首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Telomeres are maintained by three DNA-binding proteins (telomeric repeat binding factor 1 [TRF1], TRF2, and protector of telomeres 1 [POT1]) and several associated factors. One factor, TRF1-interacting protein 2 (TIN2), binds TRF1 and TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and hRap1, these form a soluble complex that may be the core telomere maintenance complex. It is not clear whether subcomplexes also exist in vivo. We provide evidence for two TIN2 subcomplexes with distinct functions in human cells. We isolated these two TIN2 subcomplexes from nuclear lysates of unperturbed cells and cells expressing TIN2 mutants TIN2-13 and TIN2-15C, which cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere dysfunction and cell death. Our findings suggest that distinct TIN2 complexes exist and that TIN2-15C-sensitive subcomplexes are particularly important for cell survival in the absence of functional p53.  相似文献   

2.
Human telomeres contain two related telomeric DNA-binding proteins, TRF1 and TRF2. The TRF1 complex contains the TRF1 interacting partner, TIN2, as well as PIP1 and POT1 and regulates telomere-length homeostasis. The TRF2 complex is primarily involved in telomere protection and contains the TRF2 interacting partner human (h)Rap1 as well as several factors involved in the DNA damage response. A prior report showed that conditional deletion of murine TRF1 reduced the presence of TRF2 on telomeres. Here we showed that TRF2 is also lost from human telomeres upon TRF1 depletion with small interfering RNA prompting a search for the connection between the TRF1 and TRF2 complexes. Using mass spectrometry and co-immunoprecipitation, we found that TRF1, TIN2, PIP1, and POT1 are associated with the TRF2-hRap1 complex. Gel filtration identified a TRF2 complex containing TIN2 and POT1 but not TRF1 indicating that TRF1 is not required for this interaction. Co-immunoprecipitation, Far-Western assays, and two-hybrid assays showed that TIN2, but not POT1 or PIP1, interacts directly with TRF2. Furthermore, TIN2 was found to bind TRF1 and TRF2 simultaneously, showing that TIN2 can link these telomeric proteins. This connection appeared to stabilize TRF2 on the telomeres as the treatment of cells with TIN2 small interfering RNA resulted in a decreased presence of TRF2 and hRap1 at chromosome ends. The TIN2-mediated cooperative binding of TRF1 and TRF2 to telomeres has important implications for the mechanism of telomere length regulation and protection.  相似文献   

3.
Kim SH  Han S  You YH  Chen DJ  Campisi J 《EMBO reports》2003,4(7):685-691
Human TIN2 interacts with the telomeric-DNA-binding protein TRF1, suppresses telomere elongation in telomerase-positive cells, and may control telomere length by modulating telomere structure. To test the latter idea, we developed an in vitro assay, using biotinylated telomeric DNA probes and streptavidin–agarose, to quantify the ability of TRF1 and TIN2 to stimulate interactions of telomeric DNA tracts with each other (probe clustering). This assay revealed that TRF1 alone had weak probe-clustering activity, but TIN2 stimulated activity fivefold to tenfold. A dominant-negative TIN2 mutant protein that increased telomere length in vivo disrupted probe clusters formed by TRF1 and TIN2, suggesting that the ability to stimulate telomeric DNA interactions is important for telomere-length regulation. Unlike TRF1, TIN2 did not form homodimers. We propose that TIN2 alters the conformation of TRF1, which favours a tertiary telomeric structure that hinders telomerase from gaining access to telomeres.  相似文献   

