首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli strains isolated from commercial broilers and an experimental flock of chickens were screened to determine phenotypic expression of antimicrobial resistance and carriage of drug resistance determinants. The goal of this study was to investigate the influence of oxytetracycline, sarafloxacin, and enrofloxacin administration on the distribution of resistance determinants and strain types among intestinal commensal E. coli strains isolated from broiler chickens. We detected a high prevalence of resistance to drugs such as tetracycline (36 to 97%), sulfonamides (50 to 100%), and streptomycin (53 to 100%) in E. coli isolates from treated and untreated flocks. These isolates also had a high prevalence of class 1 integron carriage, and most of them possessed the streptomycin resistance cassette, aadA1. In order to investigate the contribution of E. coli strain distribution to the prevalence of antimicrobial resistance and the resistance determinants, isolates from each flock were DNA fingerprinted by enterobacterial repetitive intergenic consensus sequence (ERIC) PCR. Although very diverse E. coli strain types were detected, four ERIC strain types were present on all of the commercial broiler farms, and two of the strains were also found in the experimental flocks. Each E. coli strain consisted of both susceptible and antimicrobial agent-resistant isolates. In some instances, isolates of the same E. coli strain expressed the same drug resistance patterns although they harbored different tet determinants or streptomycin resistance genes. Therefore, drug resistance patterns could not be explained solely by strain prevalence, indicating that mobile elements contributed significantly to the prevalence of resistance.  相似文献   

2.
The aim of this study was to characterize the genetic basis of multidrug resistance in Gram-negative bacteria isolated from bovine mastitis cases in Egypt. Multidrug resistance phenotypes were found in 34 of 112 (30.4%) Gram-negative bacterial isolates, which harbored at least one antimicrobial resistance gene. The most prevalent multidrug-resistant (MDR) species were Enterobacter cloacae (8 isolates, 7.1%), Klebsiella pneumoniae (7 isolates, 6.3%), Klebsiella oxytoca (7 isolates, 6.3%), Escherichia coli (5 isolates, 4.5%), and Citrobacter freundii (3 isolates, 2.7%). The most commonly observed resistance phenotypes were against ampicillin (97.0%), streptomycin (94.1%), tetracycline (91.2%), trimethoprim-sulfamethoxazole (88.2%), nalidixic acid (85.3%), and chloramphenicol (76.5%). Class 1 integrons were detected in 28 (25.0%) isolates. The gene cassettes within class 1 integrons included those encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA17, and dfrA25), aminoglycosides (aadA1, aadA2, aadA5, aadA7, aadA12, aadA22, and aac(3)-Id), chloramphenicol (cmlA), erythromycin (ereA2), and rifampicin (arr-3). Class 2 integrons were identified in 6 isolates (5.4%) with three different profiles. Furthermore, the β-lactamase encoding genes, bla(TEM), bla(SHV), bla(CTX-M), and bla(OXA), the plasmid-mediated quinolone resistance genes, qnr and aac(6)-Ib-cr, and the florfenicol resistance gene, floR, were also identified. To the best of our knowledge, the results identified class 2 integrons, qnr and aac(6)-Ib-cr from cases of mastitis for the first time. This is the first report of molecular characterization for antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Africa.  相似文献   

