首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
铁离子是几乎所有生物包括细菌生存必需的营养元素. 在宿主体内,绝大多数的铁离子均以血红素的形式存在于各种血红素结合蛋白,如血红蛋白、肌红蛋白等. 当致病菌感染宿主后,血红素将成为某些致病菌主要的铁离子来源. 致病菌编码血红素转运系统,并利用该系统将血红素转运至胞浆,在胞浆血红素被细菌的血红素降解蛋白降解,释放铁离子供细菌利用. 在致病菌中,目前至少有两种血红素降解酶被发现和鉴定. 第一种为经典的血红素氧化酶(heme oxygenase, HO),它催化血红素氧化形成胆绿素、一氧化碳(CO)和Fe2+;第二种非经典降解酶,包括金黄色葡萄球菌的IsdG/IsdI蛋白及其同系物MhuD蛋白,催化血红素分别产生staphylobilin和mycobilin. 另外,部分细菌内存在其它血红素降解因子,其与前两种血红素降解酶无结构同源性,但在血红素降解实验中可产生胆绿素(biliverdin)或CO,因而被鉴定为“血红素降解蛋白”. 对细菌血红素降解蛋白分子结构解析及作用机制的深入理解,将有助于新的血红素降解蛋白的发现和鉴定.  相似文献   

2.
Staphylococcus aureus requires iron for growth and utilizes heme as a source of iron during infection. Staphylococcal surface proteins capture hemoglobin, release heme from hemoglobin and transport this compound across the cell wall envelope and plasma membrane into the bacterial cytoplasm. Here we show that Staphylococcus aureus isdG and isdI encode cytoplasmic proteins with heme binding properties. IsdG and IsdI cleave the tetrapyrrol ring structure of heme in the presence of NADPH cytochrome P450 reductase, thereby releasing iron. Further, IsdI complements the heme utilization deficiency of a Corynebacterium ulcerans heme oxygenase mutant, demonstrating in vivo activity of this enzyme. Although Staphylococcus epidermidis, Listeria monocytogenes, and Bacillus anthracis encode homologues of IsdG and IsdI, these proteins are not found in other bacteria or mammals. Thus, it appears that bacterial pathogens evolved different strategies to retrieve iron from scavenged heme molecules and that staphylococcal IsdG and IsdI represent examples of bacterial heme-oxygenases.  相似文献   

3.
Bacillus anthracis, the causative agent of anthrax, utilizes hemin and hemoglobin for growth in culture, suggesting that these host molecules serve as sources for the nutrient iron during bacterial infection. Bioinformatic analyses of the B. anthracis genome revealed genes with similarity to the iron-regulated surface determinant (isd) system responsible for heme uptake in Staphylococcus aureus. We show that the protein product of one of these genes, isdG, binds hemin in a manner resembling the heme binding of known heme oxygenases. Formation of IsdG:hemin complexes in the presence of a suitable electron donor, e.g., ascorbate or cytochrome P450 reductase, promotes catalytic degradation of hemin to biliverdin with concomitant release of iron. IsdG is required for B. anthracis utilization of hemin as a sole iron source, and it is also necessary for bacterial protection against heme-mediated toxicity. These data suggest that IsdG functions as a heme-degrading monooxygenase in B. anthracis.  相似文献   

4.
Ensifer meliloti is a nitrogen-fixing symbiont of the alfalfa legume able to use heme as an iron source. The transport mechanism involved in heme acquisition in E. meliloti has been identified and characterized, but the fate of heme once inside the cell is not known. In silico analysis of E. meliloti 1021 genome revealed no canonical heme oxygenases although two genes encoding putative heme degrading enzymes, smc01518 and hmuS, were identified. SMc01518 is similar to HmuQ of Bradyrhizobium japonicum, which is weakly homologous to the Staphylococcus aureus IsdG heme-degrading monooxygenase, whereas HmuS is homolog to Pseudomonas aeruginosa PhuS, a protein reported as a heme chaperone and as a heme degrading enzyme. Recombinant HmuQ and HmuS were able to bind hemin with a 1:1 stoichiometry and displayed a Kd value of 5 and 4 µM, respectively. HmuS degrades heme in vitro to the biliverdin isomers IX-β and IX-δ in an equimolar ratio. The HmuQ recombinant protein degrades heme to biliverdin IX-δ only. Additionally, in this work we demonstrate that humS and hmuQ gene expression is regulated by iron and heme in a RirA dependent manner and that both proteins are involved in heme metabolism in E. meliloti in vivo.  相似文献   

