首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
A novel inhibitor for the adhesion of monocytes to cytokine-stimulated endothelial cells, K-7174, was selected by an assay system using the cultured human monocytic cells and human endothelial cells. K-7174 inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1) induced by either tumor necrosis factor alpha or interleukin-1beta, without affecting the induction of intercellular adhesion molecule-1 or E-selectin. K-7174 had no effect on the stability of VCAM-1 mRNA. Electrophoretic mobility shift assay revealed that its inhibitory effect on VCAM-1 induction was mediated by an effect on the binding to the GATA motifs in the VCAM-1 gene promoter region. K-7174 did not influence the binding to any of the following binding motifs: octamer binding protein, AP-1, SP-1, ets, NFkappaB, or interferon regulatory factor. These results suggest that the regulation of GATA binding may become a new target for anti-inflammatory drug development, acting through a mechanism independent from NFkappaB activity.  相似文献   

3.
Activation and dysfunction of the endothelium underlie many vascular disorders including atherosclerosis, tumor growth, and inflammation. We recently reported that thrombin and vascular endothelial growth factor, but not tumor necrosis factor-alpha, results in dramatic up-regulation of Down syndrome critical region (DSCR)-1 gene in endothelial cells, a negative feedback regulator of calcineurin-NFAT signaling. Constitutive expression of DSCR-1 in activated endothelial cells markedly impaired NFAT nuclear localization, proliferation, tube formation, and tumor growth. The goal of the present study was to elucidate the relative roles of NFAT/DSCR-1 and NF-kappaB/I-kappaB in mediating thrombin-responsive gene expression in endothelial cells. DNA microarrays of thrombin-treated human umbilical vein endothelial cells overexpressing DSCR-1 or constitutive active IkappaBalpha revealed genes that were dependent on NFAT and/or NF-kappaB activity. Vascular cell adhesion molecule-1 was inhibited both by DSCR-1 and I-kappaB at the level of mRNA, protein, promoter activity, and function (monocyte adhesion). Using a combination of transient transfections, electrophoretic mobility shift assays, and chromatin immunoprecipitation, thrombin was shown to induce time-dependent coordinate binding of RelA and NFATc to a tandem NF-kappaB element in the upstream promoter region of vascular cell adhesion molecule-1. Together, these findings suggest that thrombin-mediated activation of endothelial cells involves an interplay between NFAT and NF-kappaB signaling pathways and their negative feedback inhibitors, DSCR-1 and I-kappaB, respectively. As natural brakes in the inflammatory process, DSCR-1 and I-kappaB may lend themselves to therapeutic manipulation in vasculopathic disease states.  相似文献   

4.
Enterovirus 71 (EV71) is a widespread virus that causes severe and fatal diseases in patients, including circulation failure. The mechanisms underlying EV71-initiated intracellular signaling pathways to influence host cell functions remain unknown. In this study, we identified a requirement for PDGFR, PI3-K/Akt, p38 MAPK, JNK, and NF-kappaB in the regulation of VCAM-1 expression by rat vascular smooth muscle cells (VSMCs) in response to viral infection. EV71 induced VCAM-1 expression in a time- and viral concentration-dependent manner. Infection of VSMCs with EV71 stimulated VCAM-1 expression and phosphorylation of PDGFR, Akt, and p38 MAPK which were attenuated by AG1296, wortmannin, and SB202190, respectively. The phosphorylation of JNK stimulated by EV71 was not detected under present conditions. In contrast, JNK inhibitor SP600125 inhibited EV71-induced VCAM-1 expression. Furthermore, VCAM-1 expression induced by EV71 was significantly attenuated by a selective NF-kappaB inhibitor (helenalin). Consistently, EV71-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha as well as VCAM-1 mRNA expression was blocked by helenalin, AG1296, SB202190, SP600125, wortmannin, and LY294002. Moreover, the involvement of p38 MAPK, PI3-K/Akt, and NF-kappaB in EV71-induced VCAM-1 expression was reveled by that transfection with dominant negative plasmids of p38 MAPK, p85, Akt, NIK, IKK-alpha, and IKK-beta attenuated these responses. These findings suggest that in VSMCs, EV71-induced VCAM-1 expression was mediated through activation of PDGFR, PI3-K/Akt, p38 MAPK, JNK, and NF-kappaB pathways.  相似文献   