3.
A total of 50 isolates of Shiga toxin-producing Escherichia coli (STEC), including 29 O157:H7 and 21 non-O157 STEC strains, were analyzed for antimicrobial susceptibilities and the presence of class 1 integrons. Seventy-eight (n = 39) percent of the isolates exhibited resistance to two or more antimicrobial classes. Multiple resistance to streptomycin, sulfamethoxazole, and tetracycline was most often observed. Class 1 integrons were identified among nine STEC isolates, including serotypes O157:H7, O111:H11, O111:H8, O111:NM, O103:H2, O45:H2, O26:H11, and O5:NM. The majority of the amplified integron fragments were 1 kb in size with the exception of one E. coli O111:H8 isolate which possessed a 2-kb amplicon. DNA sequence analysis revealed that the integrons identified within the O111:H11, O111:NM, O45:H2, and O26:H11 isolates contained the aadA gene encoding resistance to streptomycin and spectinomycin. Integrons identified among the O157:H7 and O103:H2 isolates also possessed a similar aadA gene. However, DNA sequencing revealed only 86 and 88% homology, respectively. The 2-kb integron of the E. coli O111:H8 isolate contained three genes, dfrXII, aadA2, and a gene of unknown function, orfF, which were 86, 100, and 100% homologous, respectively, to previously reported gene cassettes identified in integrons found in Citrobacter freundii and Klebsiella pneumoniae. Furthermore, integrons identified among the O157:H7 and O111:NM strains were transferable via conjugation to another strain of E. coli O157:H7 and to several strains of Hafnia alvei. To our knowledge, this is the first report of integrons and antibiotic resistance gene cassettes in STEC, in particular E. coli O157:H7.  相似文献   

4.
To date, no information has been available on the molecular bases of antimicrobial resistance in Salmonella spp. from poultry in Egypt or even in Africa. Therefore, the objective of this study was to analyze, at the molecular level, the mechanisms of multidrug-resistance in isolates of Salmonella recovered from diseased broilers in Egypt. Twenty-one Salmonella isolates were identified; 13 of these isolates were Salmonella enterica serovar Enteritidis and eight Salmonella enterica serovar Typhimurium. 17 (81%). Salmonella isolates displayed multidrug resistance phenotypes, particularly against ampicillin, streptomycin, spectinomycin, kanamycin, tetracycline, chloramphenicol, and trimethoprim/sulfamethoxazole. PCR and DNA sequencing identified class 1 integrons in nine (42.9%) isolates and class 2 integrons in three (14.3%) isolates. The identified resistance genes within class 1 integrons were aminoglycoside adenyltransferase type A, aadA1, aadA2 and aadA5 and dihydrofolate reductase type A, dfrA1, dfrA5, dfrA12, dfrA15 and dfrA17. The β-lactamase encoding genes bla(TEM-1) and bla(CMY-2) and florfenicol resistance gene floR were also identified. Furthermore, the tetracycline resistance gene tet(A) was identified in 14 (66.7%) Salmonella isolates. To the best of our knowledge, this is the first report of the molecular basis of antimicrobial resistance in Salmonella spp. isolated from poultry in Africa.  相似文献   

5.
Sixty Gram-negative bacterial isolates were collected from Palestinian hospitals in 2006. Thirty-two (53.3%) isolates showed multidrug resistance phenotypes. PCR and DNA sequencing were used to characterize integrons and antimicrobial resistance genes. PCR screening showed that 19 (31.7%) and five (8.3%) isolates were positive for class 1 and class 2 integrons, respectively. DNA-sequencing results for the captured antimicrobial resistance gene cassettes within class 1 integrons identified the following genes: dihydrofolate reductases, dfrA1 , dfrA5 , dfrA7 , dfrA12, dfrA17 and dfrA25 ; aminoglycoside adenyltransferases, aadA1, aadA2 , aadA5, aadA12 and aadB ; aminoglycoside acetyltransferase, aac(6')-Ib ; and chloramphenicol resistance gene, cmlA1 . ESBL were identified in 25 (41.7%) isolates. The identified ESBL were bla CTX-M-15, bla CTX-M-56, bla OXA-1, bla SHV-1, bla SHV-12, bla SHV-32 and bla TEM-1 genes. Moreover, we characterized the plasmid-mediated quinolone resistance genes, aac(6')-Ib-cr and qnrB2 , which were detected in seven (11.7%) and two (3.3%) isolates, respectively. In this study various types of antibiotic resistance genes have been identified in Gram-negative bacteria from Palestinian hospitals, many of which are reported in the Middle East area for the first time.  相似文献   

