首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is some overlap in the biological activities of cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs). We compared nine AMPs, seven CPPs, and a fusion peptide with regard to their ability to cluster anionic lipids in a mixture mimicking the cytoplasmic membrane of Gram-negative bacteria, as measured by differential scanning calorimetry. We also studied their bacteriostatic effect on several bacterial strains, and examined their conformational changes upon membrane binding using circular dichroism. A remarkable correlation was found between the net positive charge of the peptides and their capacity to induce anionic lipid clustering, which was independent of their secondary structure. Among the peptides studied, six AMPs and four CPPs were found to have strong anionic lipid clustering activity. These peptides also had bacteriostatic activity against several strains (particularly Gram-negative Escherichia coli) that are sensitive to lipid clustering agents. AMPs and CPPs that did not cluster anionic lipids were not toxic to E. coli. As shown previously for several types of AMPs, anionic lipid clustering likely contributes to the mechanism of antibacterial action of highly cationic CPPs. The same mechanism could explain the escape of CPPs from intracellular endosomes that are enriched with anionic lipids.  相似文献   

2.
3.

Background

Intercellular communication can occur via the release of membrane vesicles. Exosomes are nanovesicles released from the endosomal compartment of cells. Depending on their cell of origin and their cargo they can exert different immunoregulatory functions. Recently, fungi were found to produce extracellular vesicles that can influence host-microbe interactions. The yeast Malassezia sympodialis which belongs to our normal cutaneous microbial flora elicits specific IgE- and T-cell reactivity in approximately 50% of adult patients with atopic eczema (AE). Whether exosomes or other vesicles contribute to the inflammation has not yet been investigated.

Objective

To investigate if M. sympodialis can release nanovesicles and whether they or endogenous exosomes can activate PBMC from AE patients sensitized to M. sympodialis.

Methods

Extracellular nanovesicles isolated from M. sympodialis, co-cultures of M. sympodialis and dendritic cells, and from plasma of patients with AE and healthy controls (HC) were characterised using flow cytometry, sucrose gradient centrifugation, Western blot and electron microscopy. Their ability to stimulate IL-4 and TNF-alpha responses in autologous CD14, CD34 depleted PBMC was determined using ELISPOT and ELISA, respectively.

Results

We show for the first time that M. sympodialis releases extracellular vesicles carrying allergen. These vesicles can induce IL-4 and TNF-α responses with a significantly higher IL-4 production in patients compared to HC. Exosomes from dendritic cell and M. sympodialis co-cultures induced IL-4 and TNF-α responses in autologous CD14, CD34 depleted PBMC of AE patients and HC while plasma exosomes induced TNF-α but not IL-4 in undepleted PBMC.

Conclusions

Extracellular vesicles from M. sympodialis, dendritic cells and plasma can contribute to cytokine responses in CD14, CD34 depleted and undepleted PBMC of AE patients and HC. These novel observations have implications for understanding host-microbe interactions in the pathogenesis of AE.  相似文献   

4.
Antimicrobial peptides (AMPs), essential components of innate immunity, are found in a range of phylogenetically diverse species and are thought to act by disrupting the membrane integrity of microbes. In this paper, we used evolutionary signatures to identify sites that are most relevant during the functional evolution of these molecules and introduced amino acid substitutions to improve activity. We first demonstrate that the anti-microbial activity of chicken avian β-defensin-8, previously known as gallinacin-12, can be significantly increased against Escherichia coli, Listeria monocytogenes, Salmonella typhimurium, Salmonella typhimurium phoP− mutant and Streptococcus pyogenes through targeted amino acid substitutions, which confer increased peptide charge. However, by increasing the AMP charge through amino acid substitutions at sites predicted to be subject to positive selection, antimicrobial activity against Escherichia coli was further increased. In contrast, no further increase in activity was observed against the remaining pathogens. This result suggests that charge-increasing modifications confer increased broad-spectrum activity to an AMP, whilst positive selection at particular sites is involved in directing the antimicrobial response against specific pathogens. Thus, there is potential for the rational design of novel therapeutics based on specifically targeted and modified AMPs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