4.
Telomeres are specialized heterochromatin at the ends of linear chromosomes. Telomeres are crucial for maintaining genome stability and play important roles in cellular senescence and tumor biology. Six core proteins -- TRF1, TRF2, TIN2, POT1, TPP1, and Rap1 (termed the telosome or shelterin complex) – regulate telomere structure and function. One of these proteins, TIN2, regulates telomere length and structure indirectly by interacting with TRF1, TRF2 and TPP1, but no direct function has been attributed to TIN2. Here we present evidence for a TIN2 isoform (TIN2L) that differs from the originally described TIN2 isoform (TIN2S) in two ways: TIN2L contains an additional 97 amino acids, and TIN2L associates strongly with the nuclear matrix. Stringent salt and detergent conditions failed to extract TIN2L from the nuclear matrix, despite removing other telomere components, including TIN2S. In human mammary epithelial cells, each isoform showed a distinct nuclear distribution both as a function of cell cycle position and telomere length. Our results suggest a dual role for TIN2 in mediating the function of the shelterin complex and tethering telomeres to the nuclear matrix.  相似文献   

5.
In mammalian cells, telomere-binding proteins TRF1 and TRF2 play crucial roles in telomere biology. They interact with several other telomere regulators including TIN2, PTOP, POT1, and RAP1 to ensure proper maintenance of telomeres. TRF1 and TRF2 are believed to exert distinct functions. TRF1 forms a complex with TIN2, PTOP, and POT1 and regulates telomere length, whereas TRF2 mediates t-loop formation and end protection. However, whether cross-talk occurs between the TRF1 and TRF2 complexes and how the signals from these complexes are integrated for telomere maintenance remain to be elucidated. Through gel filtration and co-immunoprecipitation experiments, we found that TRF1 and TRF2 are in fact subunits of a telomere-associated high molecular weight complex (telosome) that also contains POT1, PTOP, RAP1, and TIN2. We demonstrated that the TRF1-interacting protein TIN2 binds TRF2 directly and in vivo, thereby bridging TRF2 to TRF1. Consistent with this multi-protein telosome model, stripping TRF1 off the telomeres by expressing tankyrase reduced telomere recruitment of not only TIN2 but also TRF2. These results help to unify previous observations and suggest that telomere maintenance depends on the multi-subunit telosome.  相似文献   

6.
The shelterin protein TIN2 is required for the telomeric accumulation of TPP1/POT1 heterodimers and for the protection of telomeres by the POT1 proteins (POT1a and POT1b in the mouse). TIN2 also binds to TRF1 and TRF2, improving the telomeric localization of TRF2 and its function. Here, we ask whether TIN2 needs to interact with both TRF1 and TRF2 to mediate the telomere protection afforded by TRF2 and POT1a/b. Using a TIN2 allele deficient in TRF1 binding (TIN2-L247E), we demonstrate that TRF1 is required for optimal recruitment of TIN2 to telomeres and document phenotypes associated with the TIN2-L247E allele that are explained by insufficient TIN2 loading onto telomeres. To bypass the requirement for TRF1-dependent recruitment, we fused TIN2-L247E to the TRF2-interacting (RCT) domain of Rap1. The RCT-TIN2-L247E fusion showed improved telomeric localization and was fully functional in terms of chromosome end protection by TRF2, TPP1/POT1a, and TPP1/POT1b. These data indicate that when sufficient TIN2 is loaded onto telomeres, its interaction with TRF1 is not required to mediate the function of TRF2 and the TPP1/POT1 heterodimers. We therefore conclude that shelterin can protect chromosome ends as a TRF2-tethered TIN2/TPP1/POT1 complex that lacks a physical connection to TRF1.  相似文献   

