首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microautoradiographs showed that [14C]sucrose taken up in the xylem of small and intermediate (longitudinal) vascular bundles of Zea mays leaf strips was quickly accumulated by vascular parenchyma cells abutting the vessels. The first sieve tubes to exhibit 14C-labeling during the [14C]sucrose experiments were thick-walled sieve tubes contiguous to the more heavily labeled vascular parenchyma cells. (These two cell types typically have numerous plasmodesmatal connections.) With increasing [14C]sucrose feeding periods, greater proportions of thick- and thin-walled sieve tubes became labeled, but few of the labeled thin-walled sieve tubes were associated with labeled companion cells. (Only the thin-walled sieve tubes are associated with companion cells.) When portions of leaf strips were exposed to 14CO2 for 5 min, the vascular parenchyma cells-regardless of their location in relation to the vessels or sieve tubes-were the most consistently labeled cells of small and intermediate bundles, and label (14C-photosynthate) appeared in a greater proportion of thin-walled sieve tubes than thick-walled sieve tubes. After a 5-min chase with 12CO2, the thin-walled sieve tubes were more heavily labeled than any other cell type of the leaf. After a 10-min chase with 12CO2, the thin-walled sieve tubes were even more heavily labeled. The companion cells generally were less heavily labeled than their associated thin-walled sieve tubes. Although all of the thick-walled sieve tubes were labeled in portions of leaf strips fed 14CO2 for 5 min and given a 10-min 12CO2 chase, only five of 72 vascular bundles below the 14CO2-exposed portions contained labeled thick-walled sieve tubes. Moreover, the few labeled thick-walledsieve tubes of the transport region always abutted 14C-labeled vascular parenchyma cells. The results of this study indicate that (1) the vascular parenchyma cells are able to retrieve at least sucrose from the vessels and transfer it to the thick-walled sieve tubes, (2) the thick-walled sieve tubes are not involved in long-distance transport, and (3) the thin-walled sieve tubes are capable themselves of accumulating sucrose and photosynthates from the apoplast, without the companion cells serving as intermediary cells.  相似文献   

2.
The loading and transport functions of vascular bundles in maize (Zea mays L.) leaf strips were investigated by microautoradiography after application of 14CO2. The concentrations of 14C-contents in thin-walled sieve tubes of individual bundles in the loading and transport regions were determined by digital image analysis of silver-grain density over the sieve tubes and compared. In the loading region, relatively high concentrations of 14C-contents were found in the thin-walled sieve tubes of small bundles and in the small, thin-walled sieve tubes of the intermediate bundles; the concentration of 14C-label in large bundles was very low. In the transport region, at a transport distance of 2 cm, all of the small bundles contained 14C-assimilates, but generally less than the same bundles did in the loading region; by comparison, at that distance intermediate and large bundles contained two-to threefold more 14C-assimilates than the same bundles in the loading region. The lateral transfer of assimilates from smaller to larger bundles via transverse veins could be demonstrated directly in microautoradiographs. A reverse transport from larger to smaller bundles was not found. At a transport distance of 4 cm, all large and intermediate bundles were 14C-labeled, but many of the small bundles were not. Although all longitudinal bundles were able to transport 14C-asimilates longitudinally down the blade, it was the large bundles that were primarily involved with longitudinal transport and the small bundles that were primarily involved with loading.  相似文献   

