首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Prohexadione calcium (BX-112) is a novel plant growth regulatorthat inhibits the late stages of the biosynthesis of gibberellinsin plants. Fourteen kinds of gjbberellin, helminthosporol and'helminthosporic acid were applied simultaneously with BX-112to rice seedlings (Oryza sativa L. ), and their growth-promotingactivities in terms of shoot elongation were examined. The growth-promotingactivities of GA1, GA4, GA18, GA22, GA23, GA38, helminthosporoland helminthosporic acid were not inhibited by BX-112, but thoseof GA5, GA9, GA15, GA19, GA20, GA31, GA44 and GA53 were inhibited.These results suggest that 3ß-hydroxylation is animportant and necessary step in the biosynthesis of gibberellinsthat promote shoot elongation in rice seedlings. The weak promotionof shoot elongation by GA22 in the presence of BX-112 suggeststhat the effect of a hydroxyl group at C-18 of GA22 might beable to mimic the effect of the 3ß-hydroxyl groupof GA1. Helminthosporol and helminthosporic acid may promotethe shoot elongation of rice by mimicking physiologically activegibberellins and not by stimulating their biosynthesis. 1Part I is the previous paper by Nakayama et al. (1990a) 3Present address: Frontier Research Program RIKEN, Wako-shi,Saitama, 351-01 Japan. (Received June 26, 1991; Accepted September 4, 1991)  相似文献   

2.
3rß-Fluorogibberellin A9 (3rß-fluoro-GA9),3rßfluoro-GA20, 3rß-fluorodeoxygibberellinC (3rß-fluoro-DGC) and 13-fluoro-GA9 were prepared,and their effects on plant growth and gibberellin (GA) 3rß-hydroxyIaseswere examined. 3rß-Fluoro-GA9 and 3rß-fluoro-GA20promoted the growth of dwarf rice (Oryza sativa L. cv. Tan-ginbozu)seedlings to three times higher than the control seedlings ata dosage of 3 µ plant–1, and 3rßfluoro-DGCto twice higher at the same dosage. 3rßg-Fluoro-GA9was active in cucumber (Cucumis sativus L.) hypocotyl assay,its activity being about one-thirtieth as much as that of GA4.3rß-Fluoro-GAs were active per se in promoting theshoot elongation of rice. 3rß-Fluoro-DGC inhibitedthe 3rß-hydroxylation of [3H2]GA9 to [3H]GA4 by GArß-hydroxylase from bean (Phaseolus vulgaris L.),but 3rß-fluoro-GA9 and 3rß-fluoro-GA20 didnot show any effects on the enzyme activity. These 3rß-fluoro-GAsalso showed no or only a weak inhibitory effect on the rß-hydroxylasefrom pumpkin (Cucurbita maxima L.). 13-Fluoro-GA9 promoted growthof rice and cucumber seedlings, and inhibited the 3rß-hydroxylasesfrom both bean and cucumber. 13-Fluoro-GA9was converted into13-fluoro-GA4 and 2,3-didehydro-13-fluoro-GA9, in a cell-freesystem from bean, and conversion of 13-fluoro-GA9 into 13-fluoro-GA4was also observed in a cell-free system from pumpkin. Theseresults suggest that 13-fluoro-GA9 is one of the substratesof GA 3rß-hydroxy-lases, and that 13-fluoro-GA9 isactive as a result of the conversion to 13-fluoro-GA4 in riceand cucumber seedlings. (Received October 27, 1997; Accepted March 13, 1998)  相似文献   

