. Eradicant treatments with demeton-S-methyl and dimethoate sprays or with disulfoton or phorate granules on heavily infested plants during flowering were also effective, but menazon was less satisfactory. These eradicant sprays are likely to be harmful to bees, and wheel damage in late June reduced yield by 1–2 cwt/acre (125–250 kg/ha). Peak populations of 3000 aphids/plant in early July reduced yield by 6 cwt/acre (750 kg/ha) in one trial.  相似文献   

7.
Soil treatment fungicides were tested against take-all (Gaeumannomyces graminis var. tritici) in three field experiments with winter wheat. Fungicides were applied as drenches either before sowing in autumn, and incorporated by rotary harrowing, or to the crop in spring. The most effective treatments were autumn applied benomyl (20 kg/ha) and nuarimol (0·55-4·4 kg/ha). However, the highest nuarimol concentration depressed yield. Benomyl sometimes induced a resurgence of take-all in the second wheat crop after treatment. Nuarimol had no adverse effects in subsequent crops, and neither fungicide hindered the onset of take-all decline in a third crop after treatment. The possible value of soil treatment in future control strategies is discussed.  相似文献   

8.
Delaying the date of sowing of spring-sown barley in 1953 and wheat in 1954 from February to April increased the incidence of powdery mildew, Erysiphe graminis DC., from May onwards. Before then, conditions did not favour the rapid spread of mildew.
From mid-June, infected barley produced necrotic lesions. These developed sooner on the early- than on the late-sown crops, and on the lower than upper leaves. Perithecia were first seen on 29 June. They were abundant on the wheat by 20 July.
Mildew reduced the yield of barley sown on 30 March and 28 April 1955 by 8 cwt./acre. The percentage loss was greater in the late- than in the early-sown crops. The number of ears per metre of row, the weight of 100 ears and the 1000-grain weights were reduced. Altering the seed rate from 1 ½ to 2½ bushels/acre did not affect the incidence, or the effect, of mildew on grain yield.  相似文献   

9.
Recent biometeorological applications to crops   总被引:1,自引:0,他引:1  
The paper demonstrates how standard climatological data can effectively be exploited by making use of biometeorological knowledge and modern data processing facilities in studies concerned with the evaluation of crop-weather relationships and the analysis of climatic resources. In analyzing potential biological yield of wheat at Normandin (Quebec), it was found that the potential yield was reduced by approximately 45% because of variations in temperature and radiation whereas the actual yield was reduced by 70%. In mesoscale analyses, the error between soil moisture observations and estimates from a climatological soil moisture budget was in the same order as the standard deviation of 3-times replicated 38 soil moisture samples taken over five years at Swift Current (Sask.). An analysis of crop-weather relationships at Lacombe (Alta.) indicated that the 1957 wheat yield was reduced from the potential 3,300 kg/ha to 2,004 kg/ha or by 40% because of a severe cold spell during the soft dough developing stage resulting in improper filling of the kernels. In macroscale analyses, relative winter hardiness indices for woody ornamental plants together with site suitability indices for winter survival were used in the development of a map of plant hardiness zones in Canada. In the application of this research to forage crops average winter survival percentage of legumes and grasses by classes of hardiness together with selected regional climatic averages were developed for six regions of southern Canada. Long-term research into the relationships between Canadian Prairie crop yields and development (wheat, oats and barley) and selected climatic and soil variables has been used successfully for estimating regional crop production, for determining climatic limitations of the area suitable for the cultivation of these crops, and for assessing the impact of postulated climatic changes on crop production.Contribution No 862 of the Chemistry and Biology Research Institute.  相似文献   

10.
Incidence and severity of the take-all disease in spring wheat and spring barley caused by Gaeumannomyces graminis (syn. Ophiobolus graminis) were studied during seven years of monoculture. The fungus apparently survived for much longer periods in the soil under non-susceptible break-crops than previously recorded. The incidence and severity of infection increased progressively with each successive cereal crop from initially low levels to a maximum within 3–7 years, which was followed by a progressive but limited decline in the disease. Spring wheat was more susceptible to take-all than spring barley and the development of take-all decline (TAD) was recorded earlier in the sequences of wheat than of barley crops. Nitrogen did not influence the disease until the point of maximum incidence and severity, when it caused a reduction in disease levels in addition to that associated with TAD. Factors influencing the time of onset and the rate of development of take-all and of TAD are discussed and possible explanations for TAD are suggested.  相似文献   

