首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrophysiological techniques were used to study the role of ion currents in the ascidian Ciona intestinalis oocyte plasma membrane during different stages of growth, meiosis, fertilization and early development. Three stages of immature oocytes were discriminated in the ovary, with the germinal vesicle showing specific different features of growth and maturation. Stage-A (pre-vitellogenic) oocytes exhibited the highest L-type calcium current activity and were incompetent for meiosis resumption. Stage-B (vitellogenic) oocytes showed a progressive disappearance of calcium currents and the first appearance of sodium currents that remained high during the maturation process, up to the post-vitellogenic stage-C oocytes. The latter had acquired meiotic competence, undergoing spontaneous in vitro maturation and interacting with the spermatozoon. However, fertilized oocytes did not produce normal larvae, suggesting that cytoplasmic maturation may affect embryo development. In mature oocytes at the metaphase I stage, sodium currents were present and remained high up to the zygote stage. Oocytes fertilized in the absence of sodium showed significant reduction of the fertilization current amplitude and high development of anomalous "rosette" embryos. Current amplitudes became negligible in embryos at the 2- and 4-cell stage, whereas resumption of all the current activities occurred at the 8-cell embryo. Taken together, these results suggest: (i) an involvement of L-type calcium currents in initial oocyte meiotic progression and growth; (ii) a role of sodium currents at fertilization; (iii) a role of the fertilization current in ensuring normal embryo development.  相似文献   

2.
Using the whole-cell voltage clamp technique, we have studied the Ca2+ currents and the steady-state conductance during different oocyte growth stages and during the reproductive cycle of the female of Octopus vulgaris. Evidence is presented that L-type Ca2+ currents are high in small pre-vitellogenic oocytes (80-150 microm diameter) and significantly lower in early vitellogenic oocytes (180-300 microm diameter). Similarly, a significant decrease of the steady-state conductance occurred from the pre to early- vitellogenic oocytes.Octopus oocytes showed larger Ca2+ currents in the reproductive rather than non-reproductive periods. These data indicates that ion and L-type Ca2+ currents play a role in oocyte growth and cytoplasmic maturation, and possibly in preparing the plasma membrane to the interaction with the spermatozoon. By using fluorescent microscopy, we show that oocytes from 80 to 400 microm diameter have the large germinal vesicle characteristic of the immature oocytes. In subsequent stages of growth (up to 1000 microm diameter) the nucleus is no more visible and the metaphase spindle appears. These data demonstrate that Octopus vulgaris oocytes are arrested in the first meiotic prophase up to the early-vitellogenic stage and resume meiosis at this stage up to a second block presumably in metaphase I. We discuss a possible role for progesterone as the hormonal stimulus for the first prophase-metaphase meiotic transition.  相似文献   

3.
By using the whole cell voltage-clamptechnique, we studied changes in plasma membrane permeability atdifferent meiotic stages of bovine oocytes. Follicular oocytes werematured in vitro and activated by Ca2+ ionophore. Oocytesat germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphaseI (MI), metaphase II (MII), and meiosis exit were used forelectrophysiological recording. By clamping the oocytes at 30 mV, wefound that the L-type voltage-dependent Ca2+ channels wereactive at the GV stage and that their activity decreased after the GVBDstage. Furthermore, the resting potential decreased from the GV to theMI stage and increased again at MII. A significant decrease of thesteady-state conductance occurred from the GV to the MI stage, followedby a sharp increase at the MII stage. With the addition of organicL-type Ca2+ channel blockers (nifedipine and verapamil), weinhibited the Ca2+ currents. However, only in the case ofverapamil was there a decrease of in vitro maturation efficiency. Ourresults suggest that, in addition to the cumulus-oocyte junctions, theplasma membrane channels provide another mode of Ca2+ entryinto bovine oocytes during meiosis.

