首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
W A Petri  R Pal  Y Barenholz  R R Wagner 《Biochemistry》1981,20(10):2796-2800
The vesicular stomatitis virus glycoprotein (G) was reconstituted into dipalmitoylphosphatidylcholine (DPPC) vesicles by detergent dialysis. The DPPC gel to liquid-crystalline phase transition of the DPPC-G protein vesicles was monitored by the fluorescence anisotrophy of trans-paranaric acid, 16-(9-anthroyloxy)palmitoylglucocerebroside, 1,6-diphenyl-1,3,5-hexatriene, and 4-heptadecyl-7-hydroxycoumarin. The DPPC transition temperature measured by all four fluorescent probes was lowered in the presence of the G protein and the DPPC gel state was disordered by the G protein as evidenced by a decreased fluorescence anisotropy for all four probes below the phase-transition temperature. A possible ordering of the DPPC liquid-crystalline state by the G protein was indicated by an increased anisotropy of trans-paranaric acid and 16-(9-anthroyloxy)palmitoylglucocerebroside in the liquid-crystalline state of DPPC-G protein vesicles. The G protein in addition affected the ionization of the 4-heptadecyl-7-hydroxycoumarin in lipid vesicles, increasing the apparent pK of the probe from 9.05 to 9.45.  相似文献   

2.
Differential polarized phase fluorometry has been used to investigate the depolarizing rotations of 1,6-diphenyl-1,3,5-hexatriene (DPH) in isotropic solvents and in lipid bilayers. For DPH dissolved in isotropic solvents, there is a precise agreement between the observed and predicted values for maximum differential tangents, indicating that in these media DPH is a free isotropic rotator. In lipid bilayers the tangent defects (i.e., the differences between the calculated and the observed maximum differential tangents) are too large to be explained by anisotropy in the depolarizing rotations but are accounted for by hindered isotropic torsional motions for the fluorophore [Weber, G (1978) Acta Phys. Pol A 54, 173]. This theory describes the depolarizing rotations of the fluorophore by its rotational rate R (in radians/second) and the limiting fluorescence anisotropy (r) at times long compared with the fluorescence lifetime. Through the combined use of both steady-state anisotropy measurements and differential phase measurements, we have demonstrated that one may obtain unique solutions for both R and r. For DPH embedded in vesicles prepared from dimyristoyl-, dipalmitoyl-, and distearoylphosphatidylcholines, the depolarizing motions are highly hindered at temperatures below the transition temperature (Tc) but are unhindered above Tc. The apparent rotational rates of the probe do not change significantly at Tc. These data suggest that the changes observed in the steady-state anisotropy near Tc derive primarily from changes in the degree to which the probe's rotations are hindered, and only to a small extent from changes in rotational rate. For DPH embedded in bilayers that contained 25 mol % cholesterol, no clear transition occurred and the rotations appeared to be hindered at all temperatures. The rotational motions of DPH embedded in dioleolyphosphatidylcholine were found to be far less hindered, but the rotational rates were similar to those obtained in the saturated phosphatidylcholines. Finally, the data show that in an anisotropic environment, such as that of a lipid bilayer, steady-state fluorescence anisotropy measurements alone cannot yield quantitatively meaningful rotational rates. Extrapolation of steady-state aniosotropy data to the quantitation of membrane viscosity is therefore difficult, if not invalid; however, qualitative comparisons can be useful.  相似文献   

