首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Albumin was isolated immunologically from various subcellular fractions from livers of adult male rats receiving an intraperitoneal injection of [3H]leucine to investigate the kinetics and pathway of subcellular transfer of newly synthesized albumin during secretion. At appropriate time intervals, livers were excised and fractionated into endoplasmic reticulum and Golgi apparatus. Golgi apparatus were further subfractionated into cisternae and secretory vesicles. In endoplasmic reticulum fractions, labeled albumin appeared within 7.5 min of injection of isotope, followed by a rapid decline in specific activity. Albumin in Golgi apparatus was labeled and concentrated in secretory vesicles over 25 min. The radioactivity in albumin per mg total protein was highest in secretory vesicles and insignificant in the cisternal fraction. Labeled albumin was present in serum by 30 min and radioactivity in serum albumin reached a plateau within 60–90 min after injection of isotope. Results provide evidence for the migration of albumin from its site of synthesis on endoplasmic reticulum membrane-bound polyribosomes to its site of secretion into the circulation via the Golgi apparatus. The pathway of albumin transport to secretory vesicles is suggested to involve peripheral elemenst of the Golgi apparatus. Secretory vesicle formation and maturation required 20 to 30 min for completion, via a mechanism whereby the inner spaces of the central saccules may be bypassed.  相似文献   

2.
The mystery of the unstained Golgi complex cisternae   总被引:2,自引:0,他引:2  
The Champy-Maillet OsKI reaction has been used upon Golgi complexes to show two kinds of staining. It stains material being processed as it passes along the secretory pathway of the rough endoplasmic reticulum (RER) and Golgi cisternae (GC) up to crystallization in secretory vesicles. It also stains separately the environment within parts of the GC. This GC staining may occur in all compartments (transition vesicles, saccules, condensing vacuoles), but it is characteristically missing from any one of them. The unstained cisternae may be explained if outer saccules are made from either stained or unstained transition vesicles, both of which occur. The presence of empty, unstained transition vesicles is dictated by the surface to volume ratios of microvesicles in relation to saccules. Most transition vesicles must return their membrane to the endoplasmic reticulum, but from time to time it is presumed that they fuse to make a saccule. Saccules, stained and unstained, then mature through the stack. OsKI reactions with tissues and test molecules suggest that in the RER and GC the stain detects labile--S . S--bridges before they lock the tertiary configuration of proteins.  相似文献   

3.
Summary In mice most of the ependymal cells of the subcommissural organ (SCO cells) are densely packed with dilated cisternae of the endoplasmic reticulum (ER) containing either finely granular or flocculent materials. The well developed supra-nuclear Golgi apparatus consists of stacks of flattened saccules and small vesicles; the two or three outer Golgi saccules are moderately dilated and exhibit numerous fenestrations; occasional profiles suggesting the budding of coated vesicles and formation of membrane-bound dense bodies from the ends of the innermost Golgi saccules are seen. A few coated vesicles and membrane-bound dense bodies of various sizes and shapes are also found in the Golgi region.The contents of the dilated ER cisternae are stained with periodic acid-silver methenamine techniques. In the Golgi complex the two or three inner saccules are stained as deeply as the dense bodies, and the outer saccules are only slightly stained. The stained contents of ER cisternae are more electron opaque than those of the outer but less opaque than those of the inner Golgi saccules and the dense bodies.Acid phosphatase activities are localized in the dense bodies, some of the coated vesicles in the Golgi region, and in the one or two inner Golgi saccules.On the basis of these results the following conclusions have been reached: (1) In mouse SCO cells the finely granular and the flocculent materials in the lumen of ER cisternae contain a complex carbohydrate(s) which is secreted into the ventricle to form Reissner's fiber; (2) the secretory substance is assumed to be synthesized by the ER and stored in its cisternae, and the Golgi apparatus might play only a minor role, if any, in the elaboration of the secretory material; (3) most of the dense bodies in the mouse SCO cells are lysosomal in nature instead of being so-called dark secretory granules.Sponsored by the National Science Council, Republic of China.  相似文献   