  相似文献   

4.
Aurora-A is a serine/threonine protein kinase that plays a role in cell-cycle regulation. The activity of this kinase has been shown to be required for regulating multiple stages of mitotic progression in somatic cells. In this study, the changes in aurora-;A expression were revealed in mouse oocytes using Western blotting. The subcellular localization of aurora-A during oocyte meiotic maturation, fertilization, and early cleavages as well as after antibody microinjection or microtubule assembly perturbance was studied with confocal microscopy. The quantity of aurora-A protein was high in the germinal vesicle (GV) and metaphase II (MII) oocytes and remained stable during other meiotic maturation stages. Aurora-A concentrated in the GV before meiosis resumption, in the pronuclei of fertilized eggs, and in the nuclei of early embryo blastomeres. Aurora-A was localized to the spindle poles of the meiotic spindle from the metaphase I (MI) stage to metaphase II stage. During early embryo development, aurora-A was found in association with the mitotic spindle poles. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. Aurora-A antibody microinjection decreased the rate of germinal vesicle breakdown (GVBD) and distorted MI spindle organization. Our results indicate that aurora-A is a critical regulator of cell-cycle progression and microtubule organization during mouse oocyte meiotic maturation, fertilization, and early embryo cleavage.  相似文献   

5.
Polo-like kinases (Plks) are a family of serine/threonine protein kinases that regulate multiple stages of mitosis. Expression and distribution of polo-like kinase 1 (Plk1) were characterized during porcine oocyte maturation, fertilization and early embryo development in vitro, as well as after microtubule polymerization modulation. The quantity of Plk1 protein remained stable during meiotic maturation. Plk1 accumulated in the germinal vesicles (GV) in GV stage oocytes. After germinal vesicle breakdown (GVBD), Plk1 was localized to the spindle poles at metaphase I (MI) stage, and then translocated to the middle region of the spindle at anaphase-telophase I. Plk1 was also localized in MII spindle poles and on the spindle fibers and on the middle region of anaphase-telophase II spindles. Plk1 was not found in the spindle region when colchicine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. After fertilization, Plk1 concentrated around the female and male pronuclei. During early embryo development, Plk1 was found to be in association with the mitotic spindle at metaphase, but distributed diffusely in the cytoplasm at interphase. Our results suggest that Plk1 is a pivotal regulator of microtubule organization and cytokinesis during porcine oocyte meiotic maturation, fertilization, and early embryo cleavage in pig oocytes.  相似文献   

6.
A series of experiments were designed to evaluate the meiotic competence of mouse oocyte germinal vesicle (GV) in rabbit ooplasm. In experiment 1, an isolated mouse GV was transferred into rabbit GV-stage cytoplast by electrofusion. It was shown that 71.8% and 63.3% of the reconstructed oocytes completed the first meiosis as indicated by the first polar body (PB1) emission when cultured in M199 and M199 + PMSG, respectively. Chromosomal analysis showed that 75% of matured oocytes contained the normal 20 mouse chromosomes. When mouse spermatozoa were microinjected into the cytoplasm of oocytes matured in M199 + PMSG and M199, as many as 59.4% and 48% finished the second meiosis as revealed by the second polar body (PB2) emission and a few fertilized eggs developed to the eight-cell stage. In experiment 2, a mouse GV was transferred into rabbit MII-stage cytoplast. Only 13.0-14.3% of the reconstructed oocytes underwent germinal vesicle breakdown (GVBD) and none proceeded past the MI stage. When two mouse GVs were transferred into an enucleated rabbit oocyte, only 8.7% went through GVBD. In experiment 3, a whole zona-free mouse GV oocyte was fused with a rabbit MII cytoplast. The GVBD rates were increased to 51.2% and 49.4% when cultured in M199 + PMSG and M199, respectively, but none reached the MII stage. In experiment 4, a mouse GV was transferred into a partial cytoplasm-removed rabbit MII oocyte in which the second meiotic apparatus was still present. GVBD occurred in nearly all the reconstructed oocytes when one or two GVs were transferred and two or three metaphase plates were observed in ooplasm after culturing in M199 + PMSG for 8 hr. These data suggest that cytoplasmic factors regulating the progression of the first and the second meioses are not species-specific in mammalian oocytes and that these factors are located in the meiotic apparatus and/or its surrounding cytoplasm at MII stage.  相似文献   