3.
Phloem loading, as the first step of transporting photoassimilates from mesophyll cells to sieve element‐companion cell complex, creates a driving force for long‐distance nutrient transport. Three loading strategies have been proposed: passive symplastic loading, apoplastic loading and symplastic transfer followed by polymer‐trapping of stachyose and raffinose. Although individual species are generally referred to as using a single phloem loading mechanism, it has been suggested that some plants may use more than one, i.e. ‘mixed loading’. Here, by using a combination of electron microscopy, reverse genetics and 14C labeling, loading strategies were studied in cucumber, a polymer‐trapping loading species. The results indicate that intermediary cells (ICs), which mediate polymer‐trapping, and ordinary companion cells, which mediate apoplastic loading, were mainly found in the fifth and third order veins, respectively. Accordingly, a cucumber galactinol synthase gene (CsGolS1) and a sucrose transporter gene (CsSUT2) were expressed mainly in the fifth/third and the third order veins, respectively. Immunolocalization analysis indicated that CsGolS1 was localized in companion cells (CCs) while CsSUT2 was in CCs and sieve elements (SEs). Suppressing CsGolS1 significantly decreased the stachyose level and increased sucrose content, while suppressing CsSUT2 decreased the sucrose level and increased the stachyose content in leaves. After 14CO2 labeling, [14C]sucrose export increased and [14C]stachyose export reduced from petioles in CsGolS1i plants, but [14C]sucrose export decreased and [14C]stachyose export increased into petioles in CsSUT2i plants. Similar results were also observed after pre‐treating the CsGolS1i leaves with PCMBS (transporter inhibitor). These results demonstrate that cucumber phloem loading depends on both polymer‐trapping and apoplastic loading strategies.  相似文献   

4.
In this brief review an attempt has been made to discuss some of the important features of the vascular anatomy of angiospermous leaves, especially those related to assimilate transport. Accordingly, emphasis has been placed on the small or minor veins, which are closely related spatially to the mesophyll, and which play a major role in the uptake and subsequent transport of photosynthates from the leaf. The small veins are enclosed by bundle sheaths that intervene between the mesophyll and vascular tissues and greatly increase the area for contact with mesophyll cells. In the minor veins of dicotyledonous leaves, parenchymatic cells having organelle-rich protoplasts and numerous cytoplasmic connections with sieve elements dominate quantitatively. It is these so-called intermediary cells that apparently are directly involved with the loading of assimilates into the sieve elements. In the maize leaf the small and intermediate bundles have two types of sieve tubes, relatively thin-walled ones that have numerous cytoplasmic connections with companion cells, and thick-walled ones that lack companion cells but have numerous connections with vascular parenchyma cells. The companion cell-sieve tube complexes are virtually isolated symplastically from other cells of the vascular bundle and from the bundle sheath. Thick-walled sieve tubes similar to those in the maize leaf have been recorded in the leaves of other grasses.  相似文献   

5.
Mechanism of cyanide inhibition of Phloem translocation   总被引:6,自引:4,他引:2       下载免费PDF全文
Petiolar application of potassium cyanide inhibited 14C-assimilate translocation without affecting source leaf photosynthesis or phloem loading of sucrose in Phaseolus vulgaris. The inhibition of transport was correlated with disruption of the structural integrity of the sieve tubes (sieve pore blockage) rather than impairment of a metabolic process in the translocation path driving translocation.  相似文献   

6.
Turgeon R  Gowan E 《Plant physiology》1990,94(3):1244-1249
Phloem loading in Coleus blumei Benth. leaves cannot be explained by carrier-mediated transport of export sugar from the apoplast into the sieve element-companion cell complex, the mechanism by which sucrose is thought to load in other species that have been studied in detail. Uptake profiles of the export sugars sucrose, raffinose, and stachyose into leaf discs were composed of two components, one saturable and the other not. Saturable (carrier-mediated) uptake of all three sugars was almost completely eliminated by the inhibitor p-chloromercuribenzenesulfonic acid (PCMBS). However, when PCMBS was introduced by transpiration into mature leaves it did not prevent accumulation of 14C-photosynthate in minor veins or translocation of labeled photosynthate from green to nonchlorophyllous regions of the leaf following exposure to 14CO2. The efficacy of introducing inhibitor solutions in the transpiration stream was proven by observing saffranin O and calcofluor white movement in the minor veins and leaf apoplast. PCMBS introduced by transpiration completely inhibited phloem loading in tobacco leaves. Phloem loading in C. blumei was also studied in plasmolysis experiments. The carbohydrate content of leaves was lowered by keeping plants in the dark and then increased by exposing them to light. The solute level of intermediary cells increased in the light (phloem loading) in both PCMBS-treated and control tissues. A mechanism of symplastic phloem loading is proposed for species that translocate the raffinose series of oligosaccharides.  相似文献   