3.
Oryzains, cysteine proteinases of rice seeds, are induced byGA3 in germinating rice seeds [Abe et al. (1987) Agric. Biol.Chem. 51: 1509]. The effects of GA1, GA3, GA4, GA9, and GA20on the production of oryzain and -amylase were investigatedin embryoless half- and whole-seeds of rice (cv. Nipponbare).When gibberellins (GAs) were incubated with embryoless half-seeds,GA1, GA3 and GA4 induced oryzain and -amylase, but GA9, andGA20 did not. GA9 and GAM induced oryzain and -amylase productionin whole seeds, but this production was inhibited by the simultaneousapplication of prohexadione, an inhibitor of 2ß- and3ß-hydroxylation of GAs. Prohexadione did not inhibitthe activities of oryzain and -amylase induced by GA1. Theseresults suggest that GAs possessing the 3ß-hydroxylgroup induce activities of oryzain and -amylase in rice seedsand that GA9 and GA20 have activity only after they are convertedmetabolically to active GAs, probably GA4 and GA1, respectively.GA1, was more active than GA4 in both half seeds and wholeseeds incubation. Oryzain and -amylase activities induced byGA4 were significantly inhibited in the presence of 10–4M prohexadione. This suggests that the conversion of GA1, toGA4 (13-hydroxylation) might be inhibited at a high dose ofprohexadione in whole seeds. 4Present address: Institute of Food Development, Kyung Hee University,Suwon 449-701, Korea  相似文献   

4.
A series of 13-hydroxygibberellins, gibberellin A1 (GA1), GA19,GA20, GA44 and GA53, were identified by GC/MS (full scan) fromvegetative shoots of tall (cv. Kentucky Wonder) and dwarf (cv.Masterpiece) Phaseolus vulgaris L. It is suggested that GA1is active per se in the control of shoot elongation of P. vulgarisL., and that dwarfism in Masterpiece is not due to shortageof the active GA, but to its low ability to respond to the bioactiveGA. (Received August 29, 1988; Accepted November 21, 1988)  相似文献   

5.
Endogenous levels of gibberellins in shoots and ears of twodwarf rice (Oryza sativa L.) cultivars, Tan-ginbozu (dx mutant)and Waito-C (dy mutant), were analyzed and compared with thoseof normal rice cultivar, Nihonbare. The endogenous levels of13-hydroxylated gibberellins in Tan-ginbozu were much lowerthan those in Nihonbare. In Waito-C, the levels of GA19 andGA20 in the shoots were higher but that of GA1 was lower thanthe levels of these gibberellins in Nihonbare. These resultssupport the hypothesis that the dy gene controls the 3ß-hydroxylationof GA20 to GA1 while the dx gene controls a much earlier stepin the gibberellin biosynthesis. Our results indicate that GA1is the active gibberellin that regulates the vegetative growthof rice. The endogenous levels of GA4 in the ears of the twodwarf cultivars of rice were higher than the level of GA4 inthe ears of the normal cultivar, Nihonbare suggesting that thebiosynthesis of gibberellin is not blocked in the anthers ofthe dwarf rice. (Received April 27, 1989; Accepted July 12, 1989)  相似文献   

6.
The properties and mode of action of a new plant growth retardant,(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol(S-3307), were investigated. When a dipping method was used,S-3307 at 2.2 ? 10-7 M (0.064 ppm) retarded the growth of riceplants by 50% of the value found for the control. The retardationof growth was removed by a gibberellin application (8.7?10-5M). S-3307 had nearly no effect on the shoot elongation inducedby gibberellin. The amounts of gibberellin-like substances inrice shoots were decreased by S-3307 treatment in proportionto the degree of growth retardation. This observation was confirmedwith GA1 and GA19, the main gibberellins in the rice plant.Our results indicate that S-3307 inhibits gibberellin biosynthesisin rice plants. (Received November 7, 1983; Accepted March 21, 1984)  相似文献   

7.
The sensitivity of the micro-drop assay with dwarf rice (Oryzasativa L., cv. Tan-ginbozu and cv. Waito-Q to gibberellins (GAs)was increased conspicuously by the use of assay plants thathas been treated with uniconazole (S-3307), an inhibitor ofthe biosynthesis of GAs. The Tan-ginbozu plants treated withS-3307 responded to 10 fmol/plant of GA3 (ca. 3.5 pg/plant)and to 30 fmol/plant of gibberellins A1, A4, A7, A19 and A20.Waito-C plants treated with S-3307 responded to 10 fmol of GA3and to 30 fmol/plant of gibberellins A1, A4 and A7. GibberellinsA9, A19 and A20 had much less of an effect on the treated Waito-Cplants than did gibberellins A1, A3, A4 and A7. Furthermore,treatment with S-3307 counteracted the inhibition of growthof both cultivars by abscisic acid. Thus, the modified micro-dropassay should prove very useful for the detection of minute amountsof GAs in plant extracts. (Received October 3, 1988; Accepted March 29, 1989)  相似文献   

