首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neuroendocrine hypothalamus regulates a number of critical biological processes and underlies a range of diseases from growth failure to obesity. Although the elucidation of hypothalamic function has progressed well, knowledge of hypothalamic development is poor. In particular, little is known about the processes underlying the neurogenesis and specification of neurons of the ventral nuclei, the arcuate and ventromedial nuclei. The proneural gene Mash1 is expressed throughout the basal retrochiasmatic neuroepithelium and loss of Mash1 results in hypoplasia of both the arcuate and ventromedial nuclei. These defects are due to a failure of neurogenesis and apoptosis, a defect that can be rescued by ectopic Ngn2 under the control of the Mash1 promoter. In addition to its role in neurogenesis, analysis of Mash1(-/-), Mash1(+/-), Mash1(KINgn2/KINgn2), and Mash1(KINgn2/+) mice demonstrates that Mash1 is specifically required for Gsh1 expression and subsequent GHRH expression, positively regulates SF1 expression, and suppresses both tyrosine hydroxylase (TH) and neuropeptide Y (NPY) expression. Although Mash1 is not required for propiomelanocortin (POMC) expression, it is required for normal development of POMC(+) neurons. These data demonstrate that Mash1 is both required for the generation of ventral neuroendocrine neurons as well as playing a central role in subtype specification of these neurons.  相似文献   

2.
The gastrointestinal peptide hormone ghrelin stimulates appetite in rodents and humans via hypothalamic actions. We discovered expression of ghrelin in a previously uncharacterized group of neurons adjacent to the third ventricle between the dorsal, ventral, paraventricular, and arcuate hypothalamic nuclei. These neurons send efferents onto key hypothalamic circuits, including those producing neuropeptide Y (NPY), Agouti-related protein (AGRP), proopiomelanocortin (POMC) products, and corticotropin-releasing hormone (CRH). Within the hypothalamus, ghrelin bound mostly on presynaptic terminals of NPY neurons. Using electrophysiological recordings, we found that ghrelin stimulated the activity of arcuate NPY neurons and mimicked the effect of NPY in the paraventricular nucleus of the hypothalamus (PVH). We propose that at these sites, release of ghrelin may stimulate the release of orexigenic peptides and neurotransmitters, thus representing a novel regulatory circuit controlling energy homeostasis.  相似文献   

3.
4.
Mice deficient in neurogenin 3 (Ngn3) fail to generate pancreatic endocrine cells and intestinal endocrine cells. Hypothalamic neuropeptides implicated in the control of energy homeostasis might also be affected in Ngn3 homozygous null mutant mice. We investigated the expression of two prominent orexigenic neuropeptides, neuropeptide Y (NPY) and agouti-related protein (AgRP), in the hypothalamic arcuate nucleus of newborn wild-type and Ngn3 null mutant mice. Immunohistochemical analysis demonstrated that, in Ngn3 null mutants, the number of NPY-immunoreactive neurons and nerve fibers was markedly increased in the arcuate nucleus, and the nerve fibers were widely distributed in the hypothalamic area, including the paraventricular and dorsomedial nuclei. Little increase of AgRP immunoreactivity was detected in the arcuate nucleus of mutant mice. In situ hybridization analysis confirmed the increased population of the NPY neurons in the arcuate nucleus of the mutants. The NPY mRNA level, as estimated by laser capture microdissection and real-time quantitative polymerase chain reaction, was 371% higher in Ngn3 null mutants than in wild-type mice. AgRP mRNA levels did not differ significantly between the null mutants and wild-type mice. Thus, up-regulation of the hypothalamic NPY system is probably a feature characteristic of Ngn3 null mice.  相似文献   