6.
A class 1 integron was detected in a single multidrug-resistant strain of enterotoxigenice Escherichia coli (ETEC) O159 after examination of 23 clinical E. coli isolates. This isolate was resistant to streptomycin, kanamycin, gentamicin, chloramphenicol and ampicillin. Sequencing of the class 1 integron identified three-gene cassettes. The first is the streptothricin acetyltransferase gene, sat, which confers resistance to streptothricin. The second is an ORF whose product is a putative phosphoserine phosphatase (PSP), and the last is an aminoglycoside adenyltransferase gene, aadA2, which confers resistance to streptomycin and spectinomycin. The putative PSP gene product was found to be 39%, 38%, 28%, and 27% identical to PSP gene products of Vibrio vulnificus CMCP6, V. vulnificus YJ016, Pseudomonas syringae, and P. aeruginosa, respectively. Southern-blot hybridization showed that this integron is located on a 90 kb plasmid. This is the first report identifying a putative PSP gene in an integron.  相似文献   

7.
Nosocomial bacterial isolates collected within 2003-2004 (n=411) and 2005-2007 (n=422) were highly resistant to cephalosporins III-IV and antibacterials of other groups (aminoglycosides, fluoroquinolons, chloramphenicol, and co-trimoxazole). Genes encoding TEM, SHV, CTX-M, OXA-2, and AmpC types of beta-lactamases (BLs) in the E. coli, Klebsiella spp., and Enterobacter spp. isolates were detected using polymerase chain reaction (PCR). Prevalent CTX-M-type BLs were detected in 85% of the E. coli, 87% of the Klebsiella spp., and 38% of the Enterobacter spp. isolates of the first strain collection and in 94% of the E. coli, 91% of the Klebsiella spp., and 38% of the Enterobacter spp. isolates of the second one. Genes belonging to three subtypes of blacTx-M genes were identified: bla(CTX-M-1) (228 bla(CTX-M-15) and six bla(CTX-M-3) of the first strain collection; 275 bla(CTX-M-15), three bla(CTX-M-3), and one bla(CTX-M-22) of the second one), bla(CTX-M-2) (one bla(CTX-M-5) of the first strain collection and one bla(CTX-M-2) of the second one), bla(CTX-M-9) (17 bla(CTX-M-14) and one bla(CTX-M-9) of the first strain collection; seven bla(CTX-M-14) and one bla(CTX-M-9) of the second one). Three isolates of the first strain collection and one isolate of the second one carried two genes belonging to two different subtypes, i.e., bla(CTX-M-15) and bla(CTX-M-14) simultaneously. The bacterial isolates had high levels of associative resistance to ciprofloxacin, co-trimoxazole, gentamicin, amikacin, and chloramphenicol associated with the resistance gene cassettes aadA1, aadA2, aadA5, aadB, aacA4, aac(6')Ib; dfrA1, dfrA5, dfrA12, dfrA17, cmlA1, ereA2, and catB8 in the class 1 integrons and the resistance gene cassettes dfrA1, sat1, and aadA1 in the class 2 integrons.  相似文献   

8.
Two hundred and twenty-six Salmonella enterica serotype Typhimurium isolates were examined for the presence of integron-associated gene cassettes. All but two of the non-DT104 isolates, together with DT104 isolates, contained gene cassettes. Amplicons of 1.5 kbp each were found in two non-DT104 isolates, encoding a dhfrI gene (trimethoprim resistance) linked to an aadA gene (streptomycin and spectinomycin resistance), by site-specific recombination. DT104 isolates of resistance (R) type ACSSuT possessed the recently described 1.0- and 1.2-kbp gene cassettes. Macrorestriction analysis with XbaI and DNA probing mapped ant(3")-1a, bla(PSE-1), and dhfrI genes to large multiresistant gene clusters in a DT170a isolate and a DT193 isolate. In contrast, all DT104 isolates (R-type ACSSuT) possessed a conserved 10-kbp Xba1 DNA fragment. Our study highlights the occurrence of integrons (and antimicrobial resistance determinants) among serotype Typhimurium isolates other than DT104. Larger and previously unrecognized multiresistance gene clusters were identified in these isolates by DNA probing.  相似文献   