3.
The interaction between Nystatin and small unilamellar vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, both in gel (T = 21 degrees C) and in liquid-crystalline (T = 45 degrees C) phases, was studied by steady-state and time-resolved fluorescence measurements by taking advantage of the intrinsic tetraene fluorophore present in this antibiotic. It was shown that Nystatin aggregates in aqueous solution with a critical concentration of 3 microM. The enhancement in the fluorescence intensity of the antibiotic was applied to study the membrane binding of Nystatin, and it was shown that the antibiotic had an almost fivefold higher partition coefficient for the vesicles in a gel (P = (1.4 +/- 0.1) x 10(3)) than in a liquid-crystalline phase (P = (2.9 +/- 0.1) x 10(2)). Moreover, a time-resolved fluorescence study was used to examine Nystatin aggregation in the membrane. The emission decay kinetics of Nystatin was described by three and two exponentials in the lipid membrane at 21 degrees C and 45 degrees C, respectively. Nystatin mean fluorescence lifetime is concentration-dependent in gel phase lipids, increasing steeply from 11 to 33 ns at an antibiotic concentration of 5-6 microM, but the fluorescence decay parameters of Nystatin were unvarying with the antibiotic concentration in fluid lipids. These results provide evidence for the formation of strongly fluorescent antibiotic aggregates in gel-phase membrane, an interpretation that is at variance with a previous study. However, no antibiotic self-association was detected in a liquid-crystalline lipid bilayer within the antibiotic concentration range studied (0-14 microM).  相似文献   

4.
Solvent relaxation in lipid bilayers with dansyl probes   总被引:1,自引:0,他引:1  
The solvent relaxation properties of the dansyl group attached to two lipids (dansylphosphatidylethanolamine and dansylphosphatidylserine), a fatty acid (dansylundecanoic acid), and two drugs (dansylbenzocaine and dansylpropranolol) were compared in a variety of different lipid systems. Several methods for characterising solvent relaxation were compared in detail for dansylpropranolol in bilayer vesicles of egg phosphatidylcholine. It was shown that the relaxation process is non-monoexponential; nevertheless, for comparative purposes, a model was adopted in which the lifetime associated with the negative exponent in a two exponential decay analysis, obtained at a particular energy on the red edge of emission, was taken as an approximation to a 'solvent relaxation' rate. A negative exponent, indicative of solvent relaxation processes, occurring in the nanosecond time-scale, was found only for dansylpropranolol, dansylPE and dansylundecanoic acid. On addition of the spin probe, 5-doxylstearate, the negative exponent was unaffected in liquid-crystalline phase lipids but was no longer found in gel-phase lipid in the case of dansylpropranolol, while for dansylPE the relaxation time was reduced. On the basis of these types of measurement it was possible to distinguish between different lipid environments using the same probe or between different dansyl environments of the different probes in the same lipid in cases where this would have been difficult or impossible solely on the basis of steady-state or fluorescence lifetime measurements.  相似文献   

5.
R A Parente  B R Lentz 《Biochemistry》1985,24(22):6178-6185
We have investigated the behavior of 1-palmitoyl-2-[[2-[4- (6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl]carbonyl]-3-sn -phosphatidylcholine (DPHpPC) in synthetic, multilamellar phosphatidylcholine vesicles. This fluorescent phospholipid has photophysical properties similar to its parent fluorophore, diphenylhexatriene (DPH). DPHpPC preferentially partitioned into fluid phase lipid (Kf/s = 3.3) and reported a lower phase transition temperature as detected by fluorescence anisotropy than that observed by differential scanning calorimetry. Calorimetric measurements of the bilayer phase transition in samples having different phospholipid to probe ratios demonstrated very slight changes in membrane phase transition temperature (0.1-0.2 degree C) and showed no measurable change in transition width. Nonetheless, measurements of probe fluorescence properties suggested that DPHpPC disrupts its local environment in the membrane and may even induce perturbed probe-rich local domains below the phospholipid phase transition. Temperature profiles of steady-state fluorescence anisotropy, limiting anisotropy, differential tangent, and rotational rate were similar to those of DPH below the main lipid phase transition but indicated more restricted rotational motion above the lipid phase transition temperature. As for DPH, the fluorescence decay of DPHpPC could be described by either a single or double exponential both above and below the DPPC phase transition. The choice seemed dependent on the treatment of the sample. The intensity-weighted average lifetime of DPHpPC was roughly 1.5 ns shorter than that of DPH. In summary, the measured properties of DPHpPC and its lipid-like structure make it a powerful probe of membrane structure and dynamics.  相似文献   