5.
6.
Alzheimer's disease is characterized by numerous amyloid-beta peptide (Abeta) plaques surrounded by microglia. Here we report that Abeta induces the proliferation of the mouse microglial cell line Ra2 by increasing the expression of macrophage colony-stimulating factor (M-CSF). We examined signal cascades for Abeta-induced M-CSF mRNA expression. The induction of M-CSF was blocked by a phosphatidylinositol 3 kinase (PI3-kinase) inhibitor (LY294002), a Src family tyrosine kinase inhibitor (PP1) and an Akt inhibitor. Electrophoretic mobility shift assays showed that Abeta enhanced NF-kappaB binding activity to the NF-kappaB site of the mouse M-CSF promoter, which was blocked by LY294002. These results indicate that Abeta induces M-CSF mRNA expression via the PI3-kinase/Akt/NF-kappaB pathway.  相似文献   

7.
Among matrix metalloproteinases (MMPs), MMP-9 has been observed in patients with brain inflammatory diseases and may contribute to the pathology of brain diseases. Thrombin has been known as a regulator of MMP-9 expression and cells migration. However, the mechanisms underlying thrombin-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) were not completely understood. Here, we demonstrated that thrombin induced the expression of pro-form MMP-9 in RBA-1 cells and cells migration which were attenuated by pretreatment with the inhibitor of receptor tyrosine kinase (Genistein), c-Src (PP1), Jak2 (AG490), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), PKCs (Ro318220), PKCδ (Rottlerin), or NF-κB (Bay11-7082) and transfection with siRNA of c-Src, PDGFR, Akt, PKCδ, ATF2, p65, IKKα, or IKKβ. In addition, thrombin-stimulated c-Src, Jak2, or PDGFR phosphorylation was inhibited by a thrombin inhibitor (PPACK), PP1, AG490, or AG1296. Thrombin further stimulated c-Src and PDGFR complex formation in RBA-1 cells. Thrombin also stimulated Akt and PKCδ phosphorylation and PKCδ translocation which were reduced by PPACK, PP1, AG490, AG1296, or LY294002. We further observed that thrombin markedly stimulated ATF2 or IκBα phosphorylation and NF-κB p65 translocation which were inhibited by Rottlerin or LY294002. Finally, thrombin stimulated in vivo binding of p65 to the MMP-9 promoter, which was reduced by pretreatment with Rottlerin or LY294002. These results concluded that in RBA-1 cells, thrombin activated a c-Src/Jak2/PDGFR/PI3K/Akt/PKCδ pathway, which in turn triggered ATF2 and NF-κB activation and ultimately induced MMP-9 expression associated with cell migration.  相似文献   

8.
Hyperhomocysteinemia is a recognized risk factor for vascular disease, but pathogenetic mechanisms involved in its vascular actions are largely unknown. Because VCAM-1 expression is crucial in monocyte adhesion and early atherogenesis, we evaluated the NF-kappaB-related induction of VCAM-1 by homocysteine (Hcy) and the possible inhibitory effect of dietary polyphenolic antioxidants, such as trans-resveratrol (RSV) and hydroxytyrosol (HT), which are known inhibitors of NF-kappaB-mediated VCAM-1 induction. In human umbilical vein endothelial cells (HUVEC), Hcy, at 100 micromol/l, but not cysteine, induced VCAM-1 expression at the protein and mRNA levels, as shown by enzyme immunoassay and Northern analysis, respectively. Transfection studies with deletional VCAM-1 promoter constructs demonstrated that the two tandem NF-kappaB motifs in the VCAM-1 promoter are necessary for Hcy-induced VCAM-1 gene expression. Hcy-induced NF-kappaB activation was confirmed by EMSA, as shown by the nuclear translocation of its p65 (RelA) subunit and the degradation of the inhibitors IkappaB-alpha and IkappaB-beta by Western analysis. Hcy also increased intracellular reactive oxygen species by NAD(P)H oxidase activation, as shown by the membrane translocation of its p47(phox) subunit. NF-kappaB inhibitors decreased Hcy-induced intracellular reactive oxygen species and VCAM-1 expression. Finally, we found that nutritionally relevant concentrations of RSV and HT, but not folate and vitamin B6, reduce (by >60% at 10(-6) mol/l) Hcy-induced VCAM-1 expression and monocytoid cell adhesion to the endothelium. These data indicate that pathophysiologically relevant Hcy concentrations induce VCAM-1 expression through a prooxidant mechanism involving NF-kappaB. Natural Mediterranean diet antioxidants can inhibit such activation, suggesting their possible therapeutic role in Hcy-induced vascular damage.  相似文献   

