首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the yeast Saccharomyces cerevisiae, the product of the nuclear gene CBP2 is required exclusively for the splicing of the terminal intron of the mitochondrial cytochrome b gene. The homologous gene from the related yeast, Saccharomyces douglasii, has been shown to be essential for respiratory growth in the presence of a wild-type S. douglasii mitochondrial genome and dispensable in the presence of an intronless mitochondrial genome. The two CBP2 genes are functionally interchangeable although the target intron of the S. cerevisiaeCBP2 gene is absent from the S. douglasii mitochondrial genome. To determine the function of the CBP2 gene in S. douglasii mitochondrial pre-RNA processing we have constructed and analyzed interspecific hybrid strains between the nuclear genome of S. cerevisiae carrying an inactive CBP2 gene and S. douglasii mitochondrial genomes with different intron contents. We have demonstrated that inactivation of the S. cerevisiaeCBP2 gene affects the maturation of the S. douglasii LSU pre-RNA, leading to a respiratory-deficient phenotype in the hybrid strains. We have shown that the CBP2 gene is essential for excision of the S. douglasii LSU intron in vivo and that the gene is dispensable when this intron is deleted or replaced by the S. cerevisiae LSU intron.  相似文献   

2.
In the yeast Saccharomyces cerevisiae, the product of the nuclear gene CBP2 is required exclusively for the splicing of the terminal intron of the mitochondrial cytochrome b gene. The homologous gene from the related yeast, Saccharomyces douglasii, has been shown to be essential for respiratory growth in the presence of a wild-type S. douglasii mitochondrial genome and dispensable in the presence of an intronless mitochondrial genome. The two CBP2 genes are functionally interchangeable although the target intron of the S. cerevisiaeCBP2 gene is absent from the S. douglasii mitochondrial genome. To determine the function of the CBP2 gene in S. douglasii mitochondrial pre-RNA processing we have constructed and analyzed interspecific hybrid strains between the nuclear genome of S. cerevisiae carrying an inactive CBP2 gene and S. douglasii mitochondrial genomes with different intron contents. We have demonstrated that inactivation of the S. cerevisiaeCBP2 gene affects the maturation of the S. douglasii LSU pre-RNA, leading to a respiratory-deficient phenotype in the hybrid strains. We have shown that the CBP2 gene is essential for excision of the S. douglasii LSU intron in vivo and that the gene is dispensable when this intron is deleted or replaced by the S. cerevisiae LSU intron. Received: 1 October 1997 / Accepted: 18 November 1997  相似文献   

3.
InSaccharomyces cerevisiae the only known role of theCBP2 gene is the excision of the fifth intron of the mitochondrialcyt b gene (bI5). We have cloned theCBP2 gene fromSaccharomyces douglasii (a close relative ofS. cerevisiae). A comparison of theS. douglasii andS. cerevisiae sequences shows that there are 14% nucleotide substitutions in the coding region, with transitions being three times more frequent than transversions. At the protein level sequence identity is 87%. We have demonstrated that theS. douglasii CBP2 gene is essential for respiratory growth in the presence of a wild-typeS. douglasii mitochondrial genome, but not in the presence of an intronlessS. cerevisiae mitochondrial genome. Also theS. douglasii andS. cerevisiae CBP2 genes are completely interchangeable, even though the intron bI5 is absent from theS. douglasii mitochondrial genome.  相似文献   

4.
InSaccharomyces cerevisiae the only known role of theCBP2 gene is the excision of the fifth intron of the mitochondrialcyt b gene (bI5). We have cloned theCBP2 gene fromSaccharomyces douglasii (a close relative ofS. cerevisiae). A comparison of theS. douglasii andS. cerevisiae sequences shows that there are 14% nucleotide substitutions in the coding region, with transitions being three times more frequent than transversions. At the protein level sequence identity is 87%. We have demonstrated that theS. douglasii CBP2 gene is essential for respiratory growth in the presence of a wild-typeS. douglasii mitochondrial genome, but not in the presence of an intronlessS. cerevisiae mitochondrial genome. Also theS. douglasii andS. cerevisiae CBP2 genes are completely interchangeable, even though the intron bI5 is absent from theS. douglasii mitochondrial genome.  相似文献   