6.
A fluorescent sterol probe study of human serum low-density lipoproteins   总被引:1,自引:0,他引:1  
The fluorescent sterol probe, ergosta-5,7,9,(11),22-tetraen-3 beta-ol (dehydroergosterol), was utilized as a cholesterol analog to label human serum low-density lipoproteins (LDL). Quenching of dehydroergosterol fluorescence by KI indicated that most of the fluorophore was either buried within the outer phospholipid monolayer of LDL or within the neutral lipid core of LDL. The steady-state anisotropy of dehydroergosterol in LDL detected the cholesteric core phase transition near 30 degrees C. Fluorescence lifetime decays for dehydroergosterol contained two components, both below and above the cholesteric phase transition, with the major lifetime component near 1 ns. Neither lifetime component underwent a detectable change in duration at the core phase transition temperature. Time-correlated fluorescence anisotropy decays of dehydroergosterol indicated a single rotational correlation time near 1.7 ns, which was unaffected by the core phase transition. Time-correlated anisotropy decays also suggested hindered rotation of dehydroergosterol in LDL. These results indicate that unesterified cholesterol is primarily located in the outer phospholipid monolayer of LDL, with the majority of cholesterol not in direct contact with the aqueous phase.  相似文献   

7.
We report the results of investigation on the spectroscopic properties of a new fluorescent lipophylic probe. The fluorophore o-aminobenzoic acid was covalently bound to the acyl chain hexadecylamine, producing the compound 2-amino-N-hexadecyl-benzamide. The behavior of the probe was dependent on the polarity of the medium: absorption and emission spectral position, quantum yield and lifetime decay indicate distinct behavior in water compared to ethanol and cyclohexane. The probe dissolves in the organic solvents, as indicated by the very low value of steady state fluorescence anisotropy and the short rotational correlation times obtained from fluorescence anisotropy decay measurements. On the other hand, the probe has low solubility in water, leading to the formation of aggregates in aqueous medium. The complex absorption spectrum in water was interpreted as originating from different forms of aggregation, as deduced from the wavelength dependence of anisotropy parameters. The probe interacts with surfactants in pre-micellar and micellar forms, as observed in experiments in the presence of sodium n-dodecylsulphate (SDS), n-cetyltrimethylammonium bromide (CTAB); 3-(dodecyl-dimethylammonium) propane-1-sulphonate (DPS) and 3-(hexadecyl-dimethylammonium) propane-1-sulphonate (HPS), and with vesicles of the phospholipid dimiristoyl-phosphatidylcholine (DMPC). The results demonstrate that AHBA is able to monitor properties like surface electric potential and phase transition of micelles and vesicles.  相似文献   

8.
The organization of lipids surrounding membrane proteins can influence their properties. We have used 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan) to study phase coexistence and phase interconversion in membrane model systems. The fluorescence properties of Laurdan provide a unique possibility to study lipid domains because of the different excitation and emission spectra of this probe in the gel and in the liquid-crystalline phase. The difference in excitation spectra allows photoselection of Laurdan molecules in one of the two phases. Using the difference in emission spectra it is then possible to observe interconversion between the two phases. We have performed experiments in dipalmitoyl-phosphatidylcholine (DPPC) vesicles at different temperatures, in particular in the region of the phase transition, where phase coexistence and interconversion between phases is likely to be maximal. We have also studied vesicles of different lipids and mixtures dilauroyl-phosphatidylcholine (DLPC), DPPC, and 50% DLPC in DPPC. Both steady-state fluorescence intensity and polarization data have been collected. To quantitate phase coexistence and interconversion we have introduced the concept of "generalized polarization." We have also performed time-resolved experiments to directly prove the interconversion process. We have found that in DLPC-DPPC mixtures, at 20 degrees C, phase interconversion occurs in approximately 30-40 ns.  相似文献   