7.
The single-stranded DNA binding proteins in mouse shelterin, POT1a and POT1b, accumulate at telomeres as heterodimers with TPP1, which binds TIN2 and thus links the TPP1/POT1 dimers with TRF1 and TRF2/Rap1. When TPP1 is tethered to TIN2/TRF1/TRF2, POT1a is thought to block replication protein A binding to the single-stranded telomeric DNA and prevent ataxia telangiectasia and Rad3-related kinase activation. Similarly, TPP1/POT1b tethered to TIN2 can control the formation of the correct single-stranded telomeric overhang. Consistent with this view, the telomeric phenotypes following deletion of POT1a,b or TPP1 are phenocopied in TIN2-deficient cells. However, the loading of TRF1 and TRF2/Rap1 is additionally compromised in TIN2 KO cells, leading to added phenotypes. Therefore, it could not be excluded that, in addition to TIN2, other components of shelterin contribute to the recruitment of TPP1/POT1a,b as suggested by previous reports. To test whether TIN2 is the sole link between TPP1/POT1a,b and telomeres, we defined the TPP1 interaction domain of TIN2 and generated a TIN2 allele that was unable to interact with TPP1 but retained its interaction with TRF1 and TRF2. We demonstrated that cells expressing TIN2ΔTPP1 instead of wild-type TIN2 phenocopy the POT1a,b knockout setting without showing additional phenotypes. Therefore, these results are consistent with TIN2 being the only mechanism by which TPP1/POT1 heterodimers bind to shelterin and function in telomere protection.  相似文献   

8.
9.
Tankyrase (TANK1) is a human telomere-associated poly(ADP-ribose) polymerase (PARP) that binds the telomere-binding protein TRF1 and increases telomere length when overexpressed. Here we report characterization of a second human tankyrase, tankyrase 2 (TANK2), which can also interact with TRF1 but has properties distinct from those of TANK1. TANK2 is encoded by a 66-kilobase pair gene (TNKS2) containing 28 exons, which express a 6.7-kilobase pair mRNA and a 1166-amino acid protein. The protein shares 85% amino acid identity with TANK1 in the ankyrin repeat, sterile alpha-motif, and PARP catalytic domains but has a unique N-terminal domain, which is conserved in the murine TNKS2 gene. TANK2 interacted with TRF1 in yeast and in vitro and localized predominantly to a perinuclear region, similar to the properties of TANK1. In contrast to TANK1, however, TANK2 caused rapid cell death when highly overexpressed. TANK2-induced death featured loss of mitochondrial membrane potential, but not PARP1 cleavage, suggesting that TANK2 kills cells by necrosis. The cell death was prevented by the PARP inhibitor 3-aminobenzamide. In vivo, TANK2 may differ from TANK1 in its intrinsic or regulated PARP activity or its substrate specificity.  相似文献   

10.
Kim SH  Parrinello S  Kim J  Campisi J 《Genomics》2003,81(4):422-432
Telomere length is regulated by TRF1, which binds telomeric DNA, and TIN2, which binds TRF1. Laboratory mice (Mus musculus) have long telomeres, although a related mouse species, Mus spretus, has human-sized telomeres. Because differences in TIN2 might explain these differences in telomere length, we cloned cDNAs encoding murine TIN2s and compared their sequence to that of human TIN2. M. musculus (Mm) and M. spretus TIN2s were >95% identical, but shared only 67% identity with human TIN2. An N-terminal truncation, or N-terminal fragment, of MmTIN2 elongated M. spretus telomeres. These findings suggest that mouse TIN2, like human TIN2, negatively regulates telomere length, and that N-terminal perturbations have dominant-negative effects. Our findings suggest that differences in TIN2 cannot explain the telomere length differences among Homo sapiens, M. musculus, and M. spretus. Nonetheless, M. spretus cells appear be a good system for studying the function of mouse telomere-associated proteins.  相似文献   