5.
We recently found that Saccharomyces cerevisiae (strain CCMI 885) secretes antimicrobial peptides (AMPs) derived from the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) that are active against various wine-related yeast and bacteria. Here, we show that several other S. cerevisiae strains also secrete natural biocide fractions during alcoholic fermentation, although at different levels, which correlates with the antagonistic effect exerted against non-Saccharomyces yeasts. We, therefore, term this biocide saccharomycin. The native AMPs were purified by gel-filtration chromatography and its antimicrobial activity was compared to that exhibited by chemically synthesized analogues (AMP1 and AMP2/3). Results show that the antimicrobial activity of the native AMPs is significantly higher than that of the synthetic analogues (AMP1 and AMP2/3), but a conjugated action of the two synthetic peptides is observed. Moreover, while the natural AMPs are active at pH 3.5, the synthetic peptides are not, since they are anionic and cannot dissolve at this acidic pH. These findings suggest that the molecular structure of the native biocide probably involves the formation of aggregates of several peptides that render them soluble under acidic conditions. The death mechanisms induced by the AMPs were also evaluated by means of epifluorescence microscopy-based methods. Sensitive yeast cells treated with the synthetic AMPs show cell membrane disruption, apoptotic molecular markers, and internalization of the AMPs. In conclusion, our work shows that saccharomycin is a natural biocide secreted by S. cerevisiae whose activity depends on the conjugated action of GAPDH-derived peptides. This study also reveals that S. cerevisiae secretes GAPDH-derived peptides as a strategy to combat other microbial species during alcoholic fermentations.  相似文献   

6.
PMAP-23 (RIIDLLWRVRRPQKPKFVTVWVR-NH2) is an antimicrobial peptide (AMP) derived from porcine myeloid. Membrane disruption is thought to underpin the anticandidal activity of PMAP-23. However, many AMPs act via mechanisms other than simple membrane permeabilisation. Here, we investigated the anticandidal mechanism of PMAP-23 at low concentrations. Membrane disruption and depolarisation and rapid K+ efflux were observed in Candida albicans cells treated with 5?µM PMAP-23. In contrast, 2.5?µM PMAP-23 caused membrane depolarisation and K+ efflux without membrane disruption. The lower PMAP-23 concentration increased cytosolic and mitochondrial Ca2+ levels. Disruption of Ca2+ homeostasis altered the NAD+/NADH ratio and resulted in reactive oxygen species (ROS) accumulation and glutathione oxidation. PMAP-23 treatment also stimulated apoptosis, as evidenced by metacaspase activation, DNA fragmentation, and phosphatidylserine externalisation. Pretreatment with the mitochondrial Ca2+ uptake inhibitor (ruthenium red) or ROS scavenger (N-acetylcysteine) attenuated these apoptotic events. Our results suggest that PMAP-23 induces apoptosis as antifungal mechanism, and mitochondrial Ca2+-induced ROS is major factor to trigger the apoptosis. Thus, the anticandidal activity of PMAP-23 is not based solely on disruption of biological membranes but also involves induction of apoptosis via mitochondrial Ca2+-dependent ROS. PMAP-23 mode of action sheds new light on the antifungal mechanism of antimicrobial peptides, supporting the role of Ca2+ and ROS in apoptosis regulation.  相似文献   

7.
Cell-penetrating peptides and antimicrobial peptides share physicochemical characteristics and mechanisms of interaction with biological membranes, hence, termed as membrane active peptides. The present study aims at evaluating AMP activity of CPPs. LDP-NLS and LDP are Latarcin 1 derived cell-penetrating peptides and in the current study we have evaluated antifungal and cell-penetrating properties of these CPPs in Fusarium solani. We observed that LDP-NLS and LDP exhibited excellent antifungal activity against the fungus. Cellular uptake experiments with LDP-NLS and LDP showed that LDP-NLS acted as a CPP but LDP uptake into fungal spores and hyphae was negligible. CPP and AMP activity of mutated version of LDP-NLS was also evaluated and it was observed that both the activities of the peptide were compromised, signifying the importance of arginines and lysines present in LDP-NLS for initial interaction of membrane active peptides with biological membranes. Dextrans and Propidium Iodide uptake studies revealed that the mode of entry of LDP-NLS into fungal hyphae is through pore formation. Also, both LDP-NLS and LDP showed no cytotoxicity when infiltered into leaf tissues. Overall, our results suggest that LDP-NLS and LDP are selectively cytotoxic to F. solani and can be a potent peptide based antifungal agents.  相似文献   