7.
PKCβI, a member of the classical protein kinase C family, plays key roles in regulating cell cycle transition. Here, we report the expression, localization and functions of PKCβI in mouse oocyte meiotic maturation. PKCβI and p-PKCβI (phosphor-PKCβI) were expressed from germinal vesicle (GV) stage to metaphase II (MII) stage. Confocal microscopy revealed that PKCβI was localized in the GV and evenly distributed in the cytoplasm after GV breakdown (GVBD), and it was concentrated at the midbody at telophase in meiotic oocytes. While, p-PKCβI was concentrated at the spindle poles at the metaphase stages and associated with midbody at telophase. Depletion of PKCβI by specific siRNA injection resulted in defective spindles, accompanied with spindle assembly checkpoint activation, metaphase I arrest and failure of first polar body (PB1) extrusion. Live cell imaging analysis also revealed that knockdown of PKCβI resulted in abnormal spindles, misaligned chromosomes, and meiotic arrest of oocytes arrest at the Pro-MI/MI stage. PKCβI depletion did not affect the G2/M transition, but its overexpression delayed the G2/M transition through regulating Cyclin B1 level and Cdc2 activity. Our findings reveal that PKCβI is a critical regulator of meiotic cell cycle progression in oocytes.

Abbreviations: PKC, protein kinase C; COC, cumulus-oocyte complexes; GV, germinal vesicle; GVBD, germinal vesicle breakdown; Pro-MI, first pro-metaphase; MI, first metaphase; Tel I, telophase I; MII, second metaphase; PB1, first polar body; SAC, spindle assembly checkpoint  相似文献   


8.
In mammals, oocyte acquires a series of competencies sequentially during folliculogenesis that play critical roles at fertilization and early stages of embryonic development. In mouse, chromatin in germinal vesicle (GV) undergoes dynamic changes during oocyte growth and its progressive condensation has been related to the achievement of developmental potential. Cumulus cells are essential for the acquisition of meiotic competence and play a role in chromatin remodeling during oocyte growth. This study is aimed to characterize the chromatin configuration of growing and fully grown bovine oocytes, the status of communications between oocyte and cumulus cells and oocyte developmental potential. Following nuclear staining, we identified four discrete stages of GV, characterized by an increase of chromatin condensation. GV0 stage represented 82% of growing oocytes and it was absent in fully grown oocytes. GV1, GV2, and GV3 represented, respectively, 24, 31, and 45% of fully grown oocytes. Our data indicated a moderate but significant increase in oocyte diameter between GV0 and GV3 stage. By dye coupling assay the 98% of GV0 oocytes showed fully open communications while the number of oocytes with functionally closed communications with cumulus cells was significantly higher in GV3 group than GV1 and GV2. However, GV0 oocytes were unable to progress through metaphase II while GV2 and GV3 showed the highest developmental capability. We conclude that in bovine, the progressive chromatin condensation is related to the sequential achievement of meiotic and embryonic developmental competencies during oocyte growth and differentiation. Moreover, gap-junction-mediated communications between oocyte and cumulus cells could be implicated in modulating the chromatin remodeling process.  相似文献   

9.
Phosphorylation modification of core histones is correlated well with diverse chromatin-based cell activities. However, its distribution pattern and primary roles during mammalian oocyte meiosis are still in dispute. In this study, by performing immunofluorescence and Western blotting, spatial distribution and temporal expression of phosphorylated serine 10 or 28 on histone H3 during porcine oocyte meiotic maturation were examined and distinct subcellular distribution patterns between them were presented. Low expression of phosphorylated H3/ser10 was detected in germinal vesicle. Importantly, following gradual dephosphorylation from germinal vesicle (GV) to late germinal vesicle (L-GV) stage, a transient phosphorylation at the periphery of condensed chromatin was re-established at early germinal vesicle breakdown (E-GVBD) stage, and then the dramatically increased signals covered whole chromosomes from pre-metaphase I (Pre-MI) to metaphase II (MII). Similarly, hypophosphorylation of serine 28 on histone H3 was also monitored from GV to E-GVBD, indicating dephosphorylation of histone H3 maybe involved in the regulation of meiotic resumption. Moreover, the rim staining on the chromosomes and high levels of H3/ser28 phosphorylation were observed in Pre-MI, MI, and MII stage oocytes. Based on above results, such stage-dependent dynamics of phosphorylation of H3/ser 10 and 28 may play specific roles during mammalian oocyte maturation.  相似文献   