9.
Aims:  To investigate the prevalence of integrons and antimicrobial resistance genes in Salmonella recovered from animals in Japan.
Methods and Results:  Forty-eight out of ninety-four (51·1%) Salmonella isolates showed multidrug resistance phenotypes and harboured at least one antimicrobial resistance gene. Twenty-two out of forty-seven (46·8%) Salmonella enterica serovar Typhimurium that were multidrug-resistant were of definitive phage type DT104. Class 1 integrons were identified in 34/94 isolates (36·2%): 21 isolates containing two gene cassettes, aadA2 and bla PSE–1, and 13 containing one gene cassette, aadA1 , aadA2 or bla PSE–1. Class 2 integrons containing estX - sat2 - aadA1 gene cassettes were only identified in Salmonella Enteritidis. The β-lactamase-encoding gene, bla TEM, was only detected in S. Typhimurium. The plasmid-mediated quinolone resistance gene, qnrS1 , was identified in S. Typhimurium and Salmonella Thompson.
Conclusions:  Our results characterized integrons and antimicrobial resistance genes in Salmonella of animal origin. To the best of our knowledge, this is the first report of qnrS in Salmonella from Japan and also the first report of qnrS in S . Thompson.
Significance and Impact of the Study:  Little is known about the molecular basis of antimicrobial resistance in Salmonella isolated from animals. This study provides useful data on the incidence of integrons and resistance genes in Salmonella of animal origin.  相似文献   

10.
Enterococci were isolated from faecal droppings of chickens in broiler and layer farms and the susceptibilities to nine therapeutic antimicrobial agents and six growth-promoting antibiotics were determined by the agar dilution method. Resistance to therapeutic antimicrobial agents such as ampicillin, clindamycin, erythromycin, streptomycin, tetracycline or tylosin was more frequent in enterococcal isolates from broiler farms than in those from layer farms. Resistance to ofloxacin was rare, occurring in only one (0.7%) of the Enterococcus faecium isolates from broiler farms. Resistance to growth-promoting antibiotics such as avilamycin, salinomycin and virginiamycin was common among isolates from broiler farms. Of the E. faecium isolates from broiler farms, 12.4% were resistant to avilamycin and 27.4% were resistant to virginiamycin. Resistance to salinomycin was detected in all enterococcal species, ranging from 12.4% of E. faecium isolates to 50% of E. hirae isolates.  相似文献   

11.
12.
Healthy calves (n = 96, 1 to 9 weeks old) from a dairy herd in central Pennsylvania were examined each month over a five-month period for fecal shedding of ceftiofur-resistant gram-negative bacteria. Ceftiofur-resistant Escherichia coli isolates (n = 122) were characterized by antimicrobial resistance (disk diffusion and MIC), serotype, pulsed-field gel electrophoresis subtypes, beta-lactamase genes, and virulence genes. Antibiotic disk diffusion assays showed that the isolates were resistant to ampicillin (100%), ceftiofur (100%), chloramphenicol (94%), florfenicol (93%), gentamicin (89%), spectinomycin (72%), tetracycline (98%), ticarcillin (99%), and ticarcillin-clavulanic acid (99%). All isolates were multidrug resistant and displayed elevated MICs. The E. coli isolates belonged to 42 serotypes, of which O8:H25 was the predominant serotype (49.2%). Pulsed-field gel electrophoresis classified the E. coli isolates into 27 profiles. Cluster analysis showed that 77 isolates (63.1%) belonged to one unique group. The prevalence of pathogenic E. coli was low (8%). A total of 117 ceftiofur-resistant E. coli isolates (96%) possessed the bla(CMY2) gene. Based on phenotypic and genotypic characterization, the ceftiofur-resistant E. coli isolates belonged to 59 clonal types. There was no significant relationship between calf age and clonal type. The findings of this study revealed that healthy dairy calves were rapidly colonized by antibiotic-resistant strains of E. coli shortly after birth. The high prevalence of multidrug-resistant nonpathogenic E. coli in calves could be a significant source of resistance genes to other bacteria that share the same environment.  相似文献   