5.
Staphylococcus lugdunensis is often found as part of the normal flora of human skin but has the potential to cause serious infections even in healthy individuals. It remains unclear what factors enable S. lugdunensis to transition from a skin commensal to an invasive pathogen. Analysis of the complete genome reveals a putative iron-regulated surface determinant (Isd) system encoded within S. lugdunensis. In other bacteria, the Isd system permits the utilization of host heme as a source of nutrient iron to facilitate bacterial growth during infection. In this study, we establish that S. lugdunensis expresses an iron-regulated IsdG-family heme oxygenase that binds and degrades heme. Heme degradation by IsdG results in the release of free iron and the production of the chromophore staphylobilin. IsdG-mediated heme catabolism enables the use of heme as a sole source of iron, establishing IsdG as a pathophysiologically relevant heme oxygenase in S. lugdunensis. Together these findings offer insight into how S. lugdunensis fulfills its nutritional requirements while invading host tissues and establish the S. lugdunensis Isd system as being involved in heme-iron utilization.  相似文献   

6.
Park S  Choi S  Choe J 《BMB reports》2012,45(4):239-241
Iron availability is limited in the environment and most bacteria have developed a system to acquire iron from host hemoproteins. Heme oxygenase plays an important role by degrading heme group and releasing the essential nutrient iron. The structure of Bacillus subtilis HmoB was determined to 2.0 A resolution. B. subtilis HmoB contains a typical antibiotic biosynthesis monooxygenase (ABM) domain that spans from 71 to 146 residues and belongs to the IsdG family heme oxygenases. Comparison of HmoB and IsdG family proteins showed that the C-terminal region of HmoB has similar sequence and structure to IsdG family proteins and contains conserved critical residues for heme degradation. However, HmoB is distinct from other IsdG family proteins in that HmoB is about 60 amino acids longer in the N-terminus and does not form a dimer whereas previously studied IsdG family heme oxygenases form functional homodimers. Interestingly, the structure of monomeric HmoB resembles the dimeric structure of IsdG family proteins. Hence, B. subtilis HmoB is a heme oxygenase with a novel structural feature.  相似文献   

7.
Heme-degrading enzymes are involved in human diseases ranging from stroke, cancer, and multiple sclerosis to infectious diseases such as malaria, diphtheria, and meningitis. All mammalian and microbial enzymes identified to date are members of the heme oxygenase superfamily and assume similar monomeric structures with an all alpha-helical fold. Here we describe the crystal structures of IsdG and IsdI, two heme-degrading enzymes from Staphylococcus aureus. The structures of both enzymes resemble the ferredoxin-like fold and form a beta-barrel at the dimer interface. Two large pockets found on the outside of the barrel contain the putative active sites. Sequence homologs of IsdG and IsdI were identified in multiple Gram-positive pathogens. Substitution of conserved IsdG amino acid residues either reduced or abolished heme degradation, suggesting a common catalytic mechanism. This mechanism of IsdG-mediated heme degradation may be similar to that of the structurally related monooxygenases, enzymes involved in the synthesis of antibiotics in Streptomyces. Our results imply the evolutionary adaptation of microbial enzymes to unique environments.  相似文献   

8.
9.
Reniere ML  Haley KP  Skaar EP 《Biochemistry》2011,50(31):6730-6737
Degradation of specific native proteins allows bacteria to rapidly adapt to changing environments when the activity of those proteins is no longer required. Although these processes are vital to bacterial survival, relatively little is known regarding how bacterial proteins are recognized and targeted for degradation. Staphylococcus aureus is an important human pathogen that requires iron for growth and pathogenesis. In the vertebrate host, S. aureus fulfills its iron requirement by obtaining heme iron from host hemoproteins via IsdG- and IsdI-mediated heme degradation. IsdG and IsdI are structurally and mechanistically analogous but are differentially regulated by iron and heme availability. Specifically, IsdG is targeted for degradation in the absence of heme. Therefore, we utilized the differential regulation of IsdG and IsdI to investigate the mechanism of regulated proteolysis. In contrast to canonical protease recognition sequences, we show that IsdG is targeted for degradation by internally coded sequences. Specifically, a flexible loop near the heme-binding pocket is required for IsdG degradation in the absence of heme.  相似文献   

10.
11.
MhuD is an oxygen-dependent heme-degrading enzyme from Mycobacterium tuberculosis with high sequence similarity (∼45%) to Staphylococcus aureus IsdG and IsdI. Spectroscopic and mutagenesis studies indicate that the catalytically active 1:1 heme-MhuD complex has an active site structure similar to those of IsdG and IsdI, including the nonplanarity (ruffling) of the heme group bound to the enzyme. Distinct from the canonical heme degradation, we have found that the MhuD catalysis does not generate CO. Product analyses by electrospray ionization-MS and NMR show that MhuD cleaves heme at the α-meso position but retains the meso-carbon atom at the cleavage site, which is removed by canonical heme oxygenases. The novel tetrapyrrole product of MhuD, termed “mycobilin,” has an aldehyde group at the cleavage site and a carbonyl group at either the β-meso or the δ-meso position. Consequently, MhuD catalysis does not involve verdoheme, the key intermediate of ring cleavage by canonical heme oxygenase enzymes. Ruffled heme is apparently responsible for the heme degradation mechanism unique to MhuD. In addition, MhuD heme degradation without CO liberation is biologically significant as one of the signals of M. tuberculosis transition to dormancy is mediated by the production of host CO.  相似文献   