5.
Summary We have characterized the nuclear geneNAM8 inSaccharomyces cerevisiae. It acts as a suppressor of mitochondrial splicing deficiencies when present on a multicopy plasmid. The suppressed mutations affect RNA folding and are located in both group I and group II introns. The gene is weakly transcribed in wildtype strains, its overexpression is a prerequisite for the suppressor action. Inactivation of theNAM8 gene does not affect cell viability, mitochondrial function or mitochondrial genome stability. TheNAM8 gene encodes a protein of 523 amino acids which includes two conserved (RNP) motifs common to RNA-binding proteins from widely different organisms. This homology with RNA-binding proteins, together with the intronic location of the suppressed mitochondrial mutations, suggests that the NAM8 protein could be a non-essential component of the mitochondrial splicing machinery and, when present in increased amounts, it could convert a deficient intron RNA folding pattern into a productive one.  相似文献   

6.
Summary We present a statistical study of the nature and distribution of mutations along the NAM2 gene coding for the mitochondrial leucyl tRNA synthetase in Saccharomyces cerevisiae and S. douglasii (Herbert et al. 1988). Two important facts are observed: (1) the relative frequency of transitions and transversions is the same among silent substitutions and replacements. (2) The two kinds of mutations (silent substitutions and replacements) are distributed in the same way along the gene. This distribution is not random; the mutations are clustered and the clusters are regularly spaced along the gene. The NAM2 gene offers an example spaced along the gene. The NAM2 gene offers an example of recent divergence. We show that, in this case, the fixation of mutations is the result of genetic drift and of constraints on the nucleic acid sequence and not on that of the protein.  相似文献   

7.
Microsomes from Kluyveromyces marxianus GK1005 examined by carbon monoxide difference spectroscopy showed no evidence of cytochrome P450, in contrast to microsomes isolated from a control strain of Saccharomyces cerevisiae. Benzo[a]pyrene produced a typical Type I-binding spectrum with microsomes of both yeasts, with K s values of 82 M (S. cerevisiae) and 70 M (K. marxianus). While aflatoxin B1 generated a typical Type I-binding spectrum with microsomes from S. cerevisiae (K s of 178 M), the toxin did not produce a recognisable binding spectrum with microsomes from K. marxianus.  相似文献   

8.
Genetic hybridization, sequence and karyotypic analyses of natural Saccharomyces yeasts isolated in different regions of Taiwan revealed three biological species: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Intraspecies variability of the D1/D2 and ITS1 rDNA sequences was detected among S. cerevisiae and S. kudriavzevii isolates. According to molecular and genetic analyses, the cosmopolitan species S. cerevisiae and S. kudriavzevii contain local divergent populations in Taiwan, Malaysia and Japan. Six of the seven known Saccharomyces species are documented in East Asia: S. arboricola, S. bayanus, S. cerevisiae, S. kudriavzevii, S. mikatae, and S. paradoxus.  相似文献   

9.
Summary The Saccharomyces cerevisiae nuclear gene NAM2 codes for mitochondrial leucyl-tRNA synthetase (mLRS). Herbert et al. (1988, EMBO J 7:473–483) proposed that this protein is involved in mitochondrial RNA splicing. Here we present the construction and analyses of nine mutations obtained by creating two-codon insertions within the NAM2 gene. Three of these prevent respiration while maintaining the mitochondrial genome. These three mutants: (1) display in vitro a mLRS activity ranging from 0%–50% that of the wild type: (2) allow in vivo the synthesis of several mitochondrially encoded proteins; (3) prevent the synthesis of the COXII protein but not of its mRNA; (4) abolish the splicing of the group I introns bI4 and aI4; and (5) affect significantly the excision of the group I introns bI2, bI3 and aI3. Importation of the bI4 maturase from the cytoplasm into mitochondria in a nam2 mutant strain does not restore the excision of the introns bI4 and aI4 implying that the splicing deficiency does not result from the absence of the bI4 maturase. We conclude that the mLRS is a splicing factor essential for the excision of the group I introns bI4 and aI4 and probably important for the excision of other group I introns.  相似文献   