8.
Deoxygibberellin C (DGC), a C/D ring-rearranged isomer of GA20,was shown to inhibit the conversion of [2,3-3H2]GA9 to [2-3H]GA4by gibberellin 3ß-hydroxylase from immature seedsof Phaseolus vulgahs. Deoxygibberellin C inhibited the promotionof growth by exogenously applied GA20 of rice (Oryza sativaL.) seedlings. Evidence is also presented that DGC is a competitiveinhibitor of the 3ß-hydroxylase from P. vulgaris.However, DGC only weakly inhibited the conversion catalyzedby the 3ß-hydroxylase from Cucurbita maxima at highconcentrations, and it did not inhibit the promotion of growthby exogenously applied GA9 of cucumber (Cucumis sativus) seedlings.These results suggest that the 3ß-hydroxylases fromP. vulgaris and C. maxima have different structural requirementswith respect to their substrates. 16-Deoxo-DGC also inhibitedcatalysis of the same conversion by 3ß-hydroxylasefrom P. vulgaris, and it slightly inhibited the conversion catalyzedby the enzyme from C. maxima. Application of 16-deoxo-DGC causedthe promotion of the growth of seedlings of both rice and cucumber. 3 Present address: Genetic Engineering Center, Korea Instituteof Science and Technology, Daejeon 305–606, Korea 4 Present address: Department of Agricultural Chemistry, UtsunomiyaUniversity, Utsunomiya-shi, Tochigi, 321 Japan (Received September 25, 1990; Accepted December 17, 1990)  相似文献   

9.
Cell-free extracts were prepared from anthers of normal anddwarf rice (Oryza sativa L.), and the metabolism of radioisotope-labeledgibberellins in the extracts was analyzed by HPLC and gas chromatography-massspectrometry (GC/MS). GA12 was converted to GA15 and GA34 inthe extracts. GA20 was converted to GA1, GA8 and GA29, but GA9was converted only to GA34. The extracts of the dwarf cultivar,Waito-C (dy mutant), showed the same 3ß-hydroxylationactivity as did those of the normal cultivar, Nihonbare, indicatingthat the dy gene is not expressed in the anthers. These resultssuggest that the regulation of the biosynthesis of gibberellinsin rice is organ-specific. (Received November 9, 1989; Accepted January 10, 1990)  相似文献   

10.
Distribution of Endogenous Gibberellins in Vegetative Shoots of Rice   总被引:5,自引:0,他引:5  
Levels of endogenous gibberellins in rice seedlings (Oryza sativaL., cv. Nipponbare) were compared between young and old leavesat the 4- and 5-leaf stages. The levels of GA1, GA19 and GA53were higher in the youngest leaf than in older leaves at the5-leaf stage, but they did not differ significantly betweenthe leaf sheath and the leaf blade. At the 4-leaf stage, thelevel of GA1, was highest in the third leaf sheaths which containedyoung elongating tissues. These results indicate that gibberellinsare synthesized in young vegetative tissues to promote theirelongation growth. The levels of GA1 in the youngest leaf sheathsof two cultivars of dwarf rice, Tan-ginbozu and Waito-C, wereapproximately 10% of that in the normal rice at the 5-leaf stage.This result could explain the retardation of shoot elongationin these dwarf cultivars. (Received February 15, 1995; Accepted June 1, 1995)  相似文献   