12.
Some Gram-negative pathogens import host heme into the cytoplasm and utilize it as an iron source for their survival. We report here that HmuS, encoded by the heme utilizing system (hmu) locus, cleaves the protoporphyrin ring to release iron from heme. A liquid chromatography/mass spectrometry analysis revealed that the degradation products of this reaction are two biliverdin isomers that result from transformation of a verdoheme intermediate. This oxidative heme degradation by HmuS required molecular oxygen and electrons supplied by either ascorbate or NADPH. Electrons could not be directly transferred from NADPH to heme; instead, ferredoxin-NADP+ reductase (FNR) functioned as a mediator. Although HmuS does not share amino acid sequence homology with heme oxygenase (HO), a well-known heme-degrading enzyme, absorption and resonance Raman spectral analyses suggest that the heme iron is coordinated with an axial histidine residue and a water molecule in both enzymes. The substitution of axial His196 or distal Arg102 with an alanine residue in HmuS almost completely eliminated heme-degradation activity, suggesting that Fe-His coordination and interaction of a distal residue with water molecules in the heme pocket are important for this activity.  相似文献   

13.
14.
Strains of Bradyrhizobium spp. form nitrogen-fixing symbioses with many legumes, including soybean. Although inorganic sulfur is preferred by bacteria in laboratory conditions, sulfur in agricultural soil is mainly present as sulfonates and sulfur esters. Here, we show that Bradyrhizobium japonicum and B. elkanii strains were able to utilize sulfate, cysteine, sulfonates, and sulfur-ester compounds as sole sulfur sources for growth. Expression and functional analysis revealed that two sets of gene clusters (bll6449 to bll6455 or bll7007 to bll7011) are important for utilization of sulfonates sulfur source. The bll6451 or bll7010 genes are also expressed in the symbiotic nodules. However, B. japonicum mutants defective in either of the sulfonate utilization operons were not affected for symbiosis with soybean, indicating the functional redundancy or availability of other sulfur sources in planta. In accordance, B. japonicum bacteroids possessed significant sulfatase activity. These results indicate that strains of Bradyrhizobium spp. likely use organosulfur compounds for growth and survival in soils, as well as for legume nodulation and nitrogen fixation.  相似文献   

15.
The heme oxygenase ChuZ is part of the iron acquisition mechanism of Campylobacter jejuni, a major pathogen causing enteritis in humans. ChuZ is required for C. jejuni to use heme as the sole iron source. The crystal structure of ChuZ was resolved at 2.5 Å, and it was revealed to be a homodimer with a split-barrel fold. One heme-binding site was at the dimer interface and another novel heme-binding site was found on the protein surface. Heme was bound in this site by four histidine side-chains through hydrophobic interactions. Based on stoichiometry studies and comparisons with other proteins, the possibility that similar heme-binding site exists in homologous proteins and its possible functions are discussed. The structural and mutagenesis analyses reported here establish ChuZ and ChuZ homologs as a new bacterial heme oxygenase family apart from the canonical and IsdG/I families. Our studies provide insight into the enzymatic mechanisms and structure–function relationship of ChuZ.  相似文献   

16.
Heme degradation plays a pivotal role in the availability of the essential nutrient, iron, in pathogenic bacteria. A previously unannotated protein from Mycobacterium tuberculosis, Rv3592, which shares homology to heme-degrading enzymes, has been identified. Biochemical analyses confirm that Rv3592, which we have termed MhuD (mycobacterial heme utilization, degrader), is able to bind and degrade heme. Interestingly, contrary to previously reported stoichiometry for the Staphylococcus aureus heme degraders, iron-regulated surface determinant (Isd)G and IsdI, MhuD has the ability to bind heme in a 1:2 protein-to-heme ratio, although the MhuD-diheme complex is inactive. Furthermore, the 1.75-Å crystal structure of the MhuD-diheme complex reveals two stacked hemes forming extensive contacts with residues in the active site. In particular, the solvent-exposed heme is axially liganded by His75 and is stacked planar upon the solvent-protected heme. The solvent-protected heme is coordinated by a chloride ion, which is, in turn, stabilized by Asn7. Structural comparison between MhuD-diheme and inactive IsdG and IsdI bound to only one highly distorted metalloporphyrin ring reveals that several residues located in α-helix 2 and the subsequent loop appear to be responsible for heme stoichiometric differences and suggest open and closed conformations for substrate entry and product exit.  相似文献   