11.
Putative biological and chemical treatments for controlling take-all were used in each of three consecutive years at two locations where winter wheat crops were grown in naturally-infested fields. The chemical treatments more often decreased take-all than the biological treatments, but no treatment consistently and significantly decreased take-all, nor did any cause a significant increase in yield. An isolate of Bacillus cereus var. mycoides and one of B. pumilis, applied as soil drenches in autumn or spring, or in the seed furrows, were usually ineffective. Of the few significant effects on disease, half were associated with increases and half with decreases, and most occurred in April and did not persist to late June. Two strains of Pseudomonas pluorescens applied to the seed were ineffective. The fungicide benomyl, applied as a drench in autumn and spring at 20 kg/ha was ineffective, while nuarimol, applied as a drench in autumn at 2 kg/ha was sometimes effective. Nuarimol incorporated into the seed bed at 2 kg/ha was the most effective treatment. In analyses using a functional relationship model for data from treated and untreated plots 12% of 176 data sets for biological treatments, 38% of 96 data sets for chemical treatments and 81% of 16 data sets for combined treatments showed increasing efficiency of the treatment with increasing disease intensity. These findings also demonstrate an additional advantage of the experimental design, namely that treatments are tested at different disease intensity levels within fields.  相似文献   

12.
Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log10 (J2 + 1)/500 cm3 soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log10(J2 + 1)/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18°C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10°C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.  相似文献   

13.
Abstract: Waterfowl nesting in annual croplands has remained a little-known aspect of waterfowl nesting ecology because of the inability of many studies to systematically search this habitat through the nesting season. Where searches have been conducted, they are generally restricted to the period prior to seeding, and many nests found are destroyed by the seeding operation. Consequently, fall-seeded crops have been promoted as an alternative cropping practice that could increase nest survival of waterfowl nesting in croplands. During 1996–1999, we conducted 3–4 complete nest searches on 4,274 ha of cropland, including spring-seeded wheat and barley, winter wheat, and fall rye in southern Saskatchewan, Canada. Using suites of predictive models, we tested hypotheses regarding relative nest abundance and nest survival among crop types and tested the influence of several landscape-scale covariates on these metrics. Apparent nest densities were higher in fall-seeded crops (winter wheat: 0.39 nests/ha, fall rye: 0.25 nests/ha) than in spring-seeded crops (0.03 nests/ha), and nest density in spring-seeded croplands increased with percent cropland and percent wetland habitat in the surrounding landscape. Nest survival was higher in winter wheat (38%) than in either fall rye (18%) or spring-seeded crops (12%), and nest survival in spring-seeded crops increased with relative nest initiation date. Nest survival was unaffected by surrounding landscape characteristics but tended to be higher in years of average wetness. Based on our findings, winter wheat and fall rye have the potential to provide productive nesting habitat for ≥7 species of upland nesting ducks and fall-seeded crops are a conservation tool well suited to highly cropped landscapes.  相似文献   

14.
Three successive crops of winter wheat or barley were grown as second, third and fourth cereals. Communities of fungi on shoot bases, identified after isolation on agar media, were more diverse (determined by number of taxa identified) on wheat than on barley, and their diversity increased from year to year. Diversity was not affected by seed treatments containing fluquinconazole or prochloraz. Eyespot (caused by Tapesia spp.) and brown foot rot (caused by Fusarium spp. or Microdochium nivale ) increased from year to year. Eyespot, brown foot rot (after the first year) and sharp eyespot (which remained infrequent), assessed in summer (June), affected wheat more than barley. Eyespot severity was increased slightly on barley by treatments containing fluquinconazole, formulated with or without prochloraz, in the second year (third cereal), when it was also decreased slightly on wheat by fluquinconazole plus prochloraz, except in plots where the treatment had been applied for two successive years. The increases or decreases in eyespot in the second year were accompanied by, respectively, decreases or increases in the frequency of Idriella bolleyi where fluquinconazole was applied alone. Although the eyespot pathogen Tapesia yallundae (but not Tapesia acuformis ) is sensitive to fluquinconazole in vitro , seed treatment, applied principally to control take-all disease, is likely to have only a small effect against eyespot (or other stem-base diseases), and then only on wheat and when formulated with prochloraz.  相似文献   