7.
The major C14-labeled substance in sieve tube exudate of M. pyrifera is D-mannitol, comprising 3.6% (w/v). No sugars are detectable. Certain amino acids also possess some C14-labeling and occur in significantly high concentrations in exudate. The exudate contains negligible ether-soluble lipid, but has a large amount of protein and a high concentration of K+ Neither protein nor lipid become labeled significantly in sieve tubes during short-term translocation experiments with C14. In general the chemical composition of the assimilate stream is comparable to that of vascular plants and does not, consequently, necessitate a different mechanism for translocation.  相似文献   

8.
The movement of 14C-photosynthate in morning glory (Ipomea nil Roth, cu. Scarlet O'Hara) vines 2 to 5 meters long was followed by labeling a lone mature leaf with 14CO2 and monitoring the arrival rate of tracer at expanding sink leaves on branches along the stem. To a first approximation, the kinetic behavior of the translocation profiles resembled that which would be expected from movement at a single velocity (“plug flow”) without tracer loss from the translocation stream. There was no consistent indication of a velocity gradient along the vine length. The profile moved along the vine as a distinct asymmetrical peak which changes shape only slowly. The spatial distribution of tracer along the vine reasonably matched that predicted on the basis of the arrival kinetics at a sink, assuming plug flow with no tracer loss. These observations are in marked contrast to the kinetic behavior of any mechanism describable by diffusion equations.

However, a progressive change in profile shape (a symmetrical widening) was observed, indicating a range of translocation velocities. A minimum of at least two factors must have contributed to the observed velocity gradient: the exchange of 14C between sieve elements and companion cells (demonstrated by microautoradiography) and the range of velocities in the several hundred sieve tubes which carried the translocation stream. Possible effects of these two factors on profile spreading were investigated by means of numerical models. The models are necessarily incomplete, due principally to uncertainties about the exchange rate between sieve elements and companion cells and the degree of functional connectivity between sieve tubes of different conductivities. However, most of the observed profile spreading may be reasonably attributed to the combined effects of those two factors.

The mass average velocity of translocation (calculated from the mean times of 14C arrival at successive sink leaves) was about 75% of the maximum velocity (calculated from the times of initial detection at the same sink leaves), which was usually between 0.6 and 1 cm min−1. Owing to tracer exchange between sieve elements and companion cells, the mass average velocity of tracer in the sieve tubes was probably closer to 86% of the maximum velocity, a figure which agreed with a predicted velocity distribution based on calculated sieve tube conductivities and the size distribution of functional sieve tubes.

  相似文献   

9.
Turgeon R  Medville R 《Protoplasma》2011,248(1):173-180
Phloem loading is the process by which photoassimilates synthesized in the mesophyll cells of leaves enter the sieve elements and companion cells of minor veins in preparation for long distance transport to sink organs. Three loading strategies have been described: active loading from the apoplast, passive loading via the symplast, and passive symplastic transfer followed by polymer trapping of raffinose and stachyose. We studied phloem loading in Amborella trichopoda, a premontane shrub that may be sister to all other flowering plants. The minor veins of A. trichopoda contain intermediary cells, indicative of the polymer trap mechanism, forming an arc on the abaxial side and subtending a cluster of ordinary companion cells in the interior of the veins. Intermediary cells are linked to bundle sheath cells by highly abundant plasmodesmata whereas ordinary companion cells have few plasmodesmata, characteristic of phloem that loads from the apoplast. Intermediary cells, ordinary companion cells, and sieve elements form symplastically connected complexes. Leaves provided with 14CO2 translocate radiolabeled sucrose, raffinose, and stachyose. Therefore, structural and physiological evidence suggests that both apoplastic and polymer trapping mechanisms of phloem loading operate in A. trichopoda. The evolution of phloem loading strategies is complex and may be difficult to resolve.  相似文献   