10.
Yang CR  Wei Y  Qi ST  Chen L  Zhang QH  Ma JY  Luo YB  Wang YP  Hou Y  Schatten H  Liu ZH  Sun QY 《PloS one》2012,7(6):e38807
The arrest of meiotic prophase in mammalian oocytes within fully grown follicles is dependent on cyclic adenosine monophosphate (cAMP) regulation. A large part of cAMP is produced by the Gs-linked G-protein-coupled receptor (GPR) pathway. In the present study, we examined whether GPR3 is involved in the maintenance of meiotic arrest in porcine oocytes. Expression and distribution of GPR3 were examined by western blot and immunofluorescence microscopy, respectively. The results showed that GPR3 was expressed at various stages during porcine oocyte maturation. At the germinal vesicle (GV) stage, GPR3 displayed a maximal expression level, and its expression remained stable from pro-metaphase I (MI) to metaphase II (MII). Immunofluorescence staining showed that GPR3 was mainly distributed at the nuclear envelope during the GV stage and localized to the plasma membrane at pro-MI, MI and MII stages. RNA interference (RNAi) was used to knock down the GPR3 expression within oocytes. Injection of small interfering double-stranded RNA (siRNA) targeting GPR3 stimulated meiotic resumption of oocytes. On the other hand, overexpression of GPR3 inhibited meiotic maturation of porcine oocytes, which was caused by increase of cGMP and cAMP levels and inhibition of cyclin B accumulation. Furthermore, incubation of porcine oocytes with the GPR3 ligand sphingosylphosphorylcholine (SPC) inhibited oocyte maturation. We propose that GPR3 is required for maintenance of meiotic arrest in porcine oocytes through pathways involved in the regulation of cAMP and cGMP.  相似文献   

11.
We have investigated the possibility that mitotic nuclei originating from preimplantation stage embryos and placed in the oocyte cytoplasm can undergo remodelling that allows them to undergo meiosis in the mouse. To address this question, we have used enucleated germinal vesicle (GV) ooplasts as recipients and blastomeres from the 2-, 4- or 8-cell stage as nuclear donors. We employed two methods to obtain ooplasts from GV oocytes: cutting and enucleation. Although efficiency of the reconstruction process was higher after enucleation than after cutting (90% and 70% respectively), the developmental potential of the oocytes was independent of how they had been produced. Nuclei from the 2-, 4-, or 8-cell stage embryos supported maturation in about 35%, 55% and 60% of cases, respectively. The time between nuclear envelope breakdown and the first meiotic division was shortened by up to 5 h in reconstructed oocytes, a period equivalent to the mitotic division of control blastomeres. About one-third of oocytes reconstituted with blastomere nuclei divided symmetrically instead of extruding a polar body; however, in the majority of them metaphase plates were found, suggesting that reconstructed oocytes (cybrids) underwent a meiotic rather than mitotic division. The highest percentage of asymmetric divisions accompanied by metaphase plates was found in cybrids with 8-cell-stage blastomere nuclei, suggesting that the nuclei from this stage appear to conform best to the cytoplasmic environment of GV ooplasts. Our results indicate that the oocyte cytoplasm is capable of remodelling blastomere nuclei, allowing them to follow the path of the meiotic cell cycle.  相似文献   