10.
TheNAM2 gene ofSaccharomyces cerevisiae encodes the mitochondrial leucyl tRNA synthetase (mLRS), which is necessary for the excision of the fourth intron of the mitochondrialcytb gene (bI4) and the fourth intron of the mitochondrialcoxI gene (aI4), as well as for mitochondrial protein synthesis. Some dominant mutant alleles of the gene are able to suppress mutations that inactivate the bI4 maturase, which is essential for the excision of the introns aI4 and bI4. Here we report mutagenesis studies which focus on the splicing and suppressor functions of the protein. Small deletions in the C-terminal region of the protein preferentially reduce the splicing, but not the synthetase activity; and all the C-terminal deletions tested abolish the suppressor activity. Mutations which increase the volume of the residue at position 240 in the wild-type mLRS without introducing a charge, lead to a suppressor activity. The mutant 238C, which is located in the suppressor region, has a reduced synthetase activity and no detectable splicing activity. These data show that the splicing and suppressor functions are linked and that the suppressor activity of the mutant alleles results from a modification of the wild-type splicing activity.  相似文献   

11.
Summary The so-called wine yeasts Saccharomyces cerevisiae, S. chevalieri, S. bayanus, S. italicus and S. uvarum are characterized by high ethanol tolerance and fermentation velocity. They are ecologically related, being predominantly associated with grape must and wine, and are taxonomically indistinguishable. The only significant physiological differences are between the ability to ferment certain sugars. A taxonomic revision of more than 1,000 strains isolated during the past 50 years and belonging to the above species showed extreme instability in the ability to ferment different sugars. The relationships between these yeasts were examined for DNA base composition and DNA-DNA reassociation. The G+C ranged from 37.6% to 39.0% while optical reassociation experiments defined a first group of species (Saccharomyces cerevisiae, S. chevalieri and S. italicus) exhibiting high base sequence complementarity (>90%). S. bayanus and S. uvarum also showed a high degree of relatedness. Low homology values (30%) indicate that the two groups of species are not closely related. While it is proposed to combine S. cerevisiae, S. chevalieri and S. italicus into one single species under the oldest epithet Saccharomyces cerevisiae, a study of a larger number of strains is recommended before considering the taxonomic position of S. bayanus and S. uvarum.  相似文献   

12.
The annotation of the well-studied organism, Saccharomyces cerevisiae, has been improving over the past decade while there are unresolved debates over the amount of biologically significant open reading frames (ORFs) in yeast genome. We revisited the total count of protein-coding genes in S. cerevisiae S288c genome using a theoretical approach by combining the Support Vector Machine (SVM) method with six widely used measurements of sequence statistical features. The accuracy of our method is over 99.5% in 10-fold cross-validation. Based on the annotation data in Saccharomyces Genome Database (SGD), we studied the coding capacity of all 1744 ORFs which lack experimental results and suggested that the overall number of chromosomal ORFs encoding proteins in yeast should be 6091 by removing 488 spurious ORFs. The importance of the present work lies in at least two aspects. First, cross-validation and retrospective examination showed the fidelity of our method in recognizing ORFs that likely encode proteins. Second, we have provided a web service that can be accessed at http://cobi.uestc.edu.cn/services/yeast/, which enables the prediction of protein-coding ORFs of the genus Saccharomyces with a high accuracy.  相似文献   

13.
The ability to propagate under anaerobic conditions is an essential and unique trait of brewers or bakers yeast (Saccharomyces cervisiae). To understand the evolution of facultative anaerobiosis we studied the dependence of de novo pyrimidine biosynthesis, more precisely the fourth enzymic activity catalysed by dihydroorotate dehydrogenase (DHODase), on the enzymes of the respiratory chain in several yeast species. While the majority of yeasts possess a mitochondrial DHODase, Saccharomyces cerevisiae has a cytoplasmatic enzyme, whose activity is independent of the presence of oxygen. From the phylogenetic point of view, this enzyme is closely related to a bacterial DHODase from Lactococcus lactis. Here we show that S. kluyveri, which separated from the S. cerevisiae lineage more than 100 million years ago, represents an evolutionary intermediate, having both cytoplasmic and mitochondrial DHODases. We show that these two S. kluyveri enzymes, and their coding genes, differ in their dependence on the presence of oxygen. Only the cytoplasmic DHODase promotes growth in the absence of oxygen. Apparently a Saccharomyces yeast progenitor which had a eukaryotic-like mitochondrial DHODase acquired a bacterial gene for DHODase, which subsequently allowed cell growth gradually to become independent of oxygen.Communicated by C. P. Hollenberg  相似文献   