4.
Electronmicroscopic study of Coleps, Colpidium, Stylonychia, and especially of Paramecium confirmed the presence of the Golgi complex in these fresh-water ciliates. The complex consisted of numerous dictyosomes scattered throughout the cytoplasm. Each dictyosome included a few flat, partly reticulated saccules lying parallel to a cistern of rough endoplasmic reticulum which was free of ribosomes on the side exposed to the dictyosome. A unique layer of vesicles, characterized by constant size and a thick wall, separated the endoplasmic reticulum from the dictyosomes. The vesicles could be regarded as transition vesicles. Coated vesicles were seen in continuity with some of the flattened saccules. The possible role of the Golgi complex in the physiology of ciliates is discussed.  相似文献   

5.
Distribution of Ca2+ ions, precipitated by means of pyroantimonate potassium, has been investigated electron microscopically in secretory cells of the mammary gland of lactating white mice. In the glandular cells, that are at the state of inhibition of secretory activity, the cytochemical reaction product is localized on the internal side of the basal, lateral and apical parts of the plasmolemma, in mitochondrial matrix, in cisterns and in the Golgi complex vesicles, in the nuclear areas, occupied by euchromatin. Oxytocin effect produces a certain complex of ultrastructural changes in the cell accompanied by redistribution of Ca2+ ions. Amount of precipitate in mitochondria decreases. It is revealed in the lumen of dilated canals of the granular endoplasmic reticulum, in the zone of decondensated nuclear chromatin, in the Golgi complex vesicles. The vesicles become larger and fuse with each other. The changes mentioned demonstrate increased synthetic and transport processes, occurring in the glandular epithelium of the mammary gland after oxytocin effect.  相似文献   

6.
The method of secretory granuleformation in the acinar cells of the rat exorbital lacrimal gland was studied by electron microscope morphological and cytochemical techniques. Immature secretory granules at the inner face of the Golgi apparatus were frequently attached to a narrow cisternal structure similar to GERL as described in neurons by Novikoff et al. (Novikoff, P. M., A. B. Novikoff, N. Quintana, and J.-J. Hauw. 1971. J. Cell Bio. 50:859-886). In the lacrimal gland. GERL was located adjacent to the inner Golgi saccule, or separated from it by a variable distance. Portions of GERL were often closely paralleled by modified cisternae of rough endoplasmic reticulum (RER), which lacked ribosomes on the surface adjacent to GERL. Diaminobenzidine reaction product of the secretory enzyme peroxidase was localized in the cisternae of the nuclear envelope, RER, peripheral Golgi vesicles, Golgi saccules, and immature and mature secretory granules. GERL was usually free of peroxidase reaction product or contained only a small amount. Thiamine pyrophosphatase reaction product was present in two to four inner Golgi saccules; occasionally, the innermost saccule was dilated and fenestrated, and contained less reaction product than the next adjacent saccule. Acid phosphatase (AcPase) reaction product was present in GERL, immature granules, and, rarely, in the innermost saccule, but not in the rest of the Golgi saccules. Thick sections of AcPase preparations viewed at 100 kV revealed that GERL consisted of cisternal, and fenestrated or tublular portions. The immature granules were attached to GERL by multiple connections to the tublular portions. These results suggest that, in the rat exorbital lacrimal gland, the Golgi saccules participate in the transport of secretory proteins, and that GERL is involved in the formation of secretory granules.  相似文献   

7.
An immunoelectron microscopic study was undertaken to survey the intracellular pathway taken by the integral membrane protein (G-protein) of vesicular stomatitis virus from its site of synthesis in the rough endoplasmic reticulum to the plasma membrane of virus-infected Chinese hamster ovary cells. Intracellular transport of the G-protein was synchronized by using a temperature-sensitive mutant of the virus (0-45). At the nonpermissive temperature (39.8 degrees C), the G-protein is synthesized in the cell infected with 0-45, but does not leave the rough endoplasmic reticulum. Upon shifting the temperature to 32 degrees C, the G-protein moves by stages to the plasma membrane. Ultrathin frozen sections of 0-45-infected cells were prepared and indirectly immunolabeled for the G-protein at different times after the temperature shift. By 3 min, the G-protein was seen at high density in saccules at one face of the Golgi apparatus. No large accumulation of G-protein-containing vesicles were observed near this entry face, but a few 50-70-mm electron-dense vesicular structures labeled for G-protein were observed that might be transfer vesicles between the rough endoplasmic reticulum and the Golgi complex. At blebbed sites on the nuclear envelope at these early times there was a suggestion that the G-protein was concentrated, these sites perhaps serving as some of the transitional elements for subsequent transfer of the G-protein from the rough endoplasmic reticulum to the Golgi complex. By 3 min after its initial asymmetric entry into the Golgi complex, the G-protein was uniformly distributed throughout all the saccules of the complex. At later times, after the G-protein left the Golgi complex and was on its way to the plasma membrane, a new class of G-protein-containing vesicles of approximately 200-nm diameter was observed that are probably involved in this stage of the transport process. These data are discussed, and the further prospects of this experimental approach are assessed.  相似文献   