10.
The major C14-labeled substance in sieve tube exudate of M. pyrifera is D-mannitol, comprising 3.6% (w/v). No sugars are detectable. Certain amino acids also possess some CWabeling and occur in significantly high concentrations in exudate. The exudate contains negligible ether-soluble lipid, but has a large amount of protein and a high concentration of K+. Neither protein nor lipid become labeled significantly in sieve tubes during short-term translocation experiments with C14. In general the chemical composition of the assimilate stream is comparable to that of vascular plants and does not, consequently, necessitate a different mechanism for translocation.  相似文献   

11.
The kinetic behavior of translocation profiles indicates that their shape is determined largely by the rate at which tracer enters the sieve tubes in the source leaf. Confirmation of this relationship was sought by investigating the kinetics of 14C in the immediate source pool for translocated sucrose in soybean (Glycine max L., cv. Bragg) and morning glory (Ipomea nil Roth, cv. Scarlet O'Hara) leaves. Quantitative microautoradiography was used to follow the water-soluble 14C contents of the companion cells in minor veins after pulse-labeling with 14CO2. In both morning glory and soybean, the observed kinetics in the companion cells matched reasonably well those expected from the shape of the translocation profiles.

Marked compartmentation of sucrose was evident in soybean leaves in that the specific radioactivity of total leaf sucrose was greatest immediately after labeling and quickly declined, whereas labeling in the companion cells was low at first and did not reach a maximum for about 35 minutes. In morning glory leaves, the kinetics of sucrose specific radioactivity and of companion cell-labeling more closely paralleled one another.

  相似文献   

12.
We investigated the phloem loading pathway in barley, by determining plasmodesmatal frequencies at the electron microscope level for both intermediate and small blade bundles of mature barley leaves. Lucifer yellow was injected intercellularly into bundle sheath, vascular parenchyma, and thin-walled sieve tubes. Passage of this symplastically transported dye was monitored with an epifluorescence microscope under blue light. Low plasmodesmatal frequencies endarch to the bundle sheath cells are relatively low for most interfaces terminating at the thin- and thick-walled sieve tubes within this C3 species. Lack of connections between vascular parenchyma and sieve tubes, and low frequencies (0.5% plasmodesmata per μm cell wall interface) of connections between vascular parenchyma and companion cells, as well as the very low frequency of pore-plasmodesmatal connections between companion cells and sieve tubes in small bundles (0.2% plasmodesmata per μm cell wall interface), suggest that the companion cell-sieve tube complex is symplastically isolated from other vascular parenchyma cells in small bundles. The degree of cellular connectivity and the potential isolation of the companion cell-sieve tube complex was determined electrophysiologically, using an electrometer coupled to microcapillary electrodes. The less negative cell potential (average –52 mV) from mesophyll to the vascular parenchyma cells contrasted sharply with the more negative potential (–122.5 mV) recorded for the companion cell-thin-walled sieve tube complex. Although intercellular injection of lucifer yellow clearly demonstrated rapid (0.75 μm s-1) longitudinal and radial transport in the bundle sheath-vascular parenchyma complex, as well as from the bundle sheath through transverse veins to adjacent longitudinal veins, we were neither able to detect nor present unequivocal evidence in support of the symplastic connectivity of the sieve tubes to the vascular parenchyma. Injection of the companion cell-sieve tube complex, did not demonstrate backward connectivity to the bundle sheath. We conclude that the low plasmodesmatal frequencies, coupled with a two-domain electropotential zonation configuration, and the negative transport experiments using lucifer yellow, precludes symplastic phloem loading in barley leaves.  相似文献   