11.
CCC, uniconazol, ancymidol, prohexadione-calcium (BX-112), and CGA 163′935, which represent three groups of gibberellin (GA) biosynthesis inhibitors, were applied as a soil drench to Sorghum bicolor cultivars 58M (phyB-1, phytochrome B-deficient mutant) and 90M (phyB-2, equivalent phenotypically to wild type, PHYB, except for small differences in flowering dates). The inhibitors that block steps before GA12 (CCC, uniconazol, and ancymidol) lowered the concentrations of all endogenous early-C13α-hydroxylation pathway GAs found in sorghum: GA12, GA53, GA44, GA19, GA20, GA1, and GA8. In contrast, the inhibitors that block the conversion of GA20→ GA1, (CGA 163′935 and BX-112) drastically reduced GA1 and GA8 levels, but they either did not change or caused accumulation of intermediates from GA12 to GA20. Combinations of pre-GA12 inhibitors and GA3 plus GA1 strongly reduced GAs other than GA1 and GA3. Each of these compounds inhibited shoot growth in both cultivars and delayed floral initiation in 90M. Floral initiation of 58M was also delayed by CCC, uniconazol, and ancymidol but not by CGA 163`935 and BX-112. This separation of shoot elongation from floral initiation in sorghum is novel. Both inhibition of shoot growth and delayed floral initiation were almost completely relieved by a mixture of GA3 and GA1 in both 58M and 90M. This observation, plus the much lower levels of endogenous GA3 than of GA1 observed in these experiments, implies that GA1 is the major endogenous GA active in shoot elongation. CGA 163′935 and BX-112 also failed to promote tillering in 58M, whereas inhibitors active before GA12 did so. The possibility that the GA20→ GA1 inhibitors fail to block flowering and promote tillering in 58M because biosynthetic intermediates between GA12 and GA20 accumulate and/or because 58M is altered in GA metabolism in this same region of the biosynthetic pathway is discussed. Received April 7, 1998; accepted July 31, 1998  相似文献   

12.
Inhibition of the biosynthesis of gibberellins by prohexadione,3,5-dioxo-4-propionylcyclo-hexanecarboxylic acid, was studiedwith cell-free systems derived from immature seeds of Cucur-bitamaxima, Phaseolus vulgaris and Pisum sativum. Prohexadione,at a concentration of 10–4 M, inhibited C-7 oxidationof GA12-aldehyde, C-20 oxidation of GA15, conversion of C20-gib-berellinsto C19-gibberellins, 3ß-hydroxylation, 2,3-dehydrogenationof GA20, 2,3-epoxidation of GA5 and 2ß-hydroxylationof GA9 and GA20. The 3ß-hydroxylase activity appearedto be more sensitive to prohexadione than were the C-20 oxygenaseand the 2ß-hydroxylase activities. The conversionof mevalonic acid to GA12-aldehyde and the 13-hydroxylationof GA12 were not affected by prohexadione at a concentrationof 3 ? 10–4 M. All of the steps inhibited by prohexadioneare oxidation steps catalyzed by soluble enzymes that require2-oxoglutarate, Fe2+ and oxygen, and all of them occur distalto the synthesis of GA12-aldehyde in the biosynthesis of gibberellins. (Received April 4, 1990; Accepted September 14, 1990)  相似文献   

13.
The role of gibberellins in the growth of floral organs of Pharbitis nil   总被引:1,自引:0,他引:1  
Evidence that the synthesis of GA3 is involved in the growthof floral orga'ns of Pharbitis nil is presented. GAs in floralorgans at different developmental stages were surveyed usingTLC followed by the bioassay with two dwarf rice seedlings,‘Tanginbozu’ and ‘Waito-C’. The amountof GAs in the petal and stamen increased rapidly after the petalemerged from calyx, reached a maximum 12 hr before anthesis,then declined markedly thereafter. The GA content in the calyxremained unchanged before and after anthesis, and that in thepistil increased after anthesis. Pharbitis flowers containedat least two active GAs, one of which was probably GA3, theother appeared to be GA19. GA3 was detected in relatively largeamounts in both the petal and stamen during their rapid elongation.In the calyx, which showed little increase in fresh weight duringrapid flower growth, GA9 was the dominant GA. Exogenously suppliedGA3 promoted elongation of sections in excised young filaments.Sucrose was necessary for definite growth promotion by GA3.GA19 had little effect on filament elongation, and IAA was ratherinhibitive. (Received July 29, 1972; )  相似文献   