8.
The morphological effects of Brefeldin A (BFA) on the parotid acinar cells of a rat were investigated at the stage of active resynthesis of secretory materials following administration of the secretogogue, isoproterenol. Incubation with BFA resulted in: a) marked dilation of the rough endoplasmic reticulum (RER), b) involution of the Golgi complex to rudimentary forms which disseminated throughout the cytoplasm, and c) agenesis of secretion granules. It appears that the primary action of BFA is inhibition of the export of secretory materials from the RER toward the Golgi complexes. Histochemical staining indicated the thiamine pyrophosphatase (TPPase) positive saccules of the Golgi stack to undergo degradation in autophagic vacuoles. In contrast, small vesicles showing the osmium reducing activity characteristic of cis elements, including osmium negative vesicles, continued to be present throughout a 4-h period of investigation, indicating the cis and, most likely, medial elements to be the components of the rudimentary Golgi complexes. On removal of the drug, a large number of transport vesicles appeared immediately from the RER and carried secretory materials to the rudimentary Golgi complex, so that the organelles were rapidly reconstructed within 30-60 min, followed by the reaccumulation of secretory granules by 90 min. It is thus indicated that the size and configuration of the Golgi complex is regulated by a dynamic equilibrium of the transport of secretory materials, and that the rudimentary Golgi complex containing cis and probably medial elements may function as the smallest units of the Golgi complex for full development as seen under normal conditions.  相似文献   

9.
Tim Brac 《Tissue & cell》1984,16(6):859-871
The distribution of microinjected ferritin, ranging in charge from anionic to highly cationic, has been used to indicate differences in surface charge on the rough endoplasmic reticulum and the Golgi complex of intact cells. Highly cationic ferritins (HCF)(HCF1, pI 7.9-9.1; HCF2, pI 8.5-9.4; and HCF3.pI 9.5-10.1) were mostly bound and caused swelling of the rough endoplasmic reticulum. Cationic ferritin (CF) (pI 7.0-8.0) and anionic ferritin (AF) (pI 4.0-4.4) caused no changes in morphology. The distribution of these ferritins in the cytoplasmic space varied with their charge. Significantly more CF was bound to surfaces than was found in the free cytoplasmic space. Conversely, there was significantly more AF in the free cytoplasmic space than close to surfaces. Therefore, the intracellular surfaces are negatively charged. Comparison of the structures in the secretory pathway showed no differences in ferritin binding to transition vesicles, rough endoplasmic reticulum, Golgi saccules or secretory vesicles. The Golgi complex beads are not distinguished by their charge. It is therefore unlikely that charge differences play a role in regulating membrane-membrane interactions in this region of the secretory pathway.  相似文献   