11.
The telomere specific shelterin complex, which includes TRF1, TRF2, RAP1, TIN2, TPP1 and POT1, prevents spurious recognition of telomeres as double-strand DNA breaks and regulates telomerase and DNA repair activities at telomeres. TIN2 is a key component of the shelterin complex that directly interacts with TRF1, TRF2 and TPP1. In vivo, the large majority of TRF1 and TRF2 are in complex with TIN2 but without TPP1 and POT1. Since knockdown of TIN2 also removes TRF1 and TRF2 from telomeres, previous cell-based assays only provide information on downstream effects after the loss of TRF1/TRF2 and TIN2. Here, we investigated DNA structures promoted by TRF2–TIN2 using single-molecule imaging platforms, including tracking of compaction of long mouse telomeric DNA using fluorescence imaging, atomic force microscopy (AFM) imaging of protein–DNA structures, and monitoring of DNA–DNA and DNA–RNA bridging using the DNA tightrope assay. These techniques enabled us to uncover previously unknown unique activities of TIN2. TIN2S and TIN2L isoforms facilitate TRF2-mediated telomeric DNA compaction (cis-interactions), dsDNA–dsDNA, dsDNA–ssDNA and dsDNA–ssRNA bridging (trans-interactions). Furthermore, TIN2 facilitates TRF2-mediated T-loop formation. We propose a molecular model in which TIN2 functions as an architectural protein to promote TRF2-mediated trans and cis higher-order nucleic acid structures at telomeres.  相似文献   

12.
Human telomeres bind shelterin, the six-subunit protein complex that protects chromosome ends from the DNA damage response and regulates telomere length maintenance by telomerase. We used quantitative immunoblotting to determine the abundance and stoichiometry of the shelterin proteins in the chromatin-bound protein fraction of human cells. The abundance of shelterin components was similar in primary and transformed cells and was not correlated with telomere length. The duplex telomeric DNA binding factors in shelterin, TRF1 and TRF2, were sufficiently abundant to cover all telomeric DNA in cells with short telomeres. The TPP1·POT1 heterodimer was present 50–100 copies/telomere, which is in excess of its single-stranded telomeric DNA binding sites, indicating that some of the TPP1·POT1 in shelterin is not associated with the single-stranded telomeric DNA. TRF2 and Rap1 were present at 1:1 stoichiometry as were TPP1 and POT1. The abundance of TIN2 was sufficient to allow each TRF1 and TRF2 to bind to TIN2. Remarkably, TPP1 and POT1 were ∼10-fold less abundant than their TIN2 partner in shelterin, raising the question of what limits the accumulation of TPP1·POT1 at telomeres. Finally, we report that a 10-fold reduction in TRF2 affects the regulation of telomere length but not the protection of telomeres in tumor cell lines.  相似文献   

13.
Importance of TRF1 for functional telomere structure   总被引:10,自引:0,他引:10  
Telomeres are comprised of telomeric DNA sequences and associated binding molecules. Their structure functions to protect the ends of linear chromosomes and ensure chromosomal stability. One of the mammalian telomere-binding factors, TRF1, localizes telomeres by binding to double-stranded telomeric DNA arrays. Because the overexpression of wild-type and dominant-negative TRF1 induces progressive telomere shortening and elongation in human cells, respectively, a proposed major role of TRF1 is that of a negative regulator of telomere length. Here we report another crucial function of TRF1 in telomeres. In conditional mouse TRF1 null mutant embryonic stem cells, TRF1 deletion induced growth defect and chromosomal instability. Although no clear telomere shortening or elongation was observed in short term cultured TRF1-deficient cells, abnormal telomere signals were observed, and TRF1-interacting telomere-binding factor, TIN2, lost telomeric association. Furthermore, another double-stranded telomeric DNA-binding factor, TRF2, also showed decreased telomeric association. Importantly, end-to-end fusions with detectable telomere signals at fusion points accumulated in TRF1-deficient cells. These results strongly suggest that TRF1 interacts with other telomere-binding molecules and integrates into the functional telomere structure.  相似文献   

14.
Human telomeres are protected by shelterin proteins, but how telomeres maintain a dynamic structure remains elusive. Here, we report an unexpected activity of POT1 in imparting conformational dynamics of the telomere overhang, even at a monomer level. Strikingly, such POT1-induced overhang dynamics is greatly enhanced when TRF2 engages with the telomere duplex. Interestingly, TRF2, but not TRF2ΔB, recruits POT1-bound overhangs to the telomere ds/ss junction and induces a discrete stepwise movement up and down the axis of telomere duplex. The same steps are observed regardless of the length of the POT1-bound overhang, suggesting a tightly regulated conformational dynamic coordinated by TRF2 and POT1. TPP1 and TIN2 which physically connect POT1 and TRF2 act to generate a smooth movement along the axis of the telomere duplex. Our results suggest a plausible mechanism wherein telomeres maintain a dynamic structure orchestrated by shelterin.  相似文献   