9.
Interactions of the local anesthetic tetracaine with unilamellar vesicles made of dimyristoyl or dipalmitoyl phosphatidylcholine (DMPC or DPPC), the latter without or with cholesterol, were examined by following changes in the drug's fluorescent properties. Tetracaine's location within the membrane (as indicated by the equivalent dielectric constant around the aromatic fluorophore), its membrane:buffer partition coefficients for protonated and base forms, and its apparent pK(a) when adsorbed to the membrane were determined by measuring, respectively, the saturating blue shifts of fluorescence emission at high lipid:tetracaine, the corresponding increases in fluorescence intensity at this lower wavelength with increasing lipid, and the dependence of fluorescence intensity of membrane-bound tetracaine (TTC) on solution pH. Results show that partition coefficients were greater for liquid-crystalline than solid-gel phase membranes, whether the phase was set by temperature or lipid composition, and were decreased by cholesterol; neutral TTC partitioned into membranes more strongly than the protonated species (TTCH(+)). Tetracaine's location in the membrane placed the drug's tertiary amine near the phosphate of the headgroup, its ester bond in the region of the lipids' ester bonds, and associated dipole field and the aromatic moiety near fatty acyl carbons 2-5; importantly, this location was unaffected by cholesterol and was the same for neutral and protonated tetracaine, showing that the dipole-dipole and hydrophobic interactions are the critical determinants of tetracaine's location. Tetracaine's effective pK(a) was reduced by 0.3-0.4 pH units from the solution pK(a) upon adsorption to these neutral bilayers, regardless of physical state or composition. We propose that the partitioning of tetracaine into solid-gel membranes is determined primarily by its steric accommodation between lipids, whereas in the liquid-crystalline membrane, in which the distance between lipid molecules is larger and steric hindrance is less important, hydrophobic and ionic interactions between tetracaine and lipid molecules predominate.  相似文献   

10.
The membrane M-protein of Newcastle disease virus is localized directly beneath the lipid bilayer. Although this protein is the major constituent of the virus, its structural relationship to the lipid or to the other viral component hemagglutininneuraminidase, the so called HN-glycoprotein, is still unknown. The effects of either M-protein alone or both M-protein and HN-glycoprotein on the lipid assemblies in reconstituted liposomes were determined by differential polarized phase fluorometry, steady-state fluorescence anisotropy and emission lifetime measurements.It is demonstrated that the degree of rotation of fluorophores in reconstituted liposomes is restricted by the molecular packing of lipids in the bilayer and this in turn can be correlated with the structural order of the lipids in the membrane. The experimental results show that the structural order parameters calculated from the fluorescence measurements are strongly influenced by the presence of both M-protein and HN-glycoprotein in the lipid assemblies.  相似文献   

11.
Steady-state and time-resolved fluorescence properties of the 7-nitrobenz-2-oxa-1, 3-diazole-4-yl (NBD) fluorophore attached either to the sn-2 acyl chain of various phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidic acid) or to the polar headgroup of phosphatidylethanolamine were studied after insertion of these NBD-labeled lipid probes into unilamellar vesicles of phosphatidylcholine, phosphatidylglycerol, phosphatidic acid, and phosphatidylserine. The fluorescence response of the NBD group was observed to strongly depend on the chemical structure and physical state of the host phospholipids and on the chemical structure of the lipid probe itself. Among the various fluorescence parameters studied, i.e., Stokes' shifts, lifetimes, and quantum yields, the quantum yields were by far the most affected by these structural and environmental factors, whereas the Stokes' shifts were practically unaffected. Thus, depending on the phospholipid probe and the host phospholipid, the fluorescence emission of the NBD group was found to vary by a factor of up to 5. Careful analysis of the data shows that for the various couples of probe and host lipid molecules studied, deexcitation of the fluorophore was dominated by nonradiative deactivation processes. This great sensitivity of the NBD group to environmental factors originates from its well-known solvatochromic properties, and comparison of these knr values with those obtained for n-propylamino-NBD in a set of organic solvents covering a large scale of polarity indicates that in phospholipids, the NBD fluorophore experiences a dielectric constant of around 27-41, corresponding to a medium of relatively high polarity. From these epsilon values and on the basis of models of the dielectric transition that characterizes any water-phospholipid interface, it can be inferred that for all of the phospholipid probes and host phospholipids tested, the NBD group is located in the region of the polar headgroups, near the phosphoglycerol moiety of the lipids.  相似文献   