5.
Cre‐loxP technology enables specific examination of the function and development of individual nuclei in the complex brain network. However, for most brain regions, the utilization of this technique has been hindered by the lack of mouse lines with Cre expression restricted to these regions. Here, we identified brain expressions of three transgenic Cre lines previously thought to be pancreas‐specific. Cre expression driven by the rat‐insulin promoter (Rip‐Cre) was found mainly in the arcuate nucleus, and to a lesser degree in other hypothalamic regions. Cre expression driven by the neurogenin 3 promoter (Ngn3‐Cre mice) was found in the ventromedial hypothalamus. Cre expression driven by the pancreas‐duodenum homeobox 1 promoter (Pdx1‐Cre) was found in several hypothalamic nuclei, the dorsal raphe and inferior olivary nuclei. Interestingly, Pdx1‐Cre mediated deletion of vesicular GABA transporter led to postnatal growth retardation while Ngn3‐Cre mediated deletion had no effects, suggesting a role for Pdx1‐Cre neurons, but not pancreas, in the regulation of postnatal growth. These results demonstrate the potential for these Cre lines to study the function and development of brain neurons. genesis 48:628–634, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
《FEBS letters》2014,588(23):4404-4412
Intracerebroventricular injection of oxytocin (Oxt), a neuropeptide produced in hypothalamic paraventricular (PVN) and supraoptic nuclei (SON), melanocortin-dependently suppresses feeding. However, the underlying neuronal pathway is unclear. This study aimed to determine whether Oxt regulates propiomelanocortin (POMC) neurons in the arcuate nucleus (ARC) of the hypothalamus. Intra-ARC injection of Oxt decreased food intake. Oxt increased cytosolic Ca2+ in POMC neurons isolated from ARC. ARC POMC neurons expressed Oxt receptors and were contacted by Oxt terminals. Retrograde tracer study revealed the projection of PVN and SON Oxt neurons to ARC. These results demonstrate the novel oxytocinergic signaling from PVN/SON to ARC POMC, possibly regulating feeding.  相似文献   

7.
Roseberry AG  Liu H  Jackson AC  Cai X  Friedman JM 《Neuron》2004,41(5):711-722
NPY and alphaMSH are expressed in distinct neurons in the arcuate nucleus of the hypothalamus, where alphaMSH decreases and NPY increases food intake and body weight. Here we use patch-clamp electrophysiology from GFP-labeled POMC and NPY neurons to demonstrate that NPY strongly hyperpolarized POMC neurons through the Y1R-mediated activation of GIRK channels, while the alphaMSH analog, MTII, had no effect on activity of NPY neurons. While initially NPY had similar effects on POMC neurons derived from ob/ob mice, further studies revealed a significant increase in desensitization of the NPY-induced currents in POMC neurons from ob/ob mice. This increase in desensitization was specific to NPY, as GABA(B) and microOR agonists showed unaltered desensitization in POMC neurons from ob/ob mice. These data reveal an intricate and asymmetric interplay between NPY and POMC neurons in the hypothalamus and have important implications for the delineation of the neural circuits that regulate feeding behavior.  相似文献   

8.
Recent studies have reinforced the view that the lateral hypothalamic area (LHA) regulates food intake and body weight. We identified leptin-sensitive neurons in the arcuate nucleus of the hypothalamus (Arc) that innervate the LHA using retrograde tracing with leptin administration. We found that retrogradely labeled cells in the Arc contained neuropeptide Y (NPY) mRNA or proopiomelanocortin (POMC) mRNA. Following leptin administration, NPY cells in the Arc did not express Fos but expressed suppressor of cytokine signaling-3 (SOCS-3) mRNA. In contrast, leptin induced both Fos and SOCS-3 expression in POMC neurons, many of which also innervated the LHA. These findings suggest that leptin directly and differentially engages NPY and POMC neurons that project to the LHA, linking circulating leptin and neurons that regulate feeding behavior and body weight homeostasis.  相似文献   

9.
Reduced leptin (Ob protein) signaling is proposed to be a stimulus for the activation of neuropeptide Y (NPY) gene activity and increased expression of mRNA for the long form of the leptin receptor (Ob-Rb) in the hypothalamic arcuate nucleus. To determine if Ob-Rb protein is expressed in arcuate nucleus NPY neurons, we developed an affinity-purified polyclonal antibody against amino acids 956-1102 of human Ob-Rb. This antibody specifically recognizes the cytoplasmic tail of Ob-Rb and does not react with shorter leptin-receptor variants. Western immunoblots of Ob-Rb-transfected COS cells showed a single 150-kD band, and immunofluorescence revealed intense perinuclear staining in the cytoplasm. A 150-kD band was also present in Western immunoblots of hypothalamus. Immunocytochemical staining of brain slices revealed immunoreactive Ob-Rb protein concentrated in many neuronal cell bodies in the same regions of the forebrain that also express Ob-Rb mRNA. In the hypothalamus, Ob-Rb-positive cell bodies were abundant in the arcuate nucleus and ventromedial nucleus, with lesser numbers in the dorsomedial nucleus and paraventricular nucleus. Immunostaining was also detected in cell bodies of pyramidal cell neurons of the pyriform cortex and cerebral cortex, in neurons of the thalamus, and on the surface of ependymal cells lining the third ventricle. The choroid plexus, which expresses the short Ob-Ra form, was negative. Combined immunocytochemistry for Ob-Rb protein and fluorescence in situ hybridization for NPY mRNA identified arcuate nucleus neurons containing both NPY mRNA and Ob-Rb protein. The present finding of Ob-Rb protein in neurons that express NPY mRNA supports the hypothesis that arcuate nucleus NPY neurons are direct targets of leptin and play an important role in regulation of food intake and body weight.  相似文献   