12.
Calcium (Ca(2+))/calmodulin-dependent protein kinase kinase (CaMKK) is a novel member of Ca(2+)/calmodulin-dependent protein kinase (CaMK) family, whose physiological roles in regulating meiotic cell cycle needs to be determined. We showed by Western blot that CaMKK was expressed in pig oocytes at various maturation stages. Confocal microscopy was employed to observe CaMKK distribution. In oocytes at the germinal vesicle (GV) or prometaphase I (pro-MI) stage, CaMKK was distributed in the nucleus, around the condensed chromatin and the cortex of the cell. At metaphase I (MI) stage, CaMKK was concentrated in the cortex of the cell. After transition to anaphase I or telophase I stage, CaMKK was detected around the separating chromosomes and in the cortex of the cell. At metaphase II (MII) stage, CaMKK was localized to the cortex of the cell, with a thicker area near the first polar body (PB1). Treatment of pig cumulus-enclosed oocytes with STO-609, a membrane-permeable CaMKK inhibitor, resulted in the delay/inhibition of the meiotic resumption and the inhibition of first polar body emission. The correlation between CaMKK and microfilaments during meiotic maturation of pig oocytes was then studied. CaMKK and microfilaments were colocalized from MI to MII during porcine oocyte maturation. After oocytes were treated with STO-609, microfilaments were depolymerized, while in oocytes exposed to cytochalasin B (CB), a microfilament polymerization inhibitor, CaMKK became diffused evenly throughout the cell. These data suggest that CaMKK is involved in regulating the meiotic cell cycle probably by interacting with microfilaments in pig oocytes.  相似文献   

13.
We have investigated the effect of co-culture with porcine spermatozoa on in vitro maturation of porcine germinal vesicle (GV) oocytes before fertilization. Most oocytes were arrested at the first prophase of meiosis when oocytes were cultured in TCM 199 alone, but the proportion of oocytes that reached metaphase II was significantly elevated by co-incubation with spermatozoa in vitro. The oocyte maturation effect was observed with intact and parts of spermatozoa (head and tail) collected from adult swine (regardless of source). However, gonocytes from the newborn porcine testis were not able to enhance in vitro maturation of porcine germinal vesicle oocytes. Interestingly, the oocyte maturation effect by spermatozoa was not decreased with heat treatment, but the maturation effect of oocyte treatment disappeared with exposure to detergent in sperm suspension. Porcine spermatozoa were also observed to stimulate meiosis of oocytes, which was maintained at meiotic arrest using dibutyryl cyclic AMP or forskolin. The study suggests that (i) membrane of porcine spermatozoa contains a substance(s) that can enhance in vitro maturation of oocytes prior to fertilization, (ii) the putative meiosis-enhancing substance(s) of spermatozoa from adult testes retains the oocyte maturation effect during transportation of spermatozoa through epididymis, and (iii) the putative meiosis-enhancing substance(s) is able to overcome the inhibitory effect of dibutyryl cyclic AMP or forskolin by inducing germinal vesicle breakdown of porcine cumulus-oocyte complexes maintained in meiotic arrest.  相似文献   

14.
The control of microtubule and actin-mediated events that direct the physical arrangement and separation of chromosomes during meiosis is critical since failure to maintain chromosome organization can lead to germ cell aneuploidy. Our previous studies demonstrated a role for FYN tyrosine kinase in chromosome and spindle organization and in cortical polarity of the mature mammalian oocyte. In addition to Fyn, mammalian oocytes express the protein tyrosine kinase Fer at high levels relative to other tissues. The objective of the present study was to determine the function of this kinase in the oocyte. Feline encephalitis virus (FES)-related kinase (FER) protein was uniformly distributed in the ooplasm of small oocytes, but became concentrated in the germinal vesicle (GV) during oocyte growth. After germinal vesicle breakdown (GVBD), FER associated with the metaphase-I (MI) and metaphase-II (MII) spindles. Suppression of Fer expression by siRNA knockdown in GV stage oocytes did not prevent activation of cyclin dependent kinase 1 activity or chromosome condensation during in vitro maturation, but did arrest oocytes prior to GVBD or during MI. The resultant phenotype displayed condensed chromosomes trapped in the GV, or condensed chromosomes poorly arranged in a metaphase plate but with an underdeveloped spindle microtubule structure or chromosomes compacted into a tight sphere. The results demonstrate that FER kinase plays a critical role in oocyte meiotic spindle microtubule dynamics and may have an additional function in GVBD.  相似文献   