12.
The fluorescence emission decay of ANS (1,8-anilinonaphthalenesulfonate) in reversed AOT (sodium bis-(2-ethyl-1-hexy)sulfosuccinate) micelles at different water contents was investigated by frequency domain fluorometry. The whole ANS emission decay in reversed AOT micelles could not be fitted in terms of discrete lifetime values, i.e., mono-exponential and bi-exponential models. Better fits were obtained when using continuous unimodal Lorentzian lifetime distributions. This was interpreted as arising from the reorientation processes of water molecules around the excited state of ANS or probe exchange among different probe locations, occurring on a time scale longer than fluorophore lifetime. The dependence of ANS fluorescence anisotropy on the emission wavelength was consistent with the existence of a great emission heterogeneity especially for inverted micelles having reduced H2O/AOT molar ratio. Finally, the observation that the distribution width decreases with increasing temperature and/or micelle size suggested that fast processes of water dipolar reorganization around the fluorophore are facilitated under these conditions.  相似文献   

13.
B Babbitt  L Huang  E Freire 《Biochemistry》1984,23(17):3920-3926
The interactions of palmitoyl-alpha-bungarotoxin (PBGT) with dipalmitoylphosphatidylcholine (DPPC) bilayers have been studied by using high-sensitivity differential scanning calorimetry together with steady-state and time-resolved phosphorescence and fluorescence spectroscopy. The incorporation of PBGT into large single lamellar vesicles causes a decrease in the phospholipid phase transition temperature (Tm), a broadening of the heat capacity function, and a decrease in the enthalpy change associated with the phospholipid gel to liquid-crystalline transition. Analysis of the dependence of this decreased enthalpy change on the protein/lipid molar ratio indicates that each PBGT molecule exhibits a localized effect upon the bilayer, preventing approximately six lipid molecules from participating in the lipid phase transition. Additional calorimetric experiments indicate that binding to acetylcholine receptor enriched membranes causes a small increase in the Tm of the PBGT/DPPC vesicles. Steady-state fluorescence depolarization measurements employing 1,6-diphenyl-1,3,5-hexatriene (DPH) indicate that the association of PBGT with the phospholipid bilayer decreases the apparent order of the bulk lipid below Tm while increasing the order above Tm. These results have been further supported by rotational mobility measurements of erythrosin-labeled PBGT associated with giant (about 2-micron) unilamellar vesicles composed of dielaidoylphosphatidylcholine or dioleoylphosphatidylcholine using the time-dependent decay of delayed fluorescence/phosphorescence emission anisotropy. Rotational correlation times in the submillisecond time scale (about 30 microseconds) indicate that the protein is highly mobile in the fluid phase and that below Tm the rotational mobility is only slightly restricted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Fluorescence steady-state anisotropy and phase-modulation lifetime techniques have been utilized to study the interactions of pyrethroid compounds with fluid-phase phosphatidylcholine membranes containing the polypeptide gramicidin. This polypeptide is considered to be a model of hydrophobic regions of cellular integral membrane proteins. The pyrethroids disorder lipid packing in cellular membranes and gel-phase liposomes but do not disorder lipid packing in fluid-phase lipid (Stelzer, K.J. and Gordon, M.A. (1984) J. Immunopharmacol. 6, 381-410; (1985) Biochim. Biophys. Acta 812, 361-368) Irrespective of liposomal size, gramicidin incorporation resulted in a substantial increase in anisotropy of the fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), in fluid phase lipid. In the absence of gramicidin, permethrin and three other pyrethroids, allethrin, cypermethrin and fenpropathrin, increased DPH anisotropy. In these fluid phase systems, as the protein:lipid ratio was increased, the extent of the pyrethroid-mediated increase in fluorescence anisotropy diminished. Also, the pyrethroids shortened DPH fluorescence lifetimes. At high gramicidin:lipid ratios, permethrin substantially lowered anisotropy in the fluid phase lipid, relative to controls. The data suggest that pyrethroids disturb fluid-phase lipids which have been promoted to a relative state of order by proximity to an integral membrane protein. This type of order is one which is represented by DPH fluorescence anisotropy. A model based on these results is proposed to explain the effects of pyrethroids on lipid packing order in cellular membranes, as determined by DPH fluorescence anisotropy.  相似文献   