10.
Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP)/Neuropeptide Y (NPY)/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb). Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM), confocal-laser scanning microscopy (CLSM), and electron microscopy (EM) to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb +/+ mice and in Leprb db/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin’s central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms.  相似文献   

11.
Although acute food deprivation and chronic food restriction both result in body weight loss, they produce different metabolic states. To evaluate how these two treatments affect hypothalamic peptide systems involved in energy homeostasis, we compared patterns of hypothalamic neuropeptide Y (NPY), agouti-related protein (AgRP), proopiomelanocotin (POMC), and leptin receptor gene expression in acutely food-deprived and chronically food-restricted rats. Both acute food deprivation and chronic food restriction reduced body weight and circulating leptin levels and resulted in increased arcuate NPY and decreased arcuate POMC gene expression. Arcuate AgRP mRNA levels were only elevated in acutely deprived rats. NPY gene expression was increased in the compact subregion of the dorsomedial hypothalamus (DMH) in response to chronic food restriction, but not in response to acute food deprivation. Leptin receptor expression was not affected by either treatment. Double in situ hybridization histochemistry revealed that, in contrast to the situation in the arcuate nucleus, NPY and leptin receptor mRNA-expressing neurons were not colocalized in the DMH. Together, these data suggest that arcuate and DMH NPY gene expression are differentially regulated. DMH NPY-expressing neurons do not appear to be under the direct control of leptin signaling.  相似文献   

12.
13.
14.
15.
S A Joseph  G J Michael 《Peptides》1988,9(1):193-201
The distribution of opiocortin (OR-ir) immunoreactive fibers was examined immunocytochemically throughout the brain in rats following surgical isolation of the arcuate opiocortin-ir neuronal pool in the medial basal hypothalamus (MBH). Fibers which emanate from this pool were completely severed and thus eliminated from the rest of the brain, leaving intact those which can be identified immunocytochemically as opiocortin-ir projections from the medullary pool located in the nucleus tractus solitarius (NTS). These studies reveal a unique organizational pattern of proopiomelanocortin (POMC) peptidergic neuronal systems and demonstrate that several pontine and medullary regions receive projections from both the hypothalamic (arcuate) and medullary (NTS) opiocortin-ir perikarya. Comparative analyses of deafferented and control brains reveal that certain brainstem autonomic centers such as parabrachial (PB), locus coeruleus (LC), nucleus paragiganticellularis (PGi) are recipients of fibers which emanate from both arcuate and NTS opiocortin-ir perikarya. Areas which receive projections from arcuate opiocortin-ir neurons alone include forebrain and hypothalamic nuclei as well as the periaqueductal grey.  相似文献   

16.
Neuronal networks originating in the hypothalamic arcuate nucleus (Arc) play a fundamental role in controlling energy balance. In the Arc, neuropeptide Y (NPY)-producing neurons stimulate food intake, whereas neurons releasing the proopiomelanocortin (POMC)-derived peptide α-melanocyte-stimulating hormone (α-MSH) strongly decrease food intake. There is growing evidence to suggest that apelin and its receptor may play a role in the central control of food intake, and both are concentrated in the Arc. We investigated the presence of apelin and its receptor in Arc NPY- and POMC-containing neurons and the effects of apelin on α-MSH release in the hypothalamus. We showed, by immunofluorescence and confocal microscopy, that apelin-immunoreactive (IR) neuronal cell bodies were distributed throughout the rostrocaudal extent of the Arc and that apelin was strongly colocalized with POMC, but weakly colocalized with NPY. However, there were numerous NPY-IR nerve fibers close to the apelin-IR neuronal cell bodies. By combining in situ hybridization with immunohistochemistry, we demonstrated the presence of apelin receptor mRNA in Arc POMC neurons. Moreover, using a perifusion technique for hypothalamic explants, we demonstrated that apelin-17 (K17F) increased α-MSH release, suggesting that apelin released somato-dendritically or axonally from POMC neurons may stimulate α-MSH release in an autocrine manner. Consistent with these data, hypothalamic apelin levels were found to be higher in obese db/db mice and fa/fa Zucker rats than in wild-type animals. These findings support the hypothesis that central apelin is involved in regulating body weight and feeding behavior through the direct stimulation of α-MSH release.  相似文献   