10.
Labeling of the Golgi complex with the lectin conjugate wheat germ agglutinin-horseradish peroxidase (WGA-HRP), which binds to cell surface membrane and enters cells by adsorptive endocytosis, was analyzed in secretory cells of the anterior, intermediate, and posterior lobes of mouse pituitary gland in vivo. WGA-HRP was administered intravenously or by ventriculo-cisternal perfusion to control and salt-stressed mice; post-injection survival times were 30 min-24 hr. Peroxidase reaction product was identified within the extracellular clefts of anterior and posterior pituitary lobes through 24 hr but was absent in intermediate lobe. Endocytic vesicles, spherical endosomes, tubules, dense and multivesicular bodies, the trans-most saccule of the Golgi complex, and dense-core secretory granules attached or unattached to the trans Golgi saccule were peroxidase-positive in the different types of anterior pituitary cells and in perikarya of supraoptico-neurohypophyseal neurons; endoplasmic reticulum and the cis and intermediate Golgi saccules in the same cell types were consistently devoid of peroxidase reaction product. Dense-core secretory granules derived from cis and intermediate Golgi saccules in salt-stressed supraoptic perikarya likewise failed to exhibit peroxidase reaction product. The results suggest that in secretory cells of anterior and posterior pituitary lobes, WGA-HRP, initially internalized with cell surface membrane, is eventually conveyed to the trans-most Golgi saccule, in which the lectin conjugate and associated membrane are packaged in dense-core secretory granules for export and potential exocytosis of the tracer. Endoplasmic reticulum and the cis and intermediate Golgi saccules appear not to be involved in the endocytic/exocytic pathways of pituitary cells exposed to WGA-HRP.  相似文献   

11.
Young rats given an intravenous injection of [3H]proline were killed at successive times from 4 to 80 min later. Fibroblasts from the front foot pad were radioautographed ; silver grains were counted over several of the organelles and the results were expressed as percent radiolabel per unit volume. These percentages reached a peak over rough endoplasmic reticulum cisternae at 4 min, intermediate vesicles and tubules at 10 min, spherical distensions of cis-side Golgi saccules at 20 min, cylindrical distensions of trans-side saccules between 40 and 60 min, and secretory granules at 60 min. It is proposed that the succession of peaks corresponds to the migration pathway of collagen precursor proteins within fibroblasts; that is, the proteins synthesized in rough endoplasmic reticulum are delivered by intermediate vesicles and/or tubules to the spherical distensions of cis-side saccules, somehow pass from there to the cylindrical distensions of trans-side saccules and, finally, are carried by secretory granules to the extracellular space.  相似文献   

12.
Y Goda  S R Pfeffer 《FASEB journal》1989,3(13):2488-2495
Proteins bound for the cell surface, lysosomes, and secretory storage granules share a common pathway of intracellular transport. After their synthesis and translocation into the endoplasmic reticulum, these proteins traverse the secretory pathway by a series of vesicular transfers. Similarly, nutrient and signaling molecules enter cells by endocytosis, and move through the endocytic pathway by passage from one membrane-bound compartment to another. Little is known about the mechanisms by which proteins are collected into transport vesicles, or how these vesicles form, identify their targets, and subsequently fuse with their target membranes. An important advance toward our understanding these processes has come from the establishment of cell-free systems that reconstitute vesicular transfers in vitro. It is now possible to measure, in vitro, the transport of proteins from the endoplasmic reticulum to the Golgi, between Golgi cisternae, and the formation of transport vesicles en route from the trans Golgi network to the cell surface. Along the endocytic pathway, cell-free systems are available to study clathrin-coated vesicle formation, early endosome fusion, and the fusion of late endosomes with lysosomes. Moreover, the selective movement of receptors between late endosomes and the trans Golgi network has also been reconstituted. The molecular mechanisms of vesicular transport are now amenable to elucidation.  相似文献   

13.
Asymmetrical microtubule capping structures in frog palate cilia   总被引:3,自引:0,他引:3  
The three-dimensional ultrastructure of the Golgi apparatus in milk secreting epithelial cells of bovine mammary gland was explored. From computer-aided reconstructions of serial thin sections, it was determined that the Golgi apparatus was composed of a single set of stacked cisternae. The three-dimensional shape of the dictyosome varied from cell to cell, but the overall shape was that of a hollow cone, cylinder, or bowl. The cis and trans surfaces of the dictyosome were arranged in three-dimensional space such that the cis face was located on the outer surface of the hollow structure and the trans face on the inner surface. The cytoplasmic channel (secretory channel) that traversed the longitudinal axis of the hollow dictyosome contained secretory vesicles. Densely stacked cisternae of rough endoplasmic reticulum surrounded the dictyosome, and microvesicles appeared to fuse with, or bud from, cisternae of both organelles. These findings suggest that Golgi apparatus of the lactating epithelial cell is highly organized and that the Golgi apparatus and secretory channel are essentially an independent compartment within the cell.  相似文献   