9.
10.
11.
Choi EK  Park HJ  Ma JS  Lee HC  Kang HC  Kim BG  Kang IC 《FEBS letters》2004,559(1-3):141-144
The effects of LY294002 (LY29) and wortmannin (WM), inhibitors of phosphatidylinositol 3-kinase (PI3K), on monocyte chemoattractant protein-1 (MCP-1) expression by human umbilical vein endothelial cells were investigated. Complete inhibition of interleukin (IL)-1beta-induced Akt phosphorylation occurred at 50 microM LY29 or 100 nM WM. At these concentrations, LY29, but not WM, significantly inhibited constitutive and IL-1beta-induced MCP-1 expression at both protein and mRNA levels. LY303511 (LY30), an inactive analogue of LY29, also inhibited MCP-1 expression. LY29 and LY30 inhibited activation of nuclear factor-kappaB (NF-kappaB). These results suggest that LY29 inhibits MCP-1 expression at least in part via suppression of NF-kappaB, independent of PI3K, and the structure of LY29 and LY30 may be a novel template for development of new anti-inflammatory drugs.  相似文献   

12.
Hsieh HL  Yen MH  Jou MJ  Yang CM 《Cellular signalling》2004,16(10):1163-1176
Bradykinin (BK), an inflammatory mediator, has been shown to increase the expression of proteins such as matrix metalloproteinases (MMPs) on brain cells and contributes to the pathophysiology of inflammatory responses. However, the mechanisms regulating MMP-9 expression by BK in rat brain astrocytes-1 (RBA-1) remain unclear. Here we report that the mitogen-activated protein kinase (MAPK) and NF-kappaB pathways participate in the induction of MMP-9 expression induced by BK in RBA cells. Zymographic, Western blotting, and RT-PCR analyses showed that BK increased expression of MMP-9 mRNA and protein in a time- and concentration-dependent manner. BK-induced MMP-9 mRNA and protein expression was inhibited by MEK1/2 inhibitor PD98059, PI3-K inhibitor LY294002, and NF-kappaB inhibitor helenalin. In accordance with these findings, BK-induced phosphorylation of p42/p44 MAPK and Akt and activation of NF-kappaB was attenuated by prior treatment with PD98059, LY294002, and helenalin, respectively. The effects of BK on MMP-9 expression and p42/p44 MAPK and Akt phosphorylation were inhibited by B(2) receptor antagonist Hoe 140, indicating the involvement of B(2) receptors revealed by [(3)H]-BK binding assay. Furthermore, BK-stimulated translocation of NF-kappaB into the nucleus was revealed by Western blotting and immnofluorescence staining and blocked by Hoe140, PD98059, LY294002, and helenalin. Taken together, these results suggest that in RBA cells, activation of p42/p44 MAPK and Akt cascades mediated through NF-kappaB pathway are essential for BK-induced MMP-9 gene expression. This study may provide insights into the regulation of MMP-9 production in CNS, which may occur in vivo in pathological situations such as CNS inflammation and brain astrocytoma.  相似文献   

