首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A natural wetland in Mexico City Metropolitan Area is one of the main suppliers of crops and flowers, and in consequence its canals hold a high concentration of organochlorine (OC) and organophosphorus (OP) pesticides. There is also an extensive population of water hyacinth (Eichhornia crassipes), which is considered a plague; but literature suggests water hyacinth may be used as a phytoremediator. This study demonstrates bioaccumulation difference for the OC in vivo suggesting their bioaccumulation is ruled by their log Kow, while all the OP showed bioaccumulation regardless of their log Kow. The higher bioaccumulation factors (BAF) of the accumulated OC pesticides cannot be explained by their log Kow, suggesting that the OC pesticides may also be transported passively into the plant. Translocation ratios showed that water hyacinth is an accumulating plant with phytoremediation potential for all organophosphorus pesticides studied and some organochlorine pesticides. An equation for free water surface wetlands with floating macrophytes, commonly used for the construction of water-cleaning wetlands, showed removal of the pesticides by the wetland with room for improvement with appropriate management.  相似文献   

2.
A diverse series of amides were evaluated for aquatic toxicity (IGC50) assessed in the Tetrahymena pyriformis population growth impairment assay and for reactivity (EC50) with the model soft nucleophile thiol in the form of the cysteine residue of the tripeptide glutathione. All alkylamides along with some halo-substituted amides are well predicted by the simple hydrophobicity (log K ow)–electrophilicity (E lumo) response-surface model [log(IGC−1 50) = 0.45(log K ow) − 0.342(E lumo) − 1.11]. However, 2-halo amides with the halogen at the end of the molecule and α,β-unsaturated primary amides are among those derivatives identified as being more toxic than predicted by the model. Amides, which exhibit excess toxicity, were capable of forming covalent bonds through an SN2 displacement or a Michael addition. Moreover, only those amides exhibiting excess toxicity were reactive with thiol, suggesting that the reactivity with model nucleophiles such as the thiol group may provide a means of accurately defining reactive toxicants.  相似文献   

3.
A stochastic biogeochemical model has been developed to simulate the transformation and degradation of natural organic matter (NOM) using an agent-based algorithm which treats each molecule as a separate and potentially unique entity. Molecules react when a pseudo-random number is lower than the calculated reaction probability in a given time step; repeated time steps simulate the transformation of precursor molecules into a complex NOM assemblage. The data for each molecule—elemental and functional group composition—can be used to calculate many properties directly and exactly for each molecule in the assemblage, e.g., molecular weight (MW), fraction of aromatic C (Ar), and charge at pH 7 (Z). Empirical quantitative structure activity relationships (QSARs) are developed which permit the estimation of thermodynamic quantities K ow (the octanol–water partition coefficient) and pK a (acidity) for each molecule. Root mean square errors for these QSARs are 0.39 log units for log K ow and 0.45 log units for pK a. Distributions of both exactly calculated (MW, Ar, Z) and estimated thermodynamic (K ow, pK a) properties are examined and compared with published experimental data. Molecular weight distributions from size exclusion HPLC experiments on aquatic NOM are quantitatively similar to simulation results. pH titrations and polarity distributions from reversed-phase HPLC are qualitatively similar to simulation results. This agreement suggests that the agent-based model can be used to explore hypotheses regarding both compositional and thermodynamic properties of NOM. Robert Wetzel—deceased.  相似文献   

4.
The Kleier model of phloem-mobility of xenobiotics combines the intermediate permeability hypothesis with the acid trap mechanism for weak acids. The output of the model is dependent on the lipophilicity of a compound, for which octanol/water partition coefficients (log Kow) have been used as a measure. The membrane permeability of xenobiotics is predicted from these partition coefficients, and the nature of the sieve tube membranes has been modelled using regressions derived from Nitella or potato permeability data. A wide range of log Kow values for herbicides, fungicides, insecticides and experimental compounds (400) have been tabulated along with the model output for various membrane parameters. The application of the model is in broad agreement with literature and experimental observations on many of the known phloem mobile herbicides and predicts low phloem mobility for the fungicides and insecticides considered here, again in agreement with the literature. The behaviour of herbicides representative of the main chemical families and modes of action are reviewed, along with examples of the few phloem-mobile fungicides and insecticides identified.Abbreviations Kow octanol-water partition coefficient - pKa –log10 acid dissociation constant - Cf Concentration factor - P membrane permeability  相似文献   