8.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Antimicrobial peptides (AMPs) are multifunctional components of the innate systems of both insect and mammalian hosts of the pathogenic trypanosomatids Leishmania and Trypanosoma species. Structurally diverse AMPs from a wide range of organisms have in vitro activity against these parasites acting mainly to disrupt surface-membranes. In some cases AMPs also localize intracellularly to affect calcium levels, mitochondrial function and induce autophagy, necrosis and apoptosis. In this review we discuss the work done in the area of AMP interactions with trypanosomatid protozoa, propose potential targets of AMP activity at the cellular level and discuss how AMPs might influence parasite growth and differentiation in their hosts to determine the outcome of natural infection.  相似文献   

10.
Antimicrobial peptides are important components of the host innate immune responses by exerting broad‐spectrum microbicidal activity against pathogenic microbes. Cy‐AMP1 found in the cycad (Cycas revoluta) seeds has chitin‐binding ability, and the chitin‐binding domain was conserved in knottin‐type and hevein‐type antimicrobial peptides. The recombinant Cy‐AMP1 was expressed in Escherichia coli and purified to study the role of chitin‐binding domain. The mutants of Cy‐AMP1 lost chitin‐binding ability completely, and its antifungal activity was markedly decreased in comparison with native Cy‐AMP1. However, the antimicrobial activities of the mutant peptides are nearly identical to that of native one. It was suggested that the chitin‐binding domain plays an essential role in antifungal, but not antimicrobial, activity of Cy‐AMP1. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
12.
Antimicrobial peptides (AMPs) are promising agents for control of bacterial and fungal infections. Traditionally, AMPs were thought to act through membrane disruption but recent experiments have revealed a diversity of mechanisms. Here we describe a novel antifungal activity for bovine pancreatic trypsin inhibitor (BPTI). BPTI has several features in common with a subset of antimicrobial proteins in that it is small, cationic and stabilized by disulphide bonds. BPTI inhibits growth of Saccharomyces cerevisiae and the human pathogen Candida albicans. Screening of the yeast heterozygous essential deletion collection identified the magnesium transporter Alr1p as a potential BPTI target. BPTI treatment of wild type cells resulted in a lowering of cellular Mg2+ levels. Populations treated with BPTI had fewer cells in S‐phase of the cell cycle and a corresponding increase of cells in G0/G1 and G2 phases. The same patterns of cell cycle arrest obtained with BPTI were also obtained with the magnesium channel inhibitor hexamine(III)cobalt chloride. Analysis of the growth inhibition of C. albicans revealed that BPTI is inhibiting growth via the same mechanism in the two yeast species. Inhibition of magnesium uptake by BPTI represents a novel mechanism of action for AMPs.  相似文献   

13.
Abstract

Most helical antimicrobial peptides (AMPs) are usually unfolded in aqueous solution; however they acquire their secondary structure in the presence of a hydrophobic environment such as lipid membranes. Being the biological membranes the main target of many AMPs it is necessary to understand their way of action. Pandinin 2 (Pin2) is an alpha-helical AMP isolated from the venom of the African scorpion Pandinus imperator which shows high antimicrobial activity against Gram-positive bacteria and it is less active against Gram-negative bacteria, nevertheless, it has strong hemolytic activity. Its chemically synthesized Pin2GVG analog has low hemolytic activity while keeping its antimicrobial activity. With the aim of exploring the partition and subsequent folding of these peptides, in this work we report the results of extensive molecular dynamics simulations of Pin2 and Pin2GVG peptides in the presence of 2 hydrophobic environments such as dodecyl-phosphocholine (DPC) micelle and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocoline (POPC) membrane. Our results indicate that Pin2 folds in DPC with a 79% of alpha-helical content, which is in agreement with the experimental results, while in POPC it has 62.5% of alpha-helical content. On the other hand, Pin2GVG presents a higher percentage of alpha-helical structure in POPC and a smaller content in DPC when compared with Pin2. These results can help to better choose the starting structures in future molecular dynamics simulations of AMPs, because these peptides can adopt slightly different conformations depending on the hydrophobic environment.