17.
Mesoheme bound to heme oxygenase protein was easily degraded to mesobiliverdin by incubation with NADPH-cytochrome c reductase and NADPH. The features of mesoheme degradation were very similar to those of protoheme degradation catalyzed by the heme oxygenase system; an intermediate compound having its absorption maximum at 660 nm appeared in the couse of mesoheme degradation and this compound is presumably equivalent to the 688 nm compound which appears in the course of protoheme degradation. Hydroxymesoheme was chemically prepared and a complex of hydroxymesoheme and heme oxygenase was prepared. The complex was fairly stable in air, but when the complex was incubated with the NADPH-cytochrome c reductase system, the hydroxymesoheme bound to heme oxygenase was readily converted to mesobiliverdin through the 660 nm compound as an intermediate. It is evident that hydroxyheme is a real intermediate of heme degradation in the heme oxygenase reaction and that the 688 nm compound (or the 660 nm compound in the mesoheme system) is located between hydroxyheme and the biliverdin-iron chelate. The ferrous state of heme-iron may also be necessary for the onset of further oxidation of hydroxyheme.  相似文献   

18.
Plesiomonas shigelloides is an intestinal pathogen that uses heme as an iron source. The P. shigelloides heme utilization system consists of 10 genes, 7 of which permit heme transport and 3 of which are associated with utilization of heme as an iron source once it is inside the cell. The goal of this study was to examine hugZ, 1 of the 3 genes associated with utilization of heme iron. DPH8, a hugZ mutant, failed to grow to full cell density in media containing heme as the iron source, indicating that hugZ is required for heme iron utilization. Western blots using antibodies against Vibrio cholerae HutZ to detect the P. shigelloides HugZ indicated that hugZ encodes an iron-regulated cytoplasmic protein, which is absent in DPH8. A heme affinity bead assay performed on soluble protein fractions from P. shigelloides DPH8/pHUG24.5 (pHUG24.5 encodes hugZ) indicated that HugZ binds heme. Heme utilization was restored in DPH8 by hox1, which encodes the alpha-heme oxygenase from Synechocystis sp. strain PCC6803. However, HugZ did not exhibit alpha-heme oxygenase activity in an assay that detects the conversion of heme to the bilin functional group present in phycobiliproteins. These results do not rule out that HugZ exhibits another type of heme oxygenase activity not detected in the assay.  相似文献   

19.
The bioavailability and utilization of porphyrin-bound iron, specifically heme, by marine microorganisms have rarely been examined. This study used Ruegeria sp. strain TrichCH4B as a model organism to study heme acquisition by a member of the Roseobacter clade. Analogs of known heme transporter proteins were found within the Ruegeria sp. TrichCH4B genome. The identified heme uptake and utilization system appears to be functional, as the heme genes were upregulated under iron stress, the bacterium could grow on ferric-porphyrin complexes as the sole iron source, and internalization of 55 Fe from ferric protoporphyrin IX was observed. The potential ability to utilize heme in the Roseobacter clade appears to be common, as half of the isolates in the RoseoBase database were found to have a complete heme uptake system. A degenerate primer set was designed and successfully used to identify the putative heme oxygenase gene (hmus) in the roseobacter heme uptake system from diverse nonenriched marine environments. This study found that members of the Roseobacter clade are capable of utilizing heme as an iron source and that this capability may be present in all types of marine environments. The results of this study add a new perspective to the current picture of iron cycling in marine systems, whereby relatively refractory intracellular pools of heme-bound iron may be taken up quickly and directly reincorporated into living bacteria without previous degradation or the necessity of a siderophore intermediate.  相似文献   

20.
Enzymatic haem catabolism by haem oxygenases is conserved from bacteria to humans and proceeds through a common mechanism leading to the formation of iron, carbon monoxide and biliverdin. The first members of a novel class of haem oxygenases were recently identified in Staphylococcus aureus (IsdG and IsdI) and were termed the IsdG‐family of haem oxygenases. Enzymes of the IsdG‐family form tertiary structures distinct from those of the canonical haem oxygenase family, suggesting that IsdG‐family members degrade haem via a unique reaction mechanism. Herein we report that the IsdG‐family of haem oxygenases degrade haem to the oxo‐bilirubin chromophore staphylobilin. We also present the crystal structure of haem‐bound IsdI in which haem ruffling and constrained binding of oxygen is consistent with cleavage of the porphyrin ring at the β‐ or δ‐meso carbons. Combined, these data establish that the IsdG‐family of haem oxygenases degrades haem to a novel chromophore distinct from biliverdin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号