14.
Antibodies prepared against enzymatically deglycosylated porcine submaxillary gland mucin (apomucin), which were unreactive with native mucin and its partially deglycosylated derivatives, were used to immunolocalize apomucin in situ. Electron microscopy of sections of Lowicryl K4M-embedded tissue reacted successively with antibodies and protein A-gold complexes showed apomucin exclusively in mucous cells within the rough endoplasmic reticulum, transitional elements of the endoplasmic reticulum, and vesicles at the cis side of the Golgi apparatus. The Golgi apparatus, forming mucous droplets, and mucous droplets contained no apomucin. Although the rough endoplasmic reticulum contained most of the apomucin in mucous cells, some cisternae of the endoplasmic reticulum and the nuclear envelope were devoid of apomucin. Examination of tissue sections treated with the glycosidases used to prepare apomucin revealed immunolabel for apomucin throughout the secretory pathway. Colloidal gold coated with Helix pomatia lectin was used to detect nonreducing N-acetylgalactosamine residues. In mucin-producing cells lectin-gold was found in the mucous droplets, the forming mucous droplets, and throughout the Golgi apparatus but mostly in the cis portion of this organelle. In tissue sections reacted successively with lectin-gold and anti-apomucin/protein A-gold, both types of gold complex could be found in the cis side of the Golgi apparatus. These data indicate that the O-glycosylation of mucin is a posttranslational event that occurs in the Golgi apparatus and begins in the cis side of the Golgi apparatus.  相似文献   

15.
 Newly synthesized proteins destined for delivery to the cell surface are inserted cotranslationally into the endoplasmic reticulum (ER) and, after their correct folding, are transported out of the ER. During their transport to the cell surface, cargo proteins pass through the various cisternae of the Golgi apparatus and, in the trans-most cisternae of the stack, are sorted into constitutive secretory vesicles that fuse with the plasma membrane. Simultaneously with anterograde protein transport, retrograde protein transport occurs within the Golgi complex as well as from the Golgi back to the ER. Vesicular transport within the early secretory pathway is mediated by two types of non-clathrin coated vesicles: COPI- and COPII-coated vesicles. The formation of these carrier vesicles depends on the recruitment of cytosolic coat proteins that are thought to act as a mechanical device to shape a flattened donor membrane into a spherical vesicle. A general molecular machinery that mediates targeting and fusion of carrier vesicles has been identified as well. Beside a general overview of the various coat structures known today, we will discuss issues specifically related to the biogenesis of COPI-coated vesicles: (1) a possible role of phospholipase D in the formation of COPI-coated vesicles; (2) a functional role of a novel family of transmembrane proteins, the p24 family, in the initiation of COPI assembly; and (3) the direction COPI-coated vesicles may take within the early secretory pathway. Moreover, we will consider two alternative mechanisms of protein transport through the Golgi stack: vesicular transport versus cisternal maturation. Accepted: 24 October 1997  相似文献   

16.
Synopsis the structure and cytochemistry of GERL was studied in several different exocrine secretory cells, including the exorbital lacrimal gland, parotid, lingual serous (von Ebner's), submandibular, and sublingual salivary glands, and exocrine pancreas of the rat; the lacrimal, parotid and pancreas of the guinea-pig; and the lacrimal gland of the monkey. GERL was morphologically and cytochemically similar in all cell types studied. It was located in the inner Golgi region and consisted of cisternal and tubular portions. Immature secretory granules were in continuity with GERL through multiple tubular connections. Modified cisternae of endoplasmic reticulum, with ribosomes only on one surface, closely paralleled parts of GERL. GERL and immature granules were intensely reactive for acid phosphatase activity, while the inner Golgi saccules were reactive for thiamine pyrophosphatase and nucleoside diphosphatase activities. In the rat exorbital lacrimal and parotid glands, reaction product for endogenous peroxidase, a secretory enzyme, was present in the endoplasmic reticulum, Golgi saccules, immature and mature secretory granules. GERL was usually free of reaction product or contained only a small amount. The widespread occurrence of GERL in secretory cells, and its intimate involvement with the formation of granules, suggest that it is an integral component of the secretory process.  相似文献   