13.
Escherichia coli isolates were recovered from the National Antimicrobial Resistance Monitoring System retail meat program and examined for antimicrobial susceptibility. Retail meat samples (n = 11,921) from four U.S. states collected during 2002 to 2008, consisting of 2,988 chicken breast, 2,942 ground turkey, 2,991 ground beef, and 3,000 pork chop samples, were analyzed. A total of 8,286 E. coli isolates were recovered. The greatest numbers of samples contaminated with the organism were chicken (83.5%) and turkey (82.0%), followed by beef (68.9%) and pork (44.0%). Resistance was most common to tetracycline (50.3%), followed by streptomycin (34.6%), sulfamethoxazole-sulfisoxazole (31.6%), ampicillin (22.5%), gentamicin (18.6%), kanamycin (8.4%), amoxicillin-clavulanic acid (6.4%), and cefoxitin (5.2%). Less than 5% of the isolates had resistance to trimethoprim, ceftriaxone, ceftiofur, nalidixic acid, chloramphenicol, and ciprofloxacin. All isolates were susceptible to amikacin. Compared to beef and pork isolates, the poultry meat isolates had a greater percentage of resistance to all tested drugs, with the exception of chloramphenicol, to which pork isolates had the most resistance. More than half of the turkey isolates (56%) were resistant to multidrugs (≥3 classes) compared to 38.9% of chicken, 17.3% of pork, and 9.3% of beef isolates. The bla(CMY) gene was present in all ceftriaxone- and ceftiofur-resistant isolates. The cmlA, flo, and catI genes were present in 45%, 43%, and 40% of chloramphenicol-resistant isolates, respectively. Most nalidixic acid-resistant isolates (98.5%) had a gyrA mutation in S83 or D87 or both, whereas only 6.7% had a parC mutation in either S80 or E84. The results showed that E. coli was commonly present in the retail meats, and antimicrobial resistance profiles differed according to the animal origin of the isolates.  相似文献   

14.
Enterococci are now frequent causative agents of nosocomial infections. In this study, we analyzed the frequency and distribution of antibiotic resistance and virulence genotypes of Enterococcus isolates from broiler chickens. Fecal and cecal samples from nine commercial poultry farms were collected to quantify total enterococci. Sixty-nine presumptive enterococci were isolated and identified by API 20 Strep, and their susceptibilities to antibiotics were determined. Genotypes were assessed through the use of a novel DNA microarray carrying 70 taxonomic, 17 virulence, and 174 antibiotic resistance gene probes. Total enterococcal counts were different from farm to farm and between sample sources (P < 0.01). Fifty-one (74%) of the isolates were identified as E. faecium, whereas nine (13%), seven (10%), and two (3%) isolates were identified as E. hirae, E. faecalis, and E. gallinarum, respectively. Multiple-antibiotic resistance was evident in E. faecium and E. faecalis isolates. The most common multiple-antibiotic resistance phenotype was Bac Ery Tyl Lin Str Gen Tet Cip. Genes conferring resistance to aminoglycoside (aac, aacA-aphD, aadB, aphA, sat4), macrolide (ermA, ermB, ermAM, msrC), tetracycline (tetL, tetM, tetO), streptogramin (satG_vatE8), bacitracin (bcrR), and lincosamide (linB) antibiotics were detected in corresponding phenotypes. A range of 9 to 12 different virulence genes was found in E. faecalis, including ace, agg, agrB(Efs) (agrB gene of E. faecalis), cad1, the cAM373 and cCF10 genes, cob, cpd1, cylAB, efaA(Efs), and gelE. All seven E. faecalis isolates were found to carry the gelE gene and to hydrolize gelatin and bile salts. Results from this study showed the presence of enterococci of public and environmental health concerns in broiler chicken farms and demonstrated the utility of a microarray to quickly and reliably analyze resistance and virulence genotypes of Enterococcus spp.  相似文献   