15.
We characterized the type and extent of grasshopper injury to above- and below-ground plant parts for four crops [barley (Hordeum vulgare L.), oats (Avena sativa L.), wheat (Triticum aestivum L.), and canola (Brassica campestris L.)] commonly grown, or with potential to grow, in central Alaska. Cages were placed on 48 pots containing plants in second to third leaf stages and stocked with 0, 2, 4, and 6 first-instar Melanoplus sanguinipes F. pot(-1). Plants were harvested 22 d after planting. Stem growth of barley and oats was not affected except at the highest grasshopper treatment. In canola, stem biomass was reduced at the medium and high grasshopper treatments, when most of the leaves had been consumed. The highest grasshopper treatment reduced leaf area in barley and oats by approximately 55%, and caused a significant reduction in dry weight of leaves, stems, and roots (41-72%). Wheat and canola plants were smaller than barley and oats across all treatments and, at the highest grasshopper density, above-ground portions of wheat and canola were completely destroyed. Length and surface area of roots of barley and oats were reduced by 20-28% again at the highest grasshopper density, whereas the reduction for wheat and canola ranged from 50 to 90%. There was little or no difference among all grasshopper densities for C-N ratio in leaf and stem tissues of all crops. The results suggest that wheat and canola are more susceptible than barley and oats and that densities > or = 2 pot(-1) (approximately > or = 50 m(-2)) of even very small grasshoppers could cause significant damage in small-grain and oilseed crop production.  相似文献   

16.
An optical remote assay for biological production of crops in the field during the vegetation period is proposed. Our calculations demonstrate a good correlation between the S(t) value and crop yield (in the range from 0.85 to 0.90); the higher is S(t) for the vegetation period, the higher is the crop yield. S(t) value can be used to calculate the increase in dry and wet biomass for various crops during the whole vegetation period with an error of less than 10–12%. The absolute error of crop yield for 110 cultivars of wheat, oats, and barley during the experimental period was ±3–3.5 quintal/ha with the mean crop yield of 14–38 quintal/ha.  相似文献   

17.
Legume‐containing leys are commonly used to improve soil fertility in the 2‐year conversion period from conventional to organic production. While in‐conversion land may be grazed, in stockless farming systems, land is effectively out of production, leading to a reduction in income and pressure on cash flow. The impacts of seven organic conversion strategies on the first organic crop (winter wheat) were previously reported. This study investigates the effect of the conversion strategies on the second (winter beans) and third (winter oats) organic crops, thereby extending the analysis throughout the first complete rotation. The strategies were (a) 2‐years’ red clover–ryegrass green manure, (b) 2‐years’ hairy vetch green manure, (c) red clover for seed production then a red clover–ryegrass green manure, (d) spring wheat undersown with red clover, then a red clover green manure, (e) spring oats, then winter beans, (f) spring wheat, then winter beans and (g) spring wheat undersown with red clover, then a barley–pea intercrop. Conversion strategy had a significant impact on organic bean yield, which ranged from 2.78 to 3.62 t ha?1, and organic oat yield, which ranged from 3.24 to 4.17 t ha?1. In the organic bean crop, weed abundance prior to harvest, along with soil texture, accounted for 70% of yield variation. For the oats, soil mineral nitrogen in November together with weed abundance in April accounted for 72% of the variation in yield. The impacts of conversion strategies on soil mineral nitrogen levels were still detectable 3 years after conversion. The results from this study indicate that the choice of conversion crop has important long‐term implications. More exploitative conversion strategies, that is those with a higher proportion of cash cropping, had an increased weed burden and decreased levels of soil mineral nitrogen, leading to reduced yields of beans and oats, 2 and 3 years after conversion.  相似文献   