Communicated by Ramaswamy H. Sarma  相似文献   

14.
Given the paucity and toxicity of available drugs for leishmaniasis, coupled with the advent of drug resistance, the discovery of new therapies for this neglected tropical disease is recognised as being of the utmost urgency. As such antimicrobial peptides (AMPs) have been proposed as promising compounds against the causative Leishmania species, insect vector‐borne protozoan parasites. Here the AMP temporins A, B and 1Sa have been synthesised and screened for activity against Leishmania mexicana insect stage promastigotes and mammalian stage amastigotes, a significant cause of human cutaneous disease. In contrast to previous studies with other species the activity of these AMPs against L. mexicana amastigotes was low. This suggests that amastigotes from different Leishmania species display varying susceptibility to peptides from the temporin family, perhaps indicating differences in their surface structure, the proposed target of these AMPs. In contrast, insect stage L. mexicana promastigotes were sensitive to two of the screened temporins which clearly demonstrates the importance of screening AMPs against both forms of the parasite. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Some cationic peptides, referred to as CPPs (cell-penetrating peptides), have the ability to translocate across biological membranes in a non-disruptive way and to overcome the impermeable nature of the cell membrane. They have been successfully used for drug delivery into mammalian cells; however, there is no consensus about the mechanism of cellular uptake. Both endocytic and non-endocytic pathways are supported by experimental evidence. The observation that some AMPs (antimicrobial peptides) can enter host cells without damaging their cytoplasmic membrane, as well as kill pathogenic agents, has also attracted attention. The capacity to translocate across the cell membrane has been reported for some of these AMPs. Like CPPs, AMPs are short and cationic sequences with a high affinity for membranes. Similarities between CPPs and AMPs prompted us to question if these two classes of peptides really belong to unrelated families. In this Review, a critical comparison of the mechanisms that underlie cellular uptake is undertaken. A reflection and a new perspective about CPPs and AMPs are presented.  相似文献   

16.
Antimicrobial peptides (AMPs) are key elements of innate immunity, which can directly kill multiple bacterial, viral, and fungal pathogens. The medically important fungus Candida albicans colonizes different host niches as part of the normal human microbiota. Proliferation of C. albicans is regulated through a complex balance of host immune defense mechanisms and fungal responses. Expression of AMPs against pathogenic fungi is differentially regulated and initiated by interactions of a variety of fungal pathogen-associated molecular patterns (PAMPs) with pattern recognition receptors (PRRs) on human cells. Inflammatory signaling and other environmental stimuli are also essential to control fungal proliferation and to prevent parasitism. To persist in the host, C. albicans has developed a three-phase AMP evasion strategy, including secretion of peptide effectors, AMP efflux pumps, and regulation of signaling pathways. These mechanisms prevent C. albicans from the antifungal activity of the major AMP classes, including cathelicidins, histatins, and defensins leading to a basal resistance. This minireview summarizes human AMP attack and C. albicans resistance mechanisms and current developments in the use of AMPs as antifungal agents.  相似文献   