14.
The effects of the plant-growth regulator, prohexadione-calcium,on the levels of the endogenous gibberellins in rice shootswere measured by GC-SIM using 2H-labeled gibberellins as internalstandards. The compound was applied at the 4-leaf stage andshoots were harvested 5 and 12 days after treatment. Plant lengthwas reduced to 78% and 66%, respectively, relative to controlby application of the compound at 1 and 30 mg m–2, whenplant length was measured 12 days after treatment. The levelof GA, was reduced to 36% and 18%, respectively, relative tocontrol in the treated plants. The levels of GA19and GA20 increasedbut that of GA44 was reduced in the treated plants. The levelof GA53 was unchanged. These results suggest that primary modeof action of the compound in vivo is the inhibition of the 3ß-hydroxylationof GA20 to GA1 and further support the hypothesis that GA1 notGA19 nor GA20 is active in promoting shoot elongation in rice. 3Present address: Frontier Research Program, RIKEN, Wakoshi,Saitama, 351-01 Japan.  相似文献   

15.
Gibberellins A19, A20, and A1 were applied to seedlings of birch (Betula pubescens Ehrh.) and alder (Alnus glutinosa (L.) Gaertn.) in order to test their ability to counteract growth inhibition induced by growth retardants (ancymidol and BX-112) or short day (SD, 12 h) photoperiod. Ancymidol inhibits early and BX-112 inhibits late steps in gibberellin biosynthesis. BX-112 inhibited stem elongation in both species while ancymidol, applied as a soil drench, was effective in alder only. Growth retardants affected stem elongation mainly by inhibiting elongation of internodes. All three gibberellins were equally active when applied to seedlings treated with ancymidol; however, only GA1 was able to counteract the growth inhibition induced by BX-112. SD-induced cessation of elongation growth in birch was counteracted by GA1, and to some degree, by GA20, while GA19 was inactive. SD treatment did not induce cessation of apical growth in alder. These results are consistent with the hypothesis that of gibberellins belonging to the early C-13 hydroxylation pathway, GA1 is the only active gibberellin for stem elongation.  相似文献   

16.
Potts  W.C. 《Plant & cell physiology》1986,27(6):997-1003
The presence of GA9, GA19 and GA20 was demonstrated by gas chromatography/massspectrometry (GC/MS) and the presence of GA44 strongly indicatedby GC/MS in selected ion monitoring mode (GC/SIM) in extractsof shoots of light-grown tall peas (Pisum sativum L.). Usingthe rice seedling bioassay with cv. Tan-ginbozu, the levelsof gibberellins in pea shoots were monitored from early shootgrowth through to apical senescence in a tall pea line. Levelsof activity corresponding to GA20, GA19 and GA44 remained relativelystable in the shoot despite reproductive development and apicalsenescence. The level of GA1-like activity increased to a maximumwhen the leaves had between 7 and 9 leaves expanded and decreasedonly with apical senescence. The na gene which blocks the productionof biologically active gibberellins in shoots but not in developingseed, was also operative in pod walls, with na pods containinglittle or no significant gibberellin-like activity when comparedto na pods at contact. This occurred despite the presence ofrelatively high levels of gibberellins in developing seed atthe same time. The results suggest that there is little or nosignificant leakage of biologically active gibberellins fromdeveloping seed to pods or shoots. Extracts of pods of tallpeas with Na contained low levels of gibberellin-like activitybut like developing seed, contained little or no significantGA1-like activity despite the presence of significant GA1-likeactivity in shoot extracts of tall peas. (Received March 11, 1986; Accepted May 27, 1986)  相似文献   

17.
Gibberellin A1, (GA1), GA19, and GA20 in phloem exudates andcotyledons of seedlings of Pharbitis nil cv. Violet, grown underdifferent photoperiodic conditions, were qualitatively and semi-quantitativelyanalyzed by a combination of high performance-liquid chromatography(HPLC) and radioimmunoassays (RIA). The levels of GA19 and GA20were higher in cotyledons from plants grown under dark treatment(DT) conditons of 16 h-light/8 h-dark for 6 days followed by8 h-light/16 h-dark for 3 days than in those grown under continuouslight (CL) for 9 days. This relationship was also observed forthe GAs in phloem exudates, although the levels were much lowerthan in the cotyledons. When GAs were applied to the cotyledons,elongation of the epicotyl was promoted more by GA20 than byGA1 or GA19, especially under the CL treatment. The relativeeffect of GA1 and GA20 on the epicotyl elongation was reversedwhen these GAs were applied to epicotyls pre-treated with prohexadione,an inhibitor of 2-oxoglutarate-dependent dioxygenases. 3Present address: Frontier Research Program, The Institute ofPhysical and Chemical Research (RIKEN), 2-1 Hirosawa, Wakoshi,Saitama, 351-01 Japan 4Present address: Laboratory of Horticulture, Faculty of Agriculture,Nagoya University, Nagoya, 464-01 Japan  相似文献   