17.
Recent studies have questioned the idea that the Golgi complex is a stable organelle with a unique identity through which secretory cargo is transported by vesicles. Instead, it is proposed that Golgi apparatus proteins continuously recycle via the endoplasmic reticulum by vesicle transport, whereas cargo molecules remain in maturing cisternal structures. Rather than forming a rigid matrix, structural Golgi proteins might be highly dynamic and recycle via the cytoplasm. I will discuss the evidence for these claims and consider whether or not they really disprove older ideas on how the Golgi apparatus is structured and performs its function.  相似文献   

18.
Infection of a clonal rat pheochromocytoma cell line, PC12, with Japanese encephalitis (JE) virus produced successively higher titers of virus in the culture fluid during the 72-h experimental period. In electron microscopical observation, JE virus entered PC12 cells by direct penetration through the plasma membrane at 2 min postinoculation (p.i.) and caused marked cellular hypertrophy and extensive proliferation of the cellular secretory system including rough endoplasmic reticulum (RER) and Golgi complexes starting 24 h p.i. The proliferating RER of the virally infected cells contained progeny virions and characteristic endoplasmic reticulum vesicles in its cisternae, and the proliferating Golgi complexes contained virions in their saccules. These findings indicated that the proliferation of the cellular secretory system occurred in association with viral replication and maturation in the system. Seventy-two hours p.i., the cellular secretory system of infected PC12 cells showed degenerative changes with vesiculation, disorganization, and dispersion of the Golgi complexes and fragmentation, focal cystic dilation, and dissolution of the RER in the same manner as those seen in the secretory system of JE-virus-infected neurons in the mouse brain. Thus, JE-virus-infected PC12 cells seem to be a suitable neurogenic cell line for the study of the pathogenic mechanism of JE virus. At the same time, the virally infected cells seem to offer an interesting cell model for the study of the morphogenesis of the cellular secretory system.  相似文献   

19.
In the region of the base of the intestinal crypts undifferentiated goblet cells display a configuration and constellation of organelles and membrane structures that are indicative of their importance for function. These images at this stage of development deliver a scenario of the mechanism of secretory granule production: aggregates of protein vesicles from the "transitional elements" (PALADE) of the granular endoplasmic reticulum are, so to speak, rolled up on the trans side of the Golgi apparatus by inversion of peripheral membrane segments of the innermost Golgi lamellae, thereby forming corpuscles. The origin of the capsulated vacuoles, which contain vesicles as single elements or as conglomerates, is well established. Their capsule consists of a trilaminar external and external and internal membrane; between them lies condensed material of the Golgi apparatus. In the opinion of the present author, the development of the ensheathed vacuoles represents a basic, more general mechanism. In contrast, the further steps of synthesis, for the formation of secretory granules, are more heterogeneous. Condensation of the vesicles and the inner capsular membrane results in the formation of a prosecretory granule, which in the basic element in the process of secretory granule production. The prosecretory granules develop singly or by fusion with other granules to give primary secretory granules. The complexity of this mechanism of secretory granule formation, however, becomes evident when considering the apposition of capsulated vacuoles and prosecretory--primary--secondary secretory granules, of prosecretory and primary secretory granules as well as prosecretory granules and secondary secretory granules. Generally, primary granules show a tendency to become secondary secretory granules or to fuse with them. During maturation of the goblet cells the secretory granules fuse to form larger mucous bodies in the theca by fusion of the laminae of the membranes; a final product, there is a homogeneous mucous mass devoid of membranes.  相似文献   

20.
What is the first membrane fusion step in the secretory pathway? In mammals, transport vesicles coated with coat complex (COP) II deliver secretory cargo to vesicular tubular clusters (VTCs) that ferry cargo from endoplasmic reticulum exit sites to the Golgi stack. However, the precise origin of VTCs and the membrane fusion step(s) involved have remained experimentally intractable. Here, we document in vitro direct tethering and SNARE-dependent fusion of endoplasmic reticulum–derived COPII transport vesicles to form larger cargo containers. The assembly did not require detectable Golgi membranes, preexisting VTCs, or COPI function. Therefore, COPII vesicles appear to contain all of the machinery to initiate VTC biogenesis via homotypic fusion. However, COPI function enhanced VTC assembly, and early VTCs acquired specific Golgi components by heterotypic fusion with Golgi-derived COPI vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号