15.
The effects of hydrostatic pressure on the physical properties of large unilamellar vesicles of single lipids dipalmitoyl phosphatidylcholine (DPPC) and dimyristoyl phosphatidylcholine (DMPC) and lipid mixtures of DMPC/DPPC have been studied from time-resolved fluorescence of trans-parinaric acid. Additional experiments were carried out using diphenylhexatriene to compare the results extracted from both probes. Fluorescence decays were analyzed by the maximum entropy method. Pressure does not influence the fluorescence lifetime distribution of trans-parinaric acid in isotropic solvents. However, in pressurized lipid bilayers an abrupt change was observed in the lifetime distribution which was associated with the isothermal pressure-induced phase transition. The pressure to temperature equivalence values, dT/dP, determined from the midpoint of the phase transitions, were 24 and 14.5 degrees C kbar-1 for DMPC and POPC, respectively. Relatively moderate pressures of about 500 bar shifted the DMPC/DPPC phase diagram 11.5 degrees C to higher temperatures. The effects of pressure on the structural properties of these lipid vesicles were investigated from the anisotropy decays of both probes. Order parameters for all systems increased with pressure. In the gel phase of POPC the order parameter was smaller than that obtained in the same phase of saturated phospholipids, suggesting that an efficient packing of the POPC hydrocarbon chains is hindered.  相似文献   

16.
The sensitivity of the fluorescent probe Laurdan to the phase state of lipids has been utilized to detect modifications in the composition and physical state of cell membranes during cell growth. In phospholipid vesicles, the Laurdan emission spectrum shows a 50-nm red shift by passing from the gel to the liquid-crystalline phase. The Generalized Polarization (GP) value has been used for the data treatment instead of the ratiometric method common in investigations utilizing other fluorescent probes that display spectral sensitivity to medium properties. The GP value can be measured easily and quickly and possesses all the properties of "classical" polarization, including the additivity rule. Once Laurdan limiting GP values have been established for the gel and the liquid-crystalline phase of lipids, the quantitative determination of coexisting phases in natural samples is possible. In the present work the observation of a relevant decrease in the fractional intensity of the liquid-crystalline phase in K562 cell membranes during 5 days of asynchronous growth is reported. A decrease in the "fluidity" of cell membranes in K562 cells kept in culture for several months is also reported. The procedure developed for labeling cell membranes with Laurdan is reported and the influence of cell metabolism on fluorescence parameters is discussed. Also discussed is the influence of cholesterol on Laurdan GP.  相似文献   

17.
Cytochrome P-450 and NADPH-cytochrome P-450 reductase were reconstituted in unilamellar lipid vesicles prepared by the cholate dialysis technique from pure dimyristoylphosphatidylcholine (DMPC), pure dipalmitoylphosphatidylcholine (DPPC), pure dioleoylphosphatidylcholine (DOPC), and phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine (PC/PE/PS) (10:5:1). As probes for the vesicles' hydrocarbon region, 1,6-diphenyl-1,3,5-hexatriene (DPH) and spin-labeled PC were used. The steady-state and time-resolved fluorescence parameters of DPH were determined as a function of temperature and composition of liposomes. Incorporation of either protein alone or together increased the steady-state fluorescence anisotropy (rs) of DPH in DOPC and PC/PE/PS (10:5:1) liposomes. In DMPC and DPPC vesicles, the proteins decreased rs significantly below the transition temperature (Tc) of the gel to liquid-crystalline phase transition. Time-resolved fluorescence measurements of DPH performed in reconstituted PC/PE/PS and DMPC proteoliposomes showed that the proteins disorder the bilayer both in the gel and in the liquid-crystalline phase. Little disordering by the proteins was observed by a spin-label located near the mid-zone of the bilayer 1-palmitoyl-2-(5-doxylstearoyl)-3-sn-phosphatidylcholine (8-doxyl-PC), whereas pronounced disordering was detected by 1-palmitoyl-2-(8-doxylpalmitoyl)-3-sn-phosphatidylcholine (5-doxyl-PC), which probes the lipid zone closer to the polar part of the membrane. Fluorescence lifetime measurements of DPH indicate an average distance of greater than or equal to 60 A between the heme of cytochrome P-450 and DPH.  相似文献   