18.
A synthetic brassinosteroid (BR), 2,3,22ß,23ß-tetrahydroxy-24ß-methyl-B-homo7-oxa-5-cholestan-6-one, an isomer of the growth promoter brassinolide,when applied to seedlings of dwarf rice Oryza sativa var. Tan-ginbozuand Waito-C, induced a significant bending of the second leaflamina at 100 ng/plant and higher dosages. Promotion of thesecond leaf sheath elongation, the characteristic response ofdwarf rice varieties to gibberellins, was significantly butmodestly enhanced by BR at a dosage of 10,000 ng/plant, fiveorders of magnitude higher than the minimal dosage responseto GA3. Gibberellin A3 had no significant effect on the bendingof the second leaf lamina, nor did any synergism exist betweenBR and GA3 in leaf lamina bending or leaf sheath elongation.Neither ethylene nor (2-chloroethyl)phosphonic acid (ethephon)caused the bending of the second leaf lamina, and neither synergizedthe BR effect. However, IAA and -naphthaleneacetic acid causedsignificant bending at 5,000 ng/plant, and both auxins significantlysynergized the effect of BR on the bending, IAA being effectiveat 500 ng/ plant in this regard. The antiauxins, 2,3,5-triiodobenzoicacid (TIBA) and -(p-chlorophenoxy)isobutyric acid (PCIB) completelynullified both the BR-induced bending and the BR$IAA-synergizedbending. The BR-induced bending response may thus be mediatedthrough endogenous auxin. (Received May 11, 1982; Accepted August 25, 1982)  相似文献   

19.
Gibberellins GA1, GA4, GA8, GA9, GA19, GA20, GA29, GA44, GA81,indole-3-acetic acid (IAA) and abscisic acid (ABA) were identifiedin cambial region tissues of Eucalyptus globulus by comparingmass spectra and Kovats retention indices with those of authenticstandards. Using stable isotope labelled internal standardsGA19, GA20 and GA44 were quantified at levels of 2–7 ng(g fr wt)-1, other GAs were present at levels < 1 ng (g frwt)-1. Levels of IAA and ABA ranged from 417–1, 140 ng(g fr wt)-1 and 86–305 ng (g fr wt)-1 respectively. Thepresence of brassinosteroid-like substances was also indicatedbased on activity in the rice seedling leaf inclination assay. (Received April 28, 1995; Accepted June 20, 1995)  相似文献   

20.
TAUTVYDAS  K. J. 《Annals of botany》1979,44(4):503-509
The interaction of light, gibberellic acid (GA3), and phlorizinin the growth of lettuce (Lactuca sativa L. cv. ‘GrandRapids’) hypocotyls was investigated. At all concentrationsof GA3, phlorizin enhanced GA3-induced growth at luminous intensitiesabove 50 ft-c (continuous light). Without GA3, phlorizin hadno effect on hypocotyl growth in the light but it inhibitedgrowth in the dark. Both seedlings and hypocotyl sections respondedto phlorizin in the presence of GA3. There was no iteractionbetween phlorizin and KCl. Water-growth was severly inhibitedby light. GA3,-induced growth was slightly inhibited by light,and then only at luminous intensities above 50 ft-c. Thus, relativeto H2O-growth, GA3-induced growth increased with increasingluminous intensity up to 450 ft-c, where it reached saturation.It seems that a synergism may exist between light and GA3 aswell as between phlorizin and GA3. Lactuca sativa L, lettuce, hypocotyl elongation, gibberellic acid, phlorizin, light  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号