5.
Two bioassays were used to test phloem mobility of selected xenobiotic compounds: (a) excised bean leaf assay; (b) rooted bean leaf assay. Compounds assayed were N-alkylpyridiniums with systematic variation in octanol-water partition coefficients (log Kow), substituted benzoic acids with about the same log Kow value but variable acidities. Results of the assays strongly conform, quantitatively, to the predictions of the unified mathematical model. Results also indicate that the membrane permeability value of a compound, which depends directly on log Kow value, is the overriding factor in determining phloem mobility. When the weak acid functionality of a compound confers increased phloem mobility, it does so principally by making the log Kow value, and consequently the membrane permeability of the compound more optimal.  相似文献   

6.
Detached leaves of Cyclamen persicum Mill. can be used as a simple source-sink system. Phloem transport in the excised material was monitored by the noninvasive 11C-technique. Assimilate movement stopped immediately when the petiole was cut off. However, within 20 min a recovery of transport was observed. The translocation rate in the detached leaf was only 13% of that in the intact plant. 14C-Xenobiotics and [3H]sucrose were injected into the upper petiole parenchyma (source). They moved downstream by a symplastic route. The stump of the petiole was inserted into a buffer solution containing ethylenediaminetetraacetic acid (sink). After 3 h, the distribution of sucrose and xenobiotics was determined in five subsequent segments of the petiole (path). The retention coefficient (r) was calculated from the ratio of radioactivity in the vascular bundle to that in the petiole parenchyma. The distribution along the vascular path was given by a geometric progression, whereas its constant was the transport coefficient (q). Values of r and q corresponded with the degree of phloem mobility and ambimobility. Four groups of compounds were classified: (i) acidic substances with log Kow = — 2 to — 2.4 (Kow is the partition coefficient octanol/water) at pH 8 (pH of sieve tube sap), retained by ion trapping and exhibiting small lateral efflux (q0.7; maleic hydrazide, dalapon); (ii) acidic substances with log Kow = — 0.7 to — 0.8 at pH 8, retained by ion trapping and subjected to a moderate lateral efflux (0.7>q> 0.5; 2,4-dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, bromoxynil); (iii) nonionised substances retained by optimum permeability, exhibiting a considerable lateral leakage (q<0.5; glyphosate, amitrole); (iv) substances without basipetal transport in the phloem (atrazine, diuron). Retention of sucrose corresponded quantitatively with that shown in group (i). This classification was also supported by results of uptake and efflux experiments using the isolated conducting tissue. Theoretical translocation profiles were calculated from the determined transport coefficients (q).Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - Kow partition coefficient octanol/water - MCPA 2-methyl-4-chloro-phenoxyacetic acid - q transport coefficient in the vascular bundle - r retention coefficient in the vascular bundle The authors gratefully acknowledge the assistance of H. Fiedler and M. Neugebauer. We are particularly grateful to K. Dutschka, G. Hudepokl, and Dr. J. Knust for producing 11CO2.  相似文献   

7.
Toxicity (1/IGC50) in the Tetrahymena population growth assay and reactivity (1/EC50) with the thiol moiety of the cysteine residue of glutathione (GSH) were determined for a series of aromatic isothiocyanates (NCSs). Comparison of both toxicity and reactivity between the analogues revealed that derivatives with the NCS-moiety attached directly to an aromatic ring (e.g., phenyl derivatives) are less toxic and less reactive than those with the NCS attached to an aliphatic carbon (e.g., benzyl derivatives). These differences in potency are hypothesized to relate to difference in the ease of the Michael reaction, the proposed molecular mechanism. 1,4-Phenylene diisothiocyanate is more toxic and more reactive than its mono-NCS homologue. While there is good predictivity for the phenyl and naphthyl derivatives with the model log(1/IGC50) = 0.545(log K ow) + 16.21A max – 5.91, based on the 1-octanol/water partition coefficient (K ow) and maximum acceptor superdelocalizability (A max), toxicity of the other derivatives, which are outside the structural domain of the model training set, are poorly fitted. Owing to hydrolysis, the benzoyl, and cinnamyl analogues are less toxic than predicted by their thiol reactivity; however, the toxicity of the remaining compounds is modeled by the relationship log(1/IGC50) = 1.77 [log (1/EC50)] + 0.60; n = 12, s = 0.34, r 2 = 0.718, q 2 = 0.629, F = 26.  相似文献   