14.
Recently, a new type of hybrid resulting from the hybridization between Saccharomyces cerevisiae and Saccharomyces kudriavzevii was described. These strains exhibit physiological properties of potential biotechnological interest. A preliminary characterization of these hybrids showed a trend to reduce the S. kudriavzevii fraction of the hybrid genome. We characterized the genomic constitution of several wine S. cerevisiae × S. kudriavzevii strains by using a combined approach based on the restriction fragment length polymorphism analysis of gene regions, comparative genome hybridizations with S. cerevisiae DNA arrays, ploidy analysis, and gene dose determination by quantitative real-time PCR. The high similarity in the genome structures of the S. cerevisiae × S. kudriavzevii hybrids under study indicates that they originated from a single hybridization event. After hybridization, the hybrid genome underwent extensive chromosomal rearrangements, including chromosome losses and the generation of chimeric chromosomes by the nonreciprocal recombination between homeologous chromosomes. These nonreciprocal recombinations between homeologous chromosomes occurred in highly conserved regions, such as Ty long terminal repeats (LTRs), rRNA regions, and conserved protein-coding genes. This study supports the hypothesis that chimeric chromosomes may have been generated by a mechanism similar to the recombination-mediated chromosome loss acting during meiosis in Saccharomyces hybrids. As a result of the selective processes acting during fermentation, hybrid genomes maintained the S. cerevisiae genome but reduced the S. kudriavzevii fraction.The genus Saccharomyces consists of seven biological species: S. arboricolus, S. bayanus, S. cariocanus, S. cerevisiae, S. kudriavzevii, S. mikatae, and S. paradoxus (29, 59) and the partially allotetraploid species S. pastorianus (46, 58).The hybrid species S. pastorianus, restricted to lager brewing environments, arose from two or more natural hybridization events between S. cerevisiae and a S. bayanus-like yeast (7, 16, 28, 46). Recent studies of S. bayanus have also revealed the hybrid nature of certain strains of this species, which has subsequently been subdivided into two groups, S. bayanus var. bayanus, containing a variety of hybrid strains, and S. bayanus var. uvarum, also referred to as S. uvarum, that contains nonhybrid strains (45, 46).New hybrids of other species from the genus Saccharomyces have recently been described. Hybrid yeasts of S. cerevisiae and S. kudriavzevii have been characterized among wine (6, 20, 33) and brewing yeasts (21); even triple hybrids of S. cerevisiae, S. bayanus, and S. kudriavzevii have been identified (20, 41).The first natural Saccharomyces interspecific hybrid identified, the lager brewing yeast S. pastorianus (S. carlsbergensis) (42, 57), has become one of the most investigated types of yeast hybrids. The genome structure of these hybrids has been examined by competitive array comparative genome hybridization (aCGH) (5, 16, 28), complete genome sequencing (28), and PCR-restriction fragment length polymorphism (RFLP) analysis of 48 genes and partial sequences of 16 genes (46). The aCGH analyses of several S. pastorianus strains with S. cerevisiae-only DNA arrays (5, 28) revealed the presence of aneuploidies due to deletions of entire regions of the S. cerevisiae fraction of the hybrid genomes. A recent aCGH analysis of S. pastorianus strains with S. cerevisiae and S. bayanus DNA arrays (16) showed two groups of strains according to their genome structure and composition. These groups arose from two independent hybridization events, and each one is characterized by a reduction and an amplification of the S. cerevisiae genome fraction, respectively.The genetic characterization of the wine S. cerevisiae and S. kudriavzevii hybrids by restriction analysis of five nuclear genes located in different chromosomes, 5.8S-ITS rDNA region and the mitochondrial COX2 gene, revealed the presence of three types of hybrids in Swiss wines, thus indicating the presence of different hybrid genomes (20). In a recent study (21), we identified six new types of S. cerevisiae and S. kudriavzevii hybrids among brewing strains, which were compared to wine hybrids by a genetic characterization based on RFLP analysis of 35 protein-encoding genes. This analysis confirmed the presence of three different genome types among wine hybrids that contain putative chimeric chromosomes, probably generated by a recombination between homeologous chromosomes of different parental origins.The aim of the present study is to investigate the genome composition and structure of wine hybrids of S. cerevisiae and S. kudriavzevii. This has been achieved by a combined approach based on the RFLP analysis of 35 gene regions from our previous study, comparative genome hybridizations using S. cerevisiae DNA macroarrays, a ploidy analysis by flow cytometry, and gene dose determinations by quantitative real-time PCR. This multiple approach allowed us to confirm the presence of chimeric chromosomes and define the mechanisms involved in their origins.  相似文献   