15.
Nine hundred and forty‐one samples were collected in Sa Keao, Thailand (n = 554) and Banteay Meanchey, Cambodia (n = 387) from July 2014 to January 2015. A total of 667 Escherichia coli isolates (381 isolates from Sa Keao and 286 isolates from Banteay Meanchey) were obtained and examined for antimicrobial susceptibility, class 1 integrons, ESBL genes and horizontal transfer of resistance determinants. Prevalence of E. coli in pig and broiler carcass samples from slaughterhouses and fresh markets was 36–85% in Sa Keao and 11–69% in Banteay Meanchey. The majority of these isolates were multidrug resistant (75.3%). Class 1 integrons were common in both Thai (47%) and Cambodian (62%) isolates, of which four resistance gene cassette arrays including aadA1, dfrA1‐aadA1, dfrA12‐aadA2 and aadA2‐linF were identified. Class 1 integrons in two broiler isolates from Sa Keao (dfrA12‐aadA2) and one broiler isolate from Banteay Meanchey (dfrA1‐aadA1) were horizontally transferable. Sixteen isolates were confirmed to be ESBL‐producing strains with ESBL gene blaCTX‐M‐15, broad spectrum β‐lactamase gene blaTEM‐1 and the AmpC gene blaCMY‐2 being detected. The blaTEM‐1 gene was most prevalent and located on a conjugative plasmid.  相似文献   

16.
Aims:  To detect antimicrobial resistance genes in Salmonella isolates from turkey flocks using the microarray technology.
Methods and Results:  A 775 gene probe oligonucleotide microarray was used to detect antimicrobial resistance genes in 34 isolates. All tetracycline-resistant Salmonella harboured tet(A) , tet(C) or tet(R) , with the exception of one Salmonella serotype Heidelberg isolate. The sul1 gene was detected in 11 of 16 sulfisoxazole-resistant isolates. The aadA , aadA1 , aadA2 , strA or strB genes were found in aminoglycoside-resistant isolates of Salm. Heidelberg, Salmonella serotype Senftenberg and untypeable Salmonella . The prevalence of mobile genetic elements, such as class I integron and transposon genes, in drug-resistant Salmonella isolates suggested that these elements may contribute to the dissemination of antimicrobial resistance genes in the preharvest poultry environment. Hierarchical clustering analysis demonstrated a close relationship between drug-resistant phenotypes and the corresponding antimicrobial resistance gene profiles.
Conclusions:  Salmonella serotypes isolated from the poultry environment carry multiple genes that can render them resistant to several antimicrobials used in poultry and humans.
Significance and Impact of the Study:  Multiple antimicrobial resistance genes in environmental Salmonella isolates could be identified efficiently by microarray analysis. Hierarchical clustering analysis of the data was also found to be a useful tool for analysing emerging patterns of drug resistance.  相似文献   

17.
The objective of this study was to characterize antimicrobial resistance and virulence determinants of Escherichia coli from soil amended with litter from 36-day-old broiler chickens ( Gallus gallus domesticus ) fed with diets supplemented with a variety of antimicrobial agents. Soil samples were collected from plots before and periodically after litter application in August to measure E. coli numbers. A total of 295 E.?coli were isolated from fertilized soil samples between August and March. Antibiotic susceptibility was determined by Sensititre, and polymerase chain reaction was performed to detect the presence of resistance and virulence genes. The results confirmed that E.?coli survived and could be quantified by direct plate count for at least 7 months in soil following litter application in August. The effects of feed supplementation were observed on E.?coli numbers in November and January. Among the 295 E.?coli, the highest antibiotic resistance level was observed against tetracycline and β-lactams associated mainly with the resistance genes tetB and bla(CMY-2), respectively. Significant treatment effects were observed for phylogenetic groups, antibiotic resistance profiles, and virulence gene frequencies. Serotyping, phylogenetic grouping, and pulsed-field gel electrophoresis confirmed that multiple-antibiotic-resistant and potentially pathogenic E.?coli can survive in soil fertilized with litter for several months regardless of antimicrobials used in the feed.  相似文献   