8.
Experiments were conducted to test the hypothesis that aliphatic hydrocarbons bind to pockets/crevices of sodium (Na+) channels to cause action potential (AP) block. Aliphatic solutes exhibiting successively greater octanol/water partitition coefficients (K ow) were studied. Each solute blocked Na+ channels. The 50% effective concentration (EC50) to block APs could be mathematically predicted as a function of the solute’s properties. The solutes studied were methyl ethyl ketone (MEK), cyclohexanone, dichloromethane, chloroform and triethylamine (TriEA); the K ow increased from MEK to TriEA. APs were recorded from frog nerves, and test solutes were added to Ringer’s solution bathing the nerve. When combined with EC50s for solutes with log K ows < 0.29 obtained previously, the solute EC50s could be predicted as a function of the fractional molar volume (dV/dm = [dV/dn]/100), polarity (P) and the hydrogen bond acceptor basicity (β) by the following equation: Fluidity changes cannot explain the EC50s. Each of the solutes blocks Na+ channels with little or no change in kinetics. Na+ channel block explains much of the EC50 data. EC50s are produced by a combination of effects including ion channel block, fluidity changes and osmotically induced structural changes. As the solute log K ow increases to values near 1 or greater, Na+ channel block dominates in determining the EC50. The results are consistent with the hypothesis that the solutes bind to channel crevices to cause Na+ channel and AP block.  相似文献   

9.
NPC 1161C is a novel antimalarial drug of interest because of its superior curative and prophylactic activity, and favorable toxicity profile against in vivo and in vitro models of malaria, pneumocystis carinii pneumonia, and leishmaniasis. The preformulation studies performed included determination of pKas, aqueous and pH solubility, cosolvent solubility, log P, pH stability, thermal analysis, and preliminary hygroscopicity studies. The mean pKa1, pKa2, and pKa3 were determined to be 10.12, 4.07, and 1.88, respectively. The aqueous solubility was found to be 2.4 × 10−4 M having a saturated solution pH of 4.3–5.0 and a low intrinsic solubility of 1.6 × 10−6 M. A mathematical model of the pH-solubility profile was derived from pH 2.2 to 8.0. An exponential decrease in solubility was observed with increasing pH. The excess solid phase in equilibrium with the solution in aqueous buffers was determined to be the free-base form of the drug. A significant increase in solubility was observed with all the cosolvents studied, in both unbuffered and buffered systems. Mean log P of the salt and the free base were estimated to be 2.18 and 3.70, respectively. The compound had poor stability at pH 7.0 at 37°C, with a t 90 of 3.58 days. Thermal analysis of the drug using DSC and TGA revealed that the drug is present as a semi-crystalline powder, which transformed into the amorphous state after melting. The drug was also found to sublime at higher temperatures. Determination of physicochemical properties of NPC 1161C provided useful information for the development of a dosage form and preclinical evaluation.  相似文献   

10.
Based on experimental data for the octanol-water partition coefficient (Kow) of 21 polychlorinated naphthalenes (PCNs) congeners, two types of three-dimensional QSAR (3D-QSAR) models —comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) —were established with Sybyl software. This was established to predict the Kow values of 54 additional PCN congeners and carry out a modification of CN-73 to lower its Kow significantly, simultaneously maintaining the stability and insulativity of CN-73. The contour maps of two models showed that the electrostatic field plays a dominating role in the logKow values of PCNs, and the bioconcentration of PCN decreased when -Cl atoms on the 1-, 3-, 4-, 6-, and 7-positions of PCNs were replaced with electropositive groups. Moreover, there was a positive correlation between the number of -Cl atoms on PCNs and the average logKow values of PCNs. After modification of CN-73 through the electrostatic contour maps, six types of new modified CN-73 compounds were obtained with logKow values two orders of magnitude lower than that of CN-73. Meanwhile, there was not a significant difference observed between the calculated total energy (representing stability) and energy gap (representing insulativity) of the new modified compounds when compared with those of CN-73.  相似文献   