15.
Changes in glycerol production and two parameters related to energy metabolism i. e. the heat production rate and the ATP pool, were assayed during growth of Saccharomyces cerevisiae and Debaryomyces hansenii in 4 mM and 1.35 M NaCl media. For both of the yeasts, the specific ATP pool changed during the growth cycle and reached maximum values around 10 nmol per mg dry weight in both types of media. The levels of glycerol were markedly enhanced by high salinity. In the presence of 1.35 M NaCl, D. hansenii retained most of its glycerol produced intracellularly, while S. cerevisiae extruded most of the glycerol to the environment. The intracellular glycerol level of S. cerevisiae equalled or exceeded that of D. hansenii, however, with values never lower than 3 mol per mg dry weight at all phases of growth. When D. hansenii was grown at this high salinity the intracellular level of glycerol was found to correlate with the specific heat production rate. No such correlation was found for S. cerevisiae. We concluded that during salt stress, D. hansenii possesses the capacity to regulate the metabolism of glycerol to optimize growth, while S. cerevisiae may not be able to regulate when exposed to different demands on the glycerol metabolism.  相似文献   

16.
The yeast, Hansenula wingei has two mating types designated 5 and 21. Cells of each mating type were found to produce mating type-specific sex pheromone which induces sexual agglutinability of the opposite mating type. Crude fractions of these pheromones were prepared by using an Amberlite CG 50 (H+ type) column. The agglutinability-inducing action of the pheromones required glucose as carbon source, but no external nitrogen source. The action of the pheromones was inhibited by 5 g/ml cycloheximide. The optimum pH for the pheromone action was 4.0. Pheromones of Saccharomyces cerevisiae and Saccharomyces kluyveri induced sexual agglutinability of 5 mating type cells but did not that of 21 mating type cells. a Pheromones of the Saccharomyces yeasts had no effect on both 5 and 21 mating type cells. The sex pheromones of H. wingei had no effect on the sexual agglutinability of inducible a cells of S. cerevisiae. From the experimental results obtained so far, we propose to call 5 and 21 mating types in H. wingei a and mating types, respectively.  相似文献   

17.
A Fusarium metabolite, T-2 toxin, inhibits the growth of Saccharomyces carlsbergensis and Saccharomyces cerevisiae. The growth inhibitory concentrations of T-2 toxin were 40 and 100 μg/ml, respectively, for exponentially growing cultures of the two yeasts. S. carlsbergensis was more sensitive to the toxin and exhibited a biphasic dose-response curve. Addition of the toxin at 10 μg/ml of S. carlsbergensis culture resulted in a retardation of growth as measured turbidimetrically, after only 30 to 40 min. This action was reversible upon washing the cells free of the toxin. The sensitivity of the yeasts to the toxin was dependent upon the types and concentrations of carbohydrates used in the growth media. The sensitivity of the cells to the toxin decreased in glucose-repressed cultures. These results suggest that T-2 toxin interferes with mitochondrial functions of these yeasts.  相似文献   