15.
Telomeres are coated by shelterin, a six-subunit complex that is required for protection and replication of chromosome ends. The central subunit TIN2, with binding sites to three subunits (TRF1, TRF2, and TPP1), is essential for stability and function of the complex. Here we show that TIN2 stability is regulated by the E3 ligase Siah2. We demonstrate that TIN2 binds to Siah2 and is ubiquitylated in vivo. We show using purified proteins that Siah2 acts as an E3 ligase to directly ubiquitylate TIN2 in vitro. Depletion of Siah2 led to stabilization of TIN2 protein, indicating that Siah2 regulates TIN2 protein levels in vivo. Overexpression of Siah2 in human cells led to loss of TIN2 at telomeres that was dependent on the presence of the catalytic RING domain of Siah2. In contrast to RNAi-mediated depletion of TIN2 that led to loss of TRF1 and TRF2 at telomeres, Siah2-mediated depletion of TIN2 allowed TRF1 and TRF2 to remain on telomeres, indicating a different fate for shelterin subunits when TIN2 is depleted posttranslationally. TPP1 was lost from telomeres, although its protein level was not reduced. We speculate that Siah2-mediated removal of TIN2 may allow dynamic remodeling of the shelterin complex and its associated factors during the cell cycle.  相似文献   

16.
TIN2 is a core component of the shelterin complex linking double-stranded telomeric DNA-binding proteins (TRF1 and TRF2) and single-strand overhang-binding proteins (TPP1-POT1). In vivo, the large majority of TRF1 and TRF2 exist in complexes containing TIN2 but lacking TPP1/POT1; however, the role of TRF1-TIN2 interactions in mediating interactions with telomeric DNA is unclear. Here, we investigated DNA molecular structures promoted by TRF1-TIN2 interaction using atomic force microscopy (AFM), total internal reflection fluorescence microscopy (TIRFM), and the DNA tightrope assay. We demonstrate that the short (TIN2S) and long (TIN2L) isoforms of TIN2 facilitate TRF1-mediated DNA compaction (cis-interactions) and DNA-DNA bridging (trans-interactions) in a telomeric sequence- and length-dependent manner. On the short telomeric DNA substrate (six TTAGGG repeats), the majority of TRF1-mediated telomeric DNA-DNA bridging events are transient with a lifetime of ~1.95 s. On longer DNA substrates (270 TTAGGG repeats), TIN2 forms multiprotein complexes with TRF1 and stabilizes TRF1-mediated DNA-DNA bridging events that last on the order of minutes. Preincubation of TRF1 with its regulator protein Tankyrase 1 and the cofactor NAD+ significantly reduced TRF1-TIN2 mediated DNA-DNA bridging, whereas TIN2 protected the disassembly of TRF1-TIN2 mediated DNA-DNA bridging upon Tankyrase 1 addition. Furthermore, we showed that TPP1 inhibits TRF1-TIN2L-mediated DNA-DNA bridging. Our study, together with previous findings, supports a molecular model in which protein assemblies at telomeres are heterogeneous with distinct subcomplexes and full shelterin complexes playing distinct roles in telomere protection and elongation.  相似文献   