18.
Growth analysis of wild oats ( Avena fatua and A. ludoviciana ) grown in pots with different levels of nitrogen supply showed many similarities to spring barley, winter oats and winter wheat.
Small differences that could affect competition between wild oats and cereals occurred mainly in the seedlings. Wild oat seedlings were smaller than the corresponding cultivated cereals in total dry weight, total nitrogen content, leaf area and number of shoots. However, very young wild oat plants had higher net assimilation rates than the cultivated cereals and soon caught up and passed them. The difference in net assimilation rate did not persist, and in the later stages of growth differences in dry-matter production depended mainly on differences in leaf area. Another important difference between wild oats and cultivated cereals was that 98–100% of the wild oat seeds and none of the crop seeds were dormant 2 months after harvest.
Ear emergence in wild oats spread over a longer period, the range of ear heights was greater and the tallest ears were taller than in the corresponding cultivated cereals. Assimilation in the ear appeared to account for less of the total dry matter of the plants of wild and cultivated oats than of wheat. The wild oats produced more seeds per plant than the cultivated cereals, but the 1000-grain weight, and hence the total dry weight of seeds, was lower in the weeds than in the crop.
Addition of nitrogen to the soil affected the growth of the wild oats in the same ways as the cultivated cereals; they took up the same amount of nitrogen per plant as winter oats and winter wheat but more than spring barley.
It is concluded that wild oats are most susceptible in the seedling stage to competition from the crop and that nitrogenous fertilizer applied to an infested field is unlikely to alter the balance between the yields of crop and of wild oats.  相似文献   

19.
Dependence of Yields of Wheat Varieties on their Leaf Area Durations   总被引:3,自引:0,他引:3  
In a field experiment three wheat varieties: autumn-sown CappelleDesprez, Prestige, both autumn-sown and spring-sown, and spring-sownJufy I, each supplied with 0.5 or 1.0 cwt nitrogen/acre (63or 126 kg/ha), had grain yields nearly proportional to theirLeaf Area Durations (D) during grain development. Squarehead'sMaster had a smaller grain yield relative to its total D, butwith 0.5 cwt N/acre the ratio of its grain yield to D of partsabove the flag leaf node (DF) was similar to the other varieties.The difference in this ratio between varieties was less whenDFwas calculated from anthesis than from ear emergence to ripening.Squarehead’s Master with 1.0 cwt N/acre had a smallerratio of grain yield to DF than other treatments, implying lessgrain per ear relative to DY per shoot, perhaps because of lodging,or because factors limiting size of ears restricted their abilityto accept all the assimilate the shoots could produce with thisamount of N.  相似文献   

20.
In experiments during 1983–86 take-all was more severe and eyespot and sharp eyespot less frequent in 2nd-4th crops of winter wheat at Woburn (Beds.) than at Rothamsted (Herts.). Third crops had most take-all and yielded least grain. Against this background, small plots, 37 cm × 31 cm, in which all plants were sampled, were tried as a means of increasing experimental precision. They were arranged in fours in incomplete blocks and blocks with complementary treatments (putative controls of take-all) were paired. Thirty of these block-pairs were distributed throughout each experimental site in each year to provide one replicate of the design for each of three sampling times: April, June and August. Unattributed variation in disease and plant growth for plots within blocks was compared to that in other strata (block-pairs and blocks within block-pairs) of the experiment. The variability amongst block-pairs scattered throughout the site was nearly always greater than that for blocks within block-pairs (98% of take-all assessments, 71% of soil infectivity estimates, 94% of eyespot and sharp eyespot assessments and 86% of all plant measurements). The variability of blocks within block-pairs exceeded that of plots much less frequently (56% and 69% of take-all assessments, 33% and 25% of soil infectivity measurements, 63% and 56% of eyespot and sharp eyespot assessments and 50% and 63% of plant measurements; Rothamsted and Woburn, respectively). Small plots were judged mostly on this last comparison, where a variance ratio in excess of 1 indicated that the small plots had decreased variability and increased precision. Variance ratios for different assessments of take-all indicates that small plots: i) most consistently decreased disease variability during the years of maximum disease, ii) were slightly less effective at Rothamsted than at Woburn, and iii) were usually less effective in fourth crops than in previous crops. Soil infectivity was most uniform after crops with most disease and blocks were rarely more variable than plots. hxcept when disease was severe, soil infectivity in August tended to be positively associated with the yield of the crop just harvested. These findings reveal changes in the scale of disease patterns, both during the crop sequence and within individual crops, and suggest more than one scale of pattern in take-all-infested fields. This is discussed in relation to field experimentation and take-all decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号