15.
Mouse and porcine fully grown oocytes at metaphase I(MI) were fused to one or more fully grown oocytes of the same species that contained an intact germinal vesicle (GV). In fused cells containing one GV, premature chromosome condensation (PCC) was observed. In fused cells containing more than one GV, germinal vesicle breakdown (GVBD) and PCC were delayed. Fusion of an MI fully grown oocyte with a growing oocyte resulted in rapid PCC, whereas, fusion of an MI fully grown oocyte with more than one growing oocyte resulted in neither PCC nor GVBD. Moreover, MI chromosomes formed a clump of chromatin. Results of these experiments suggest that the delay in GVBD in fusions of MI oocytes with multiple GV-intact oocytes was due to dilution of maturation promoting factor (MPF) by the cytoplasm of the GV-intact oocytes and that the cytoplasm of growing oocytes can inhibit MPF present in MI oocytes.  相似文献   

16.
Successful production of cloned animals derived from somatic cells has been achieved in sheep, cattle, goats, mice, pigs, rabbits, etc. But the efficiency of nuclear transfer is very low in all species. The present study was conducted to examine somatic nucleus remodelling and developmental ability in vitro of rabbit embryos by transferring somatic cells into enucleated germinal vesicle (GV), metaphase I (MI) or metaphase II (MII) oocytes. Microtubules were organized around condensed chromosomes after the nucleus had been transferred into any of the three types of cytoplasm. A bipolar spindle was formed in enucleated MII cytoplasm. Most of the nuclei failed to form a normal spindle within GV and MI cytoplasm. Some chromosomes scattered throughout the cytoplasm and some formed a monopolar spindle. Pseudopronucleus formation was observed in all three types of cytoplasm. Reconstructed embryos with MI and MII cytoplasm could develop to blastcysts. Nuclei in GV cytoplasm could develop only to the 4-cell stage. These results suggest that (1) GV material is important for nucleus remodelling after nuclear transfer, and (2) oocyte cytoplasm has the capacity to dedifferentiate somatic cells during oocyte maturation.  相似文献   

17.
We used okadaic acid (OA), a potent inhibitor of protein phosphatases 1 and 2A, to study the regulatory effects of protein phosphatases on mitogen-activated protein (MAP) kinase phosphorylation, morphological changes in the nucleus, and microtubule assembly during pig oocyte maturation and fertilization in vitro. When germinal vesicle (GV) stage oocytes were exposed to OA, MAP kinase phosphorylation was greatly accelerated, being fully activated at 10 min. However, MAP kinase was dephosphorylated by long-term (>20 h) exposure to OA. Correspondingly, premature chromosome condensation and GV breakdown were accelerated, whereas meiotic spindle assembly and meiotic progression beyond metaphase I stage were inhibited. OA also quickly reversed the inhibitory effects of butyrolactone I, a specific inhibitor of maturation-promoting factor (MPF), on MAP kinase phosphorylation and meiosis resumption. Treatment of metaphase II oocytes triggered metaphase II spindle elongation and disassembly as well as chromosome alignment disruption. OA treatment of fertilized eggs resulted in prompt phosphorylation of MAP kinase, disassembly of microtubules around the pronuclear area, chromatin condensation, and pronuclear membrane breakdown, but inhibited further cleavage. Our results suggest that inhibition of protein phosphatases promptly phosphorylates MAP kinase, induces premature chromosome condensation and meiosis resumption as well as pronucleus breakdown, but inhibits spindle organization and suppresses microtubule assembly by sperm centrosomes in pig oocytes and fertilized eggs.  相似文献   