17.
Previous studies in human cells indicate that sister telomeres have distinct requirements for their separation at mitosis. In cells depleted for tankyrase 1, a telomeric poly(ADP-ribose) polymerase, sister chromatid arms and centromeres separate normally, but telomeres remain associated and cells arrest in mitosis. Here, we use biochemical and genetic approaches to identify proteins that might mediate the persistent association at sister telomeres. We use immunoprecipitation analysis to show that the telomeric proteins, TRF1 (an acceptor of PARsylation by tankyrase 1) and TIN2 (a TRF1 binding partner) each bind to the SA1 ortholog of the cohesin Scc3 subunit. Sucrose gradient sedimentation shows that TRF1 cosediments with the SA1-cohesin complex. Depletion of the SA1 cohesin subunit or the telomeric proteins (TRF1 and TIN2) restores the normal resolution of sister telomeres in mitosis in tankyrase 1-depleted cells. Moreover, depletion of TRF1 and TIN2 or SA1 abrogates the requirement for tankyrase 1 in mitotic progression. Our studies indicate that sister telomere association in human cells is mediated by a novel association between a cohesin subunit and components of telomeric chromatin.  相似文献   

18.
To prevent ATR activation, telomeres deploy the single-stranded DNA binding activity of TPP1/POT1a. POT1a blocks the binding of RPA to telomeres, suggesting that ATR is repressed through RPA exclusion. However, comparison of the DNA binding affinities and abundance of TPP1/POT1a and RPA indicates that TPP1/POT1a by itself is unlikely to exclude RPA. We therefore analyzed the?central shelterin protein TIN2, which links TPP1/POT1a (and POT1b) to TRF1 and TRF2 on the double-stranded telomeric DNA. Upon TIN2 deletion, telomeres lost TPP1/POT1a, accumulated RPA, elicited an ATR signal, and showed all other phenotypes of POT1a/b deletion. TIN2 also affected the TRF2-dependent repression of ATM kinase signaling but not to TRF2-mediated inhibition of telomere fusions. Thus, while TIN2 has a minor contribution to the repression of ATM by TRF2, its major role is to stabilize TPP1/POT1a on the ss telomeric DNA, thereby allowing effective exclusion of RPA and repression of ATR signaling.  相似文献   

19.
《Journal of molecular biology》2019,431(17):3289-3301
Human telomeric repeat binding factors TRF1 and TRF2 along with TIN2 form the core of the shelterin complex that protects chromosome ends against unwanted end-joining and DNA repair. We applied a single-molecule approach to assess TRF1–TIN2–TRF2 complex formation in solution at physiological conditions. Fluorescence cross-correlation spectroscopy was used to describe the complex assembly by analyzing how coincident fluctuations of differently labeled TRF1 and TRF2 correlate when they move together through the confocal volume of the microscope. We observed, at the single-molecule level, that TRF1 effectively substitutes TRF2 on TIN2. We assessed also the effect of another telomeric factor TPP1 that recruits telomerase to telomeres. We found that TPP1 upon binding to TIN2 induces changes that expand TIN2 binding capacity, such that TIN2 can accommodate both TRF1 and TRF2 simultaneously. We suggest a molecular model that explains why TPP1 is essential for the stable formation of TRF1–TIN2–TRF2 core complex.  相似文献   

20.
The majority of tumor cells overcome proliferative limit by expressing telomerase. Whether or not telomerase preferentially extends the shortest telomeres is still under debate. When human cancer cells are cultured at neutral pH, telomerase extends telomeres in telomere length-independent manner. However, the microenvironment of tumor is slightly acidic, and it is not yet known how this influences telomerase action. Here, we examine telomere length homeostasis in tumor cells cultured at pHe 6.8. The results indicate that telomerase preferentially extends short telomeres, such that telomere length distribution narrows and telomeres become nearly uniform in size. After growth at pHe 6.8, the expression of telomerase, TRF1, TRF2 and TIN2 decreases, and the abundance of Cajal bodies decreases. Therefore, telomerase are insufficient for extending every telomere and shorter telomeres bearing less shelterin proteins are more accessible for telomerase recruitment. The findings support the ‘protein-counting mechanism’ in which extended and unextended state of telomere is determined by the number of associated shelterin proteins and the abundance of telomerase. Decreased expression of telomerase and preferential extension of short telomeres have important implications for tumor cell viability, and generate a strong rationale for research on telomerase-targeted anti-cancer therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号