18.
A total of 66 Shigella sonnei isolates from 1999 to 2008 in Seoul was analyzed for their antimicrobial resistance, carriage of integron, and the patterns of Pulsed-field gel electrophoresis (PFGE). A high level of antimicrobial resistance to streptomycin (100%), trimethoprim/sulfamethoxazole (95%), tetracycline (94%), nalidixic acid (65%), and ampicillin (41%) was observed among S. sonnei isolates. Fourteen profiles of antimicrobial resistance were identified with the most common resistance profile being nalidixic acid, streptomycin, tetracycline, and trimethoprim/sulfamethoxazole (35%). PCR and DNA sequencing analysis revealed the presence of class 2 integron in all isolates, and class 1 and 2 integrons in 7 isolates. The class 2 integron carried two types of gene cassettes. One cassette array was dfrI, sat2, and aadA1 (91%), and the other was dfr1 and sat1 (8%). dfrA12 and aadA2 gene cassette was found in one isolate containing class 1 integron. PFGE was carried out to examine the genetic relatedness among isolates. All isolates except for one showed similar PFGE patterns (similarity of 80.1%). These results suggest that the S. sonnei isolated during 1999–2008 in Seoul have similar lineages that have not undergone evolutionary changes with time.  相似文献   

19.
Characterisation of two new gene cassettes, aadA5 and dfrA17   总被引:8,自引:0,他引:8  
Escherichia coli INS33 was isolated from the urinary tract of an infected patient. It was resistant to ampicillin, chloramphenicol, spectinomycin, streptomycin, sulfafurazole, tetracycline and trimethoprim. PCR screening revealed the presence of a class 1 integron that harboured two new gene cassettes, designated dfrA17 and aadA5. The new dfrA17 cassette was 91% identical to the known dfrA7 cassette. The aadA5 cassette was 95% identical over the first 830 bp to aadA4, but lacked the IS26 element found at the 3' end of this truncated cassette. Cloning and expression of the cassette region demonstrated that dfrA17 conferred high level resistance to trimethoprim but aadA5 conferred resistance to spectinomycin but not to streptomycin.  相似文献   

20.
The objective of this study was to examine associations among the genetic determinants of antimicrobial resistance (AMR) in 207 fecal generic Escherichia coli isolates obtained from 77 cow-calf herds in western Canada. Twenty-three resistance genes corresponding to six different antimicrobial families were assessed using DNA hybridization and PCR. The most common resistance genes in the study sample (207 isolates) were sul2 (48.3%), tet(B) (45.4%), and ant(3')-Ia (aadA1) (19.3%). Several statistically significant associations between the examined resistance genes were detected. The strongest associations observed were those between genes for resistance to chloramphenicol (catI) and trimethoprim (dhfrI) (odds ratio [OR] = 214; P = 0.0001), sulfonamide (sul1) and chloramphenicol (catI) (OR = 96.9; P = 0.0001), streptomycin [ant(3')-Ia (aadA1)] and trimethoprim (dhfrI) (OR = 96.2; P = 0.0001), sulfonamide (sul1) and streptomycin [ant(3')-Ia (aadA1)] (OR = 79.3; P = 0.0001), and tetracycline [tet(B)] and sulfonamides (sul2) (OR = 25.7; P = 0.0001). At least one of the resistance genes corresponding to each nonaminoglycoside family of antimicrobials examined in this study was associated with the two aminoglycoside resistance genes ant(3')-Ia (aadA1) and aph(3')-Ia. The multiple, strong associations between genes and the diverse nature of the associations described in this study demonstrate the complexity of resistance gene selection in cow-calf herds and should be considered in the planning of AMR control practices for cow-calf operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号