11.
The purpose of this study was to improve the aqueous solubility, dissolution, and pharmacodynamic properties of a BCS class II drug, ezetimibe (Eze) by preparing ternary cyclodextrin complex systems. We investigated the potential synergistic effect of two novel hydrophilic auxiliary substances, d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and l-ascorbic acid-2-glucoside (AA2G) on hydroxypropyl-β-cyclodextrin (HPBCD) solubilization of poorly water-soluble hypocholesterolemic drug, Eze. In solution state, the binary and ternary systems were analyzed by phase solubility studies and Job’s plot. The solid complexes prepared by freeze-drying were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM). The log P values, aqueous solubility, dissolution, and antihypercholesterolemic activity of all systems were studied. The analytical techniques confirmed the formation of inclusion complexes in the binary and ternary systems. HPBCD complexation significantly (p?<?0.05) reduced the log P and improved the solubility, dissolution, and hypocholesterolemic properties of Eze, and the addition of ternary component produced further significant improvement (p?<?0.05) even compared to binary system. The remarkable reduction in log P and enhancement in solubility, dissolution, and antihypercholesterolemic activity due to the addition of TPGS or AA2G may be attributed to enhanced wetting, dispersibility, and complete amorphization. The use of TPGS or AA2G as ternary hydrophilic auxiliary substances improved the HPBCD solubilization and antihypercholesterolemic activity of Eze.  相似文献   

12.
The effect of complexation of irbesartan (IRB), a practically water-insoluble drug, with cyclodextrins in presence of different concentrations of water-soluble polymers (PEG 4000 and PVP K-90) on the dissolution rate of the drug has been investigated. Phase solubility studies were carried out to evaluate the solubilizing power of βCD in association with water-soluble polymers towards IRB and to determine the apparent stability constant (K S) of the complexes. Improvement in K S value for ternary complexes (IRB–βCD–polymers) clearly proved the benefit on the addition of water-soluble polymer to increase complexation efficiency. The dissolution rate of the drug from ternary systems containing PEG 4000 and PVP K-90 was higher as compared to the binary system. An optimum increase in the dissolution rate of the drug was observed at a polymer concentration of 5% w/w for PVP K-90 and 10% w/w for PEG 4000. DSC, FTIR, SEM, and XRD studies were carried out to characterize the complexes.  相似文献   

13.
Micellar electrokinetic capillary chromatography (MECC) was evaluated as a rapid screening tool for the determination of logarithmic partition coefficients between n-octanol-water (logPow). The technique is performed by electrochromatographing a mixture of standards of known log Pow. The logarithmic capacity factor of each standard was plotted against its log Pow to form a linear calibration curve for a given set of chromatographic conditions. The log Pow of an unknown is calculated by using its chromatographically determined capacity factor and extracting the log Pow value from the calibration curve. The method was evaluated with a set of model compounds with known log Pow. The accuracy of the method was examined and found to be within the limits required for screening purposes. The correlation of log Pow values determined using HPLC and MECC for some novel compounds was examined. This technique allows the screening of log Pow at a rate of four samples per hour with minimal sample requirements (<μg) and with extremely small solvent waste generated.  相似文献   

14.
The objective of the present research was to evaluate the physicochemical characteristics of berberine chloride and to assess the complexation of drug with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a first step towards solution dosage form development. The parameters such as log P value were determined experimentally and compared with predicted values. The pH-dependent aqueous solubility and stability were investigated following standard protocols at 25°C and 37°C. Drug solubility enhancement was attempted utilizing both surfactants and cyclodextrins (CDs), and the drug/CD complexation was studied employing various techniques such as differential scanning calorimetry, Fourier transform infrared, nuclear magnetic resonance, and scanning electron microscopy. The experimental log P value suggested that the compound is fairly hydrophilic. Berberine chloride was found to be very stable up to 6 months at all pH and temperature conditions tested. Aqueous solubility of the drug was temperature dependent and exhibited highest solubility of 4.05 ± 0.09 mM in phosphate buffer (pH 7.0) at 25°C, demonstrating the effect of buffer salts on drug solubility. Decreased drug solubility was observed with increasing concentrations of ionic surfactants such as sodium lauryl sulfate and cetyl trimethyl ammonium bromide. Phase solubility studies demonstrated the formation of berberine chloride–HPβCD inclusion complex with 1:1 stoichiometry, and the aqueous solubility of the drug improved almost 4.5-fold in the presence of 20% HPβCD. The complexation efficiency values indicated that the drug has at least threefold greater affinity for hydroxypropyl-β-CD compared to randomly methylated-β-CD. The characterization techniques confirmed inclusion complex formation between berberine chloride and HPβCD and demonstrated the feasibility of developing an oral solution dosage form of the drug.KEY WORDS: berberine chloride, complexation, cyclodextrin, solubility, surfactants  相似文献   