13.
We performed electron-microscopic examination of structural diurnal changes in the lumen of sieve tubes and the vacuolar system of corresponding companion cells and changes induced by the experimental blockage of assimilate export from the leaf by its cold-girdling. For these investigations, Cucurbita pepo L. and Helianthus annuus L. plants were used, that is, plant species from groups of symplastic and apoplastic plants, which differ in the type of companion cells and a mode of phloem terminal loading. The examinations showed the complete identity of changes in the electron texture of the sieve-tube lumens and companion-cell vacuoles in both plant species in the course of a day, when the level of assimilates changed, or after export blockage. Similar changes in the structure of the vacuolar labyrinths were stated in the companion cells under normal conditions and after cold-girdling, as related to the rate of sieve-tube loading with the vacuolar exudate. Vacuolar expansion and starch accumulation developing in response to changes in the assimilate level in the evening and after cold blockage of the assimilate export occurred in different types of cells, as dependent on their position in the symplast domains. However, the rate of the process similarly depended on the balance between assimilate synthesis and export. Synchronous changes in the texture of the sieve-tube lumen and companion-cell vacuoles were observed within each complex, but asynchronous changes occurred in different complexes. We suggested this phenomenon for recognizing the particular complexes, when they are grouped in a bundle. We observed no signs of cytoplasm or protein synthetic machinery in the sieve tubes. We concluded that the sieve-tube lumen and vacuoles of companion cells are common in nature. Similar electron texture of the images of the companion-cell vacuolar labyrinth and tube lumens, their connection through the lateral sieve fields, morphological modifications of the companion-cell vacuolar system as dependent on the activity of sieve tube loading—all of these facts imply the continuity of these transport compartments and fluxes in them and the similarity in the composition of the exudates from companion-cell vacuoles and phloem tubes.  相似文献   

14.
Mechanism of inhibition of translocation by localized chilling   总被引:16,自引:11,他引:5       下载免费PDF全文
Arrhenius plots of translocation velocity as a function of petiole temperature show a marked increase in temperature dependence below 10 C in bean (a chilling-sensitive species) but not in sugar beet (chilling-resistant). The increased temperature dependence below 10 C was not observed for cytoplasmic streaming or oxygen uptake in bean. Bean petioles were served to release pressure in order to determine whether sieve tubes are obstructed in cold-treated petioles. The resulting pressure release caused serious displacement of the crystalline protein bodies in the sieve tubes of petioles at 25 C, but in those locally cooled to 0 C for 30 minutes little displacement occurred, indicating obstruction in the latter. An ultrastructural study of sieve tubes in tissue frozen rapidly in situ and dehydrated by freeze substitution revealed that treatment at 0 C for 30 minutes caused structural alteration and displacement of the cytoplasmic material lining the sieve tube wall resulting in occlusion of sieve plates. The sieve plates of the control petioles at 25 C were generally clear of obstructions. The results indicate that inhibition of translocation by chilling in chilling-sensitive plants results from physical blockage of sieve plates rather than from direct inhibition of a metabolic process which drives translocation.  相似文献   

15.
Sugar transport in conducting elements of sugar beet leaves   总被引:8,自引:5,他引:3       下载免费PDF全文
Trip P 《Plant physiology》1969,44(5):717-719,721,723-725
Autoradiography was used to determine the distribution of labeled sugar in conducting elements of the blade and petiole of sugar beet leaves at intervals ranging from 5 sec to 24 hr. The processes of assimilation by the green cells, collection of sugar in the minor veins and export in phloem elements were demonstrated visually. It appears that in minor veins sugar is translocated in companion cells rather than sieve tubes. In major veins translocation occurs in sieve tubes.  相似文献   

16.
The vascular system for the two lodicules in a floret of Dactylis glomerata L. was studied in serial sections. The floret stele contained a few modified tracheary elements and xylem transfer cells enveloped by a phloem of squat sieve-tube members and intermediary cells. A single sieve tube and associated phloem parenchyma exited the right and left sides of the stele and upon nearing the base of each lodicule branched and formed the minor veins of the lodicule. The minor veins underwent limited branching and anastomosing to form a small three-dimensional system which described an arc during its ascent in the adaxial portion of each lodicule. The sieve tubes in the minor veins extended halfway up the lodicule and contained short sieve-tube members with transverse, slightly oblique, or lateral simple sieve plates. The associated phloem parenchyma cells were intermediary cells, companion cells, and less intimate parenchyma cells. Intermediary cells terminated the minor veins and touched the distal ends of the terminal sieve-tube members, which lacked distal sieve plates. Although the transverse area of the sieve-tube members remained constant up the lodicule, the transverse area of the associated phloem parenchyma fluctuated.  相似文献   