17.
Antimicrobial peptides (AMPs) provide a potential source of new antimicrobial therapeutics for the treatment of multidrug-resistant pathogens. To develop Gram-negative selective AMPs that can inhibit the effects of lipopolysaccharide (LPS)-induced sepsis, we added various rationally designed LPS-targeting peptides [amino acids 28–34 of lactoferrin (Lf28–34), amino acids 84–99 of bactericidal/permeability increasing protein (BPI84–99), and de novo peptide (Syn)] to the potent AMP, GNU7 (RLLRPLLQLLKQKLR). Compared to our original starting peptide GNU7, hybrid peptides had an 8- to 32-fold improvement in antimicrobial activity against Gram-negative bacteria, such as Escherichia coli and Salmonella typhimurium. Among them, Syn-GNU7 showed the strongest LPS-binding and -neutralizing activities, thus allowing it to selectively eliminate Gram-negative bacteria from within mixed cultures. Our results suggest that LPS-targeting peptides would be useful to increase the antimicrobial activity and selectivity of other AMPs against Gram-negative bacteria.  相似文献   

18.
Chen Z  Yang X  Liu Z  Zeng L  Lee W  Zhang Y 《Biochimie》2012,94(2):328-334
The characterization of new natural antimicrobial peptides (AMPs) can help to solve the serious problem of bacterial resistance to currently used antibiotics. In the current study, we analyzed two families of AMPs from the Chinese torrent frog Amolops jingdongensis with a range of bioactivities. The first family of peptides, named jindongenin-1a, is 24 amino acids in length; a BLAST search of jindongenin-1a revealed no sequence similarity with other AMPs. The second family consists of two peptides containing 29 amino acid residues each. These peptides have high sequence similarity with the AMPs of palustrin-2 and are therefore designated palustrin-2AJ1 and palustrin-2AJ2. The cDNA sequences encoding these AMPs have been cloned and the deduced protein sequence of each AMP has been determined by protein sequencing. Sequence and structural analysis showed that each precursor is composed of a putative signal peptide, an N-terminal spacer, a processing site and a disulfide-bridged heptapeptide segment at the C-terminus. We synthesized jindongenin-1a and palustrin-AJ1 to test their antimicrobial, hemolytic, antioxidative and cytotoxic activities. These two peptides showed broad-spectrum antimicrobial activity to standard and clinically isolated strains of bacteria. In addition, they exhibited weak hemolytic activity to human and rabbit erythrocytes under our experimental conditions. Moreover, these peptides also displayed cytotoxic activity against the K562 and HT29 mammalian cell lines and low anti-oxidant activity. These findings provide helpful insight that will be useful in the design of anti-infective peptide agents.  相似文献   

19.
Members of the genus Malassezia are commensal fungi found on the skin of both human and domestic animals and are associated with skin diseases including dandruff/seborrheic dermatitis, pityriasis versicolor, and atopic eczema (AE) in humans. In this study we have characterized the cell-wall carbohydrates of Malassezia sympodialis, one of the species most frequently isolated from both AE patients and healthy individuals. Cells were grown in liquid Dixon media at 32 °C, harvested, and processed using a standard Fehling’s precipitation methodology for the isolation of mannan and a standard base/acid extraction for (1→3)-β-d-glucans. Using these classic extraction methods we were unable to isolate precipitable mannan or insoluble (1→3)-β-d-glucan. However, acidification and addition of methanol to the remaining Fehling’s-treated sample resulted in a very clean precipitate. This material was characterized by GPC-MALLS, 1D and 2D NMR, and GC-MS for monomer-type and linkage-type composition. We determined that trace amounts of both mannan and branched (1→3, 1→6)-β-d-glucan were present in the recovered precipitate, but not linear (1→3)-β-d-glucan. Surprisingly, NMR analysis indicated that (1→6)-β-d-glucan was the major carbohydrate component isolated from M. sympodialis cell wall. GC-MS linkage analysis confirmed the (1→6)-β-d-glucan structure. Based on these studies we have determined that the M. sympodialis cell wall contains (1→6)-β-d-glucan as the major carbohydrate component along with trace amounts of mannan and (1→3, 1→6)-β-d-glucan. In addition, these data indicate that modification of the classic mannan isolation methodology may be useful in the simultaneous isolation of both mannan and (1→6)-β-d-glucan from other fungi.  相似文献   

20.
One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs) produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21)NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells) over a wide range of peptide concentrations (0.025–4 μM), and this notably more efficiently than human cathelicidin (LL-37). This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21)NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21)NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号