15.
Efavirenz (EFV) is an oral antihuman immunodeficiency virus type 1 drug with extremely poor aqueous solubility. Thus, its gastrointestinal absorption is limited by the dissolution rate of the drug. The objective of this study was to characterize the inclusion complexes of EFV with β-cyclodextrin (β-CD), hydroxypropyl β-CD (HPβCD), and randomly methylated β-CD (RMβCD) to improve the solubility and dissolution of EFV. The inclusion complexation of EFV with cyclodextrins in the liquid state was characterized by phase solubility studies. The solid-state characterization of various EFV and CD systems was performed by X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy analyses. Dissolution studies were carried out in distilled water using US Pharmacopeia dissolution rate testing equipment. Phase solubility studies provided an AL-type solubility diagram for β-CD and AP-type solubility diagram for HPβCD and RMβCD. The phase solubility data enabled calculating stability constants (K s) for EFV-βCD, EFV-HPβCD, and EFV-RMβCD systems which were 288, 469, and 1,073 M−1, respectively. The physical and kneaded mixtures of EFV with CDs generally provided higher dissolution of EFV as expected. The dissolution of EFV was substantially higher with HPβCD and RMβCD inclusion complexes prepared by the freeze drying method. Thus, complexation with HPβCD and RMβCD could possibly improve the dissolution rate-limited absorption of EFV.  相似文献   

16.
Improving the ADME profile of drug candidates is a critical step in lead optimization, and because pKa affects most ADME properties such as lipophilicity, solubility, and metabolism, it is extremely advantageous to predict pKa in order to guide the design of new compounds. However, accurately (<0.5 log units) predicting pKa by empirical methods can be challenging especially for novel series, because of lack of knowledge on determinants of pKa (steric effects, ring effects, H‐bonding, etc.), and because of limited experimental data on the effects of specific chemical groups on the ionization of an atom. To address these issues, we recently developed the computational package MoKa, which integrates graphical and command line tools designed for computational and medicinal chemists to predict the pKa values of organic compounds. Here, we present the major issues considered when we developed MoKa, such as the accurate selection of training data, the fundamentals of the methodology (which has also been extended to predict protein pKa), the treatment of multiprotic compounds, and the selection of the dominant tautomer for the calculation. Last, we illustrate some specific applications of MoKa to predict solubility, lipophilicity, and metabolism.  相似文献   

17.
A microcalorimetric technique based on the bacterial heat output was explored to evaluate the effect of copper–indomethacin complex on Staphylococcus aureus and Escherichia coli. The extent and duration of the inhibitory effect on the metabolism as judged from the rate constant (k) in log phase, half inhibitory ratio (IC50). The rate constant of bacteria in the presence of the drugs decreased with increasing concentrations of the drugs. The copper complex exhibited higher antibacterial activity than the parent drug whose IC50 value was 1.5 and 2.3 times lower than that of indomethacin to S. aureus and E. coli, respectively. It was indicated that when the copper ion is coupled with indomethacin, the drug is more potent as a bacteriostatic.  相似文献   