17.
Some Low-temperature Effects on Sieve Tube Translocation in Salix viminalis   总被引:1,自引:0,他引:1  
The data presented on translocation of 14C-labelled compoundsin Salix viminalis show that above a temperature close to –4°C translocation occurs, whilst below –4 °C inmost cases it does not. Stoppages were irreversible when the temperature of the cooledstem was raised again to normal (approximately 20 °C) andappeared to involve some disruption of the phloem. The temperaturesat which the bark was found to freeze were found to be closelysimilar, with respect to level and variability, to the stoppingtemperature. Respiration measurements on isolated strips of bark at –2°C showed that oxygen uptake fell to approximately 5 percent of its value at 25 °C. The decreased level of radioactivity in the cooled regions ofthe stems is considered to be evidence that the exchange oflabelled compounds between the sieve tubes and the surroundingcells was slowed up at low temperatures.  相似文献   

18.
Control of Import and Export of Photosynthate in Leaves   总被引:2,自引:0,他引:2  
The flow of photosynthetic assimilate in leaves was traced usingradioactive 11CO2. In younger leaves the direction of flow canchange in response to changes in assimilate potential in therest of the plant whereas inolder leaves it cannot. The irreversibilityof flow in older leaves is apparently a result of their havinga loading process able to maintain a sieve tube assimilate potentialhigher than elsewhere in the plant. Systematic shifts in the responses of leaves to a successionof short term changes in sink demand are best understood interms of radial exchanges between the sieve tubes and storagepools of limited capacity in the surrounding tissue. These takeplace throughout the length of the sieve tubes and may giverise to flows in opposite directions, at the same time, at differentpoints in the same sieve tube. Behaviour indicates that flow between different pools of assimilatein the plant can be thought of as being a functionof differencesin their assimilate potentials, with changes in potential elicitingchanges in flow. Key words: Translocation, carbon partitioning control, leaves  相似文献   

19.
Robert Turgeon 《Planta》1984,161(2):120-128
Mature leaves import limited amounts of nutrient when darkened for prolonged periods. We tested the hypothesis that import is restricted by the apoplast-phloem loading mechanism, ie., as sucrose exits the phloem of minor veins it is retrieved by the same tissue, thus depriving the mesophyll of nutrient. When single, attached, mature leaves of tobacco (Nicotiana tabacum L.) plants were darkened, starch disappeared from the mesophyll cells, indicating that the supply of solute to the mesophyll was limited. Starch was synthesized in mesophyll cells of darkened tissue when sucrose was applied to the apoplast at 0.1–0.3 mM concentration. Efflux from minor veins was studied by incubating leaf discs on [14C]sucrose to load the minor veins and then measuring subsequent 14C release. Efflux was rapid for the first hour and continued at a gradually decreasing rate for over 13 h. Net efflux increased when loading was inhibited by p-chloromercuribenzene-sulfonic acid, anoxia, isotope-trapping, or reduction of the pH gradient. Neither light nor potassium had a significant effect on the rate of labeled sucrose release. The site of labeled sucrose release was investigated by measuring efflux from discs in which sucrose had previously been loaded preferentially by either the minor veins or mesophyll cells. Efflux occurred primarily from minor veins.Abbreviations Mes 2(N-morpholino)ethanesulfonic acid - Mops 3(N-morpholino)propanesulfonic acid - PCMBS p-chloromercuribenzenesulfonic acid - SE-CC sieve element-companion cell complex  相似文献   

20.
Summary Longitudinal strips from leaf blades of Zea mays L., with veins continuous along their whole length, proved to be a very uniform and convenient material for translocation experiments. Under normal photosynthetic conditions a very strong basipetal assimilate movement was shown. In the dark this movement persisted as long as starch reserves were available. Parts of the strips exposed to darkness or to CO2-free air, i.e. nonphotosynthetic conditions, became strong sinks which attracted assimilates, darkness having the strongest effect. Microradioautographs showed that transport of assimilates took place in the sieve tubes of the phloem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号