17.
Jong-Woo Sohn 《BMB reports》2015,48(4):229-233
The central nervous system (CNS) controls food intake and energy expenditure via tight coordinations between multiple neuronal populations. Specifically, two distinct neuronal populations exist in the arcuate nucleus of hypothalamus (ARH): the anorexigenic (appetite-suppressing) pro-opiomelanocortin (POMC) neurons and the orexigenic (appetite-increasing) neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. The coordinated regulation of neuronal circuit involving these neurons is essential in properly maintaining energy balance, and any disturbance therein may result in hyperphagia/obesity or hypophagia/starvation. Thus, adequate knowledge of the POMC and NPY/AgRP neuron physiology is mandatory to understand the pathophysiology of obesity and related metabolic diseases. This review will discuss the history and recent updates on the POMC and NPY/AgRP neuronal circuits, as well as the general anorexigenic and orexigenic circuits in the CNS. [BMB Reports 2015; 48(4): 229-233]  相似文献   

18.

Background

Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear.

Methodology/Principal Findings

We thus generated two conditional knockout mouse models, Y2lox/lox and NPYCre/+;Y2lox/lox, in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver cartinine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons.

Conclusions/Significance

Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus, reducing lipogenic pathways in liver and/or skeletal muscle in females. These data also reveal as an anti-osteogenic effect of Y2 receptors on hypothalamic NPY-expressing neurons on trabecular but not on cortical bone.  相似文献   

19.
Parkinson's Disease (PD) is a debilitating motor function disorder due primarily to a loss of midbrain dopaminergic neurons and a subsequent reduction in dopaminergic innervation of the striatum. Several attempts have been made to generate dopaminergic neurons from progenitor cell populations in vitro for potential use in cell replacement therapy for PD. However, expanding cells from fetal brain with retained potential for dopaminergic differentiation has proven to be difficult. In this study, we sought to generate mesencephalic dopaminergic (mesDA) neurons from an expanded population of fetal mouse ventral midbrain (VM) progenitors through the use of retroviral gene delivery. We over-expressed Ngn2 and Nurr1, two genes present in the ventral midbrain and important for normal development of mesDA neurons, in multi-passaged neurosphere-expanded midbrain progenitors. We show that over-expression of Ngn2 in these progenitors results in increased neuronal differentiation but does not promote mesDA formation. We also show that over-expression of Nurr1 alone is sufficient to generate tyrosine hydroxylase (TH) expressing cells with an immature morphology, however the cells do not express any additional markers of mesDA neurons. Over-expression of Nurr1 and Ngn2 in combination generates morphologically mature TH-expressing neurons that also express additional mesencephalic markers.  相似文献   

20.
近年来,因肥胖症所造成的社会问题和医疗负担越发严重。肥胖主要是由于机体能量的摄入与消耗不平衡所致,而中枢神经系统以及相关神经元在机体能量代谢平衡的调控中发挥着重要作用。下丘脑弓状核含有抑食性阿黑皮素原(Proopiomelanocortin,POMC)神经元和促食性神经肽Y (Neuropeptid Y,NPY)/刺鼠相关蛋白(Agouti-related protein,AgRP)神经元,是调控机体摄食行为的主要神经元。研究显示,高脂饮食会诱导POMC神经元中的Rb蛋白发生磷酸化修饰并失活,导致POMC神经元从静息状态重新进入细胞周期循环,进而迅速转向细胞凋亡。高脂饮食也会引起神经元再生抑制,并诱导炎症发生和神经元损伤,使神经元稳态失衡,引发瘦素抵抗,最终导致肥胖症的发生。文中就神经元稳态失衡以及肥胖症等疾病之间的关系进行了综述,希望能为饮食诱导肥胖症等疾病的治疗和预防提供新的方向和思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号