18.
N Poklar  J Fritz  P Macek  G Vesnaver  T V Chalikian 《Biochemistry》1999,38(45):14999-15008
The interactions of equinatoxin II (EqTxII) with zwitterionic (DPPC) and anionic (DPPG) phospholipids and an equimolar mixture of the two phospholipids (DPPC/DPPG) have been investigated by differential scanning calorimetry (DSC), CD-spectropolarimetry, intrinsic emission fluorescence spectroscopy, and ultrasonic velocimetry. EqTxII binds to small unilamellar vesicles formed from negatively charged DPPG lipids, causing a marked reduction in the cooperativity and enthalpy of their gel/liquid-crystalline phase transition. This transition is completely abolished at a lipid-to-protein ratio, L/P, of 10. For the mixed DPPC/DPPG vesicles, a 2-fold greater lipid-to-protein ratio (L/P = 20) is required to abolish the phase transition, which corresponds to the same negative charge (-10) of lipid molecules per EqTxII molecule. The disappearance of the phase transition of the lipids apparently corresponds to the precipitation of the lipid-protein complex, as suggested by our sound velocity measurements. Based on the far-UV CD spectra, EqTxII undergoes two structural transitions in the presence of negatively charged vesicles (DPPG). The first transition coincides with the gel/liquid-crystalline phase transition of the lipids, which suggests that the liquid-crystalline form of negatively charged lipids triggers structural changes in EqTxII. The second transition involves the formation of alpha-helical structure. Based on these observations, we propose that, in addition to electrostatic interactions, hydrophobic interactions play an important role in EqTxII-membrane association.  相似文献   

19.
Physical properties of the fluorescent sterol probe dehydroergosterol   总被引:3,自引:0,他引:3  
Spectroscopic studies were performed on the fluorescent sterol probes ergosta-5,7,9(11),22-tetraen-3 beta-ol (dehydroergosterol) and cholesta-5,7,9(11)-trien-3 beta-ol (cholestatrienol). In most isotropic solvents, these molecules exhibited a single lifetime near 300 ps. Fluorescence lifetimes in 2-propanol were independent of emission wavelength and independent of excitation wavelength. Excited state behavior of these probes appears relatively simple. In isotropic solvents, dehydroergosterol fluorescence emission underwent at most a small Stokes shift as solvent polarity was modified. Time-resolved anisotropy decays indicated that dehydroergosterol decay was monoexponential, with rotational correlation times dependent on solvent viscosity. When incorporated into L-alpha-dimyristoylphosphatidylcholine liposomes at a concentration of 0.9 mol%, dehydroergosterol fluorescence lifetime decreased at the phase transition of this phospholipid indicating that the sterol probe was detecting physical changes of the bulk phospholipids. Furthermore, total fluorescence decays and anisotropy decays were sensitive to the environment of the sterol. Dehydroergosterol and cholestatrienol are thus useful probes for monitoring sterol behavior in biological systems.  相似文献   

20.
Internal motions of melittin and its lipid complexes were studied by anisotropy decays determined by frequency-domain fluorometry. A covalent anthraniloyl probe was attached, probably to lysine-21. The emission spectra indicate that the anthraniloyl moiety is exposed to solvent in both monomeric and tetrameric forms and is present at the lipid-water interfacial region in the lipid complexes. The fluorescence intensity decay of melittin in solution and its lipid complexes was characterized by three lifetimes. The lifetimes were near 1-2 ns, 6-7 ns and 10 ns. At increased temperatures there was an increase in the amplitude of the intermediate lifetime and a decrease in that of the longer lifetime. For all the melittin systems, at least three correlation times were required to fit the anisotropy data. Of the three correlation times, the shortest correlation time represents the local motions of the probe, while the longest represents global motions of the whole molecule. The intermediate correlation time probably represents the dynamics of domains/helices within the molecule. The melittin monomer is highly flexible, with greater than 90% of its anisotropy being lost by the local motions. Even though it is well organized (greater than 75% helical), the tetramer is still a highly flexible molecule, with 70% of its anisotropy being lost by the local motions. The internal motions of melittin decrease upon binding to lipids and are sensitive to the phase state of the lipid complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号