18.
Nek9 (also known as Nercc1), a member of the NIMA (never in mitosis A) family of protein kinases, regulates spindle formation, chromosome alignment and segregation in mitosis. Here, we showed that Nek9 protein was expressed from germinal vesicle (GV) to metaphase II (MII) stages in mouse oocytes with no detectable changes. Confocal microscopy identified that Nek9 was localized to the spindle poles at the metaphase stages and associated with the midbody at anaphase or telophase stage in both meiotic oocytes and the first mitotic embyros. Depletion of Nek9 by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes with significant pro-MI/MI arrest and failure of first polar body (PB1) extrusion. Knockdown of Nek9 also impaired the spindle-pole localization of γ-tubulin and resulted in retention of the spindle assembly checkpoint protein Bub3 at the kinetochores even after 10 h of culture. Live-cell imaging analysis also confirmed that knockdown of Nek9 resulted in oocyte arrest at the pro-MI/MI stage with abnormal spindles, misaligned chromosomes and failed polar body emission. Taken together, our results suggest that Nek9 may act as a MTOC-associated protein regulating microtubule nucleation, spindle organization and, thus, cell cycle progression during mouse oocyte meiotic maturation, fertilization and early embryo cleavage.  相似文献   

19.
Studies on Ca2+-channel distribution in maturation arrested mouse oocyte   总被引:1,自引:0,他引:1  
The present study was carried out to identify the existence of voltage-dependent Ca2+-channels (P/Q-, N-, and L-type) and their distributional differences in germinal vesicle (GV) and GV breakdown (GVBD)-arrested mouse oocytes which includes GVBD to telophase I of meiosis I and matured oocytes (MII, metaphase of meiosis II) by using the immunocytochemical method and a confocal laser scanning microscope. (1) Comparison between follicular oocytes (GV) and GV-arrested oocytes after 17 hr of in vitro culture. In follicular oocytes, P/Q-, N-, L (anti-alpha1C anti-alpha1D)-type Ca2+-channels showed both localized and uniform staining. In contrast, GV-arrested oocytes, after in vitro culture for 17 hr, showed no presence of Ca2+-channels in most oocytes. (2) Comparison between GVBD oocytes after culture in vitro for 3 hr and GVBD-arrested oocytes after culture in vitro for 17 hr. In GVBD oocytes, P/Q-, N-, L (anti-1C, anti-alpha1D)-type Ca2+-channels showed both localized and uniform staining. In contrast, in GVBD-arrested oocytes, none of the three types of Ca2+-channels were identified in 72-86% of oocytes. The present study demonstrates that in most GVBD-arrested oocytes that do not mature to MII, there is no Ca2+-channel identified. Therefore, most of the GVBD-arrested oocytes seem to have defects in Ca2+-channel expression/translation. Also, distributional changes of Ca2+-channels take place depending on the maturation progress in GV oocytes and MII stage oocytes (ovulated and 17 hr cultured MII stage oocytes). In addition, we found evidence that a functional voltage-dependent Ca2+-channel (L-type) exists in mouse oocytes (ovulated and cultured MII staged oocytes by a confocal laser scanning microscope).  相似文献   

20.
In contrast to the majority of mammals, canine oocytes are ovulated at immature germinal vesicle (GV) stage and complete meiotic maturation to metaphase II during 48-72 hr within the oviducts. This study aims to characterize meiotic maturation process in bitch oocytes, with both morphological and biochemical approaches. The follow-up of chromatin and microtubules during maturation was described, and MPF and MAP kinase activities were quantified at different stages of maturation. Since bitch oocyte cytoplasm is darkly pigmented, the first step was to setup an appropriate staining method for DNA. We thus compared the efficiency of two visualization techniques and demonstrated that propidium iodide coupled to confocal microscopy was a better method than Hoechst/fluorescence microscopy for nuclear stage observation (determination rates: 98.6 vs. 69.5%, respectively; P < 0.01, n = 1622 oocytes). Microtubule organization, evaluated by tubulin immunodetection, revealed subcortical and perinuclear alpha-tubulin and asters in GV oocytes and a clear network of microtubules in GVBD oocytes. In MI and MII oocytes, a symmetrical, barrel-shaped, and radially located spindle was observed. MPF and MAP kinase activities were assayed concomitantly using histone H1 and MBP as substrates. Kinase activities were detected at low levels in oocytes at GV and GVBD stages and were significantly higher at MI and MII stages. In conclusion, despite the particular pattern of meiotic resumption in canine oocytes (ovulated at GV stage), cytoskeleton/chromatin organization and kinase activities follow a similar pattern to those observed in other mammalian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号