18.
Abstract

The concept of mitochondrial targeting for chemo- and photochemotherapy of neoplastic diseases has its origin in the observation that enhanced mitochondrial transmembrane potential is a common tumor cell phenotype. As a result of this enhanced transmembrane potential, a number of cationic dyes accumulate in larger amounts and are retained for longer periods in the mitochondria of tumor cells than in normal cells. Only a relatively small number of (photo)toxic dyes known to localize in energized cell mitochondria are capable of inducing the destruction of tumor cells with desirable degrees of selectivity, however. We investigated how lipophilic character may affect the degree of specificity with which cationic dyes localize in energized cell mitochondria and how mitochondrial specificity may affect tumor cell selectivity. To this end, we used fluorescence microscopy to characterize the subcellular localization of ethyl violet and seven analogs of the prototypical mitochondria-specific dye, rhodamine 123. All cationic rhodamines studied here (?0.62 < log Dow < 1.60, where Dow represents the n-octanol/water distribution coefficient) were found to show considerable mitochondrial specificity, while the more lipophilic ethyl violet (log Dow = 2.37) did not. Ethyl violet was found to localize not only in mitochondria, but also in lysosomes. We also compared the degree of selective tumor cell killing induced by ethyl violet and two phototoxic rhodamines, i.e., the dibromo derivatives of rhodamine 123 and its n-octyl ester analog. While ethyl violet induces the destruction of human uterine sarcoma (MES-SA) cells and normal green monkey kidney cells (CV-1) with comparable efficiency, the mitochondria-specific dibromorhodamines were found to induce the destruction of MES-SA cells with considerable selectivity. Our findings are consistent with the premise that mitochondrial localization per se does not provide successful selective tumor cell killing using mitochondrial targeting. Our results reinforce the hypothesis that while most cationic dyes can be expected to localize at least to some extent in energized cell mitochondria, only those showing virtually absolute mitochondrial specificity can actually mediate the destruction of tumor cells with desirable selectivity. These findings also support the hypothesis that the probability of success of mitochondrial targeting in photochemotherapy of neoplastic diseases is bound to be higher when the Dow associated with the drug candidate falls within approximately two orders of magnitude of that of rhodamine 123.  相似文献   

19.
Lactate esters are widely used as food additives, perfume materials, medicine additives, and personal care products. The objective of this work was to investigate the effect of a series of lactate esters as penetration enhancers on the in vitro skin permeation of four drugs with different physicochemical properties, including ibuprofen, salicylic acid, dexamethasone and 5-fluorouracil. The saturated donor solutions of the evaluated drugs in propylene glycol were used in order to keep a constant driving force with maximum thermodynamic activity. The permeability coefficient (K p), skin concentration of drugs (SC), and lag time (T), as well as the enhancement ratios for K p and SC were recorded. All results indicated that lactate esters can exert a significant influence on the transdermal delivery of the model drugs and there is a structure-activity relationship between the tested lactate esters and their enhancement effects. The results also suggested that the lactate esters with the chain length of fatty alcohol moieties of 10–12 are more effective enhancers. Furthermore, the enhancement effect of lactate esters increases with a decrease of the drug lipophilicity, which suggests that they may be more efficient at enhancing the penetration of hydrophilic drugs than lipophilic drugs. The influence of the concentration of lactate esters was evaluated and the optimal concentration is in the range of 5∼10 wt.%. In sum, lactate esters as a penetration enhancer for some drugs are of interest for transdermal administration when the safety of penetration enhancers is a prime consideration.  相似文献   

20.
Summary Adenosine aminohydrolase from calf intestinal mucosa is sensitive to changes in its environment produced by small mole fractions of dimethylsulfoxide (DMSO). At a mole fraction of 0.1 where the dielectric constant is lowered from that of 78 of neat water to about 76.5,V max was reduced by 65% and affinity for substrate (adenosine) and the two competitive inhibitors, inosine and N6-benzyladenosine, was decreased markedly. However, this decreased affinity was such that Ki/Km remained virtually constant for both inhibitors. DMSO itself showed the kinetics of a mixed inhibitor with Ki decreasing with increasing mole fraction. This cosolvent also decreased the heat stability of the enzyme which suggests that enzyme conformation is altered by DMSO.Comparison of data in the presence of DMSO with previously obtained data with dioxane shows that heat stability as well asV max, at a given value of dielectric constant, is independent of the amount or nature of cosolvent used to achieve that dielectric constant. However, cosolvent induced changes in Ki indicate that colligative as well as dielectric constant effects contribute to the observed changes in kinetic behavior.These experiments may be considered as models for the behavior of enzymes in the medium of lowered dielectric constant expected in the vicinity of cytoplasmic membranes. The results indicate that in such an environment, adenosine aminohydrolase would be expected to be less efficient a catalyst, but equally susceptible to product inhibition, as compared to media of dielectric constant approaching that of water.Supported in part by Grant RR-262 from the General Clinical Research Centers Progam of the Division of Research Resources, National Institutes of Health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号