13.
14.
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells.  相似文献   

15.
We examined the signalling pathways responsible for the Ang II induction of growth in MCF-7 human breast cancer cells. Ang II in MCF-7 cells induced: (a) the translocation from the cytosol to membrane and nucleus of atypical protein kinase C-zeta (PKC-zeta) but not of PKC-alpha, -delta, - epsilon and -eta; (b) the expression of c-fos mRNA and protein; (c) the phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). All these effects were due to the activation of the Ang II type I receptor (AT1) since they were blocked by the AT1 antagonist losartan. The Ang II-stimulated ERK1/2 phosphorylation was blocked by (a) high doses of staurosporine, inhibitor of PKC-zeta, and by a synthetic myristoylated peptide with sequences based on the endogenous PKC-zeta pseudosubstrate region (zeta-PS); (b) PD098059, a mitogen-activated protein kinase kinase inhibitor (MAPKK/MEK); and, moreover, (c) the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin, thus indicating that PI3K may act upstream of ERK1/2. The Ang II-evoked c-fos induction was blocked only by high doses of staurosporine and by zeta-PS whilst PD098059, LY294002 and wortmannin were ineffective, thus indicating that c-fos induction is not due to ERK1/2 activity. When the epidermal growth factor-receptor (EGFR) tyrosine kinase activity was inhibited by the use of its inhibitor AG1478, Ang II was still able to induce ERK1/2 phosphorylation and c-fos expression, therefore proving that the transactivation of EGFR was not required for these Ang II effects in MCF-7 cells. The previously reported proliferation of MCF-7 cells induced by Ang II was blocked by PD098059 and by wortmannin in a dose-dependent manner, thereby indicating that in MCF-7 cells the PI3K and ERK pathways mediate the mitogenic signalling of AT1. Our results suggest that in MCF-7 cells Ang II activates multiple signalling pathways involving PKC-zeta, PI3K and MAPK; of these pathways only PKC-zeta appears responsible for the induction of c-fos.  相似文献   

16.
17.
Cytokine stimulation can activate NF-kappaB that triggers inducible expression of E-selectin, VCAM-1 (Vascular Cell Adhesion Molecule-1) and ICAM-1 (Intercellular Cell Adhesion Molecule-1) in endothelial cells. In the previous study, we have shown that B lymphocytes and plasma cells can express E-selectin by constitutive activation of NF-kappaB. Here we show that human B lymphocytes and ARH-77 plasma cells expressed VCAM-1 and ICAM-1 in a cytokine dispensable mechanism. NF-kappaB antagonists could inhibit their expressions in ARH-77 cells. The activities of NF-kappaB for VCAM-1 and ICAM-1 promoters prior to cytokine stimulation were detected in ARH-77 cells using electrophoretic mobility shift assays. Again, NF-kappaB antagonists could abrogate these promoter activities. Taken together, our results demonstrate that NF-kappaB activation is the underlying molecular mechanism for constitutive expression of E-selectin, VCAM-1, and ICAM-1 on human B lymphocytes and plasma cells.  相似文献   

18.
Sphingosine 1-phosphate (S1P) has been shown to regulate smooth muscle cell proliferation, migration, and vascular maturation. S1P increases the expression of several proteins including COX-2 in vascular smooth muscle cells (VSMCs) and contributes to arteriosclerosis. However, the mechanisms regulating COX-2 expression by S1P in VSMCs remain unclear. Western blotting and RT-PCR analyses showed that S1P induced the expression of COX-2 mRNA and protein in a time- and concentration-dependent manner, which was attenuated by inhibitors of MEK1/2 (U0126) and PI3K (wortmannin), and transfection with dominant negative mutants of p42/p44 mitogen-activated protein kinases (ERK2) or Akt. These results suggested that both p42/p44 MAPK and PI3K/Akt pathways participated in COX-2 expression induced by S1P in VSMCs. In accordance with these findings, S1P stimulated phosphorylation of p42/p44 MAPK and Akt, which was attenuated by U0126, LY294002, or wortmannin, respectively. Furthermore, this up-regulation of COX-2 mRNA and protein was blocked by a selective NF-kappaB inhibitor helenalin. Consistently, S1P-stimulated translocation of NF-kappaB into the nucleus was revealed by immnofluorescence staining. Moreover, S1P-stimulated activation of NF-kappaB promoter activity was blocked by phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and helenalin, but not by U0126, suggesting that involvement of PI3K/Akt in the activation of NF-kappaB. COX-2 promoter assay showed that S1P induced COX-2 promoter activity mediated through p42/p44 MAPK, PI3K/Akt, and NF-kappaB. These results suggested that in VSMCs, activation of p42/p44 MAPK, Akt and NF-kappaB pathways was essential for S1P-induced COX-2 gene expression. Understanding the mechanisms involved in S1P-induced COX-2 expression on VSMCs may provide potential therapeutic targets in the treatment of arteriosclerosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号