18.
Summary The lipid composition of a classical yeast and a poor fermenter, at low and high sugar concentrations, was compared. Polyunsaturated fatty acids (18:2, 18:3) were found in the osmotolerant weak fermenter, Saccharomyces mellis, their content decreasing with an increase of glucose levels, while the highly fermenting yeast S. cerevisiae had no polyunsaturated fatty acids at all sugar concentrations examined. Also total unsaturation of fatty acids ( mol–1) was significantly higher with S. mellis. The sterol content varied considerably, being higher with the highly fermenting yeasts and low with S. mellis and the film yeast Pichia sp. The ratio of free sterols/phospholipids was high in S. cerevisiae (1:7) and low in S. mellis (1:177). Hybrid yeasts (S. cerevisiaexS. mellis) which were the best fermenting organisms in our study, also showed a high ratio of free sterols/phospholipids (1:6–1:8). A correlation between the fermentative capacity of yeasts and the fluidity of their membranes is suggested.  相似文献   

19.
Summary A plasmid vector (denoted pRC2312) was constructed, which replicates autonomously in Escherichia coli, Saccharomyces cerevisiae and Candida albicans. It contains LEU2, URA3 and an autonomously replicating sequence (ARS) from C. albicans for selection and replication in yeasts, and bla (ampicillin resistance) and ori for selection and replication in E. coli. S. cerevisiae AH22 (Leu) was transformed by pRC2312 to Leu at a frequency of 1.41 × 105 colonies per g DNA. Transformation of C. albicans SGY-243 (Ura-) to Ura+ with pRC2312 resulted in smaller transformant colonies at a frequency of 5.42 × 103 per g DNA where the plasmid replicated autonomously in transformed cells, and larger transformant colonies at a frequency of 32 per g DNA, in which plasmid integrated into the genome. Plasmid copy number in yeasts was determined by a DNA hybridization method and was estimated to be 15±3 per haploid genome in S. cerevisiae and 2–3 per genome in C. albicans replicative transformants. Multiple tandem integration occurred in integrative transformants and copy number of the integrated sequence was estimated to be 7–12 per diploid genome. The C. albicans ADE2 gene was ligated into plasmid pRC2312 and the construct transformed Ade strains of both C. albicans and S. cerevisiae to Ade+. The vector pRC2312 was also used to clone a fragment of C. albicans genomic DNA containing an aspartic proteinase gene. C. albicans transformants harboring this plasmid showed a two-fold increase in aspartic proteinase activity. However S. cerevisiae transformants showed no such increase in proteinase activity, suggesting the gene was not expressed in S. cerevisiae.  相似文献   

20.
Aims: The aim of this study was to examine the physiological and genetic stability of hybrids of industrial wine yeasts Saccharomyces sensu stricto complex subjected to acidic stress during fermentation. Methods and Results: Laboratory‐constructed yeast hybrids, one intraspecific Saccharomyces cerevisiae × S. cerevisiae and three interspecific S. cerevisiae ×Saccharomyces bayanus, were subcultured in aerobic or anaerobic conditions in media with or without l ‐malic acid. Changes in the biochemical profiles, karyotypes and mitochondrial DNA profiles of the segregates were assessed after 50–190 generations. All yeast segregates showed a tendency to increase the range of the tested compounds utilized as sole carbon sources. Interspecific hybrids were alloaneuploid and their genomes tended to undergo extensive rearrangement especially during fermentation. The karyotypes of segregates lost up to four and appearance up to five bands were recorded. The changes in their mtDNA patterns were even broader reaching 12 missing and six additional bands. These hybrids acquired the ability to sporulate and significantly changed their biochemical profiles. The alloaneuploid intraspecific S. cerevisiae hybrid was characterized by high genetic stability despite the phenotypic changes. l ‐malic acid was not found to affect the extent of genomic changes of the hybrids, which suggests that their demalication ability is combined with resistance to acidic stress. Conclusions: The results reveal the plasticity and extent of changes of chromosomal and mitochondrial DNA of interspecific hybrids of industrial wine yeast especially under anaerobiosis. They imply that karyotyping and restriction analysis of mitochondrial DNA make it possible to quickly assess the genetic stability of genetically modified industrial wine yeasts but may not be applied as the only method for their identification and discrimination. Significance and Impact of the Study: Laboratory‐constructed interspecific hybrids of industrial strains may provide a model for studying the adaptive evolution of wine yeasts under fermentative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号