首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relictual Mastotermes darwiniensis is one of the world's most destructive termites. Like all phylogenetically basal termites, it possesses protozoa in its hindgut, which are believed to help it digest wood. L. Li, J. Frohlich, P. Pfeiffer, and H. Konig (Eukaryot. Cell 2:1091-1098, 2003) recently cloned the genes encoding cellulases from the protozoa of M. darwiniensis; however, they claimed that these genes are essentially inactive, not contributing significantly to cellulose digestion. Instead, they suggested that the protozoa sequester enzymes produced by the termite in its salivary glands and use these to degrade cellulose in the hindgut. We tested this idea by performing gel filtration of enzymes in extracts of the hindgut, as well as in a combination of the salivary glands, foregut, and midgut. Three major cellulases were found in the hindgut, each of which had a larger molecular size than termite-derived salivary gland enzymes. N-terminal amino acid sequencing of one of the hindgut-derived enzymes showed that it was identical to the putative amino acid sequence of one mRNA sequence isolated by Li et al. (Eukaryot. Cell 2:1091-1098, 2003). The overall activity of the hindgut cellulases was found to be of approximately equal magnitude to the termite-derived cellulases detected in the mixture of salivary gland, foregut, and midguts. Based on these results, we conclude that, contrary to Li et al. (Eukaryot. Cell 2:1091-1098, 2003), the hindgut protozoan fauna of M. darwiniensis actively produce cellulases, which play an important role in cellulose digestion of the host termite.  相似文献   

2.
Unlike lower termites, xylophagous higher termites thrive on wood without the aid of symbiotic protists. In the higher termite Nasutitermes takasagoensis, both endogenous endo-β-1,4-glucanase and β-glucosidase genes are expressed in the midgut, which is believed to be the main site of cellulose digestion. To further explore the detailed cellulolytic system in the midgut of N. takasagoensis, we performed immunohistochemistry and digital light microscopy to determine distributions of cellulolytic enzymes in the salivary glands and the midgut as well as the total cellulolytic activity in the midgut. Although cellulolytic enzymes were uniformly produced in the midgut epithelium, the concentration of endo-β-1,4-glucanase activity and luminal volume in the midgut were comparable to those of the wood-feeding lower termite Coptotermes formosanus, which digests cellulose with the aid of hindgut protists. However, the size of ingested wood particles was considerably larger in N. takasagoensis than that in C. formosanus. Nevertheless, it is possible that the cellulolytic system in the midgut of N. takasagoensis hydrolyzes highly crystalline cellulose to a certain extent. The glucose produced did not accumulate in the midgut lumen. Therefore, the present study suggests that the midgut of the higher termite provides the necessary conditions for cellulolysis.  相似文献   

3.
4.
Hidden cellulases in termites: revision of an old hypothesis   总被引:1,自引:0,他引:1  
The intestinal flagellates of termites produce cellulases that contribute to cellulose digestion of their host termites. However, 75% of all termite species do not harbour the cellulolytic flagellates; the endogenous cellulase secreted from the midgut tissue has been considered a sole source of cellulases in these termites. Using the xylophagous flagellate-free termites Nasutitermes takasagoensis and Nasutitermes walkeri, we successfully solubilized cellulases present in the hindgut pellets. Zymograms showed that the hindguts of these termites possessed several cellulases and contained up to 59% cellulase activity against crystalline cellulose when compared with the midgut. Antibiotic treatment administered to N. takasagoensis significantly reduced cellulase activity in the hindgut, suggesting that these cellulases were produced by symbiotic bacteria.  相似文献   

5.
Zhou X  Smith JA  Oi FM  Koehler PG  Bennett GW  Scharf ME 《Gene》2007,395(1-2):29-39
Termites have developed cellulose digestion capabilities that allow them to obtain energy and nutrition from nutritionally poor food sources, such as lignocellulosic plant material and residues derived from it (e.g., wood and humus). Lower termites, which are equipped with both endogenous (i.e., of termite origin) and symbiotic cellulases, feed primarily on wood and wood-related materials. This study investigated cellulase gene diversity, structure, and activity in the lower termite, Reticulitermes flavipes (Kollar). We initially used a metagenomics approach to identify four genes encoding one endogenous and three symbiotic cellulases, which we refer to as Cell-1, -2, -3 and -4. These four genes encode proteins that share significant sequence similarity with known endoglucanases, exoglucanases and xylanases. Phylogenetic analyses further supported these inferred relationships by showing that each of the four cellulase proteins clusters tightly with respective termite, protozoan or fungal cellulases. Gene structure studies revealed that Cell-1, -3 and -4 are intron-free, while Cell-2 contains the first intron sequence to be identified from a termite symbiont cellulase. Quantitative real-time PCR (qRT-PCR) revealed that the endogenous Cell-1 gene is expressed exclusively in the salivary gland/foregut, whereas symbiotic Cell-2, -3, and -4 are highly expressed in the hindgut (where cellulolytic protists are harbored). Cellulase activity assays mapped the distribution pattern of endoglucanase, exoglucanase and xylanase activity throughout the R. flavipes digestive tract. Cellulase gene expression correlated well with the specific types of cellulolytic activities observed in each gut region (foregut+salivary gland, midgut and hindgut). These results suggest the presence of a single unified cellulose digestion system, whereby endogenous and symbiotic cellulases work sequentially and collaboratively across the entire digestive tract of R. flavipes.  相似文献   

6.
7.
以台湾乳白蚁Coptotermes formosanus Shiraki的室内群体与野外群体为研究对象,测定工蚁体内4种糖基水解酶和滤纸酶活(FPA)的活力大小及分布。结果表明:内切-β-1,4-葡聚糖酶(EG)、β-葡萄糖苷酶(BG)、外切-β-1,4-葡聚糖酶(CBH)、内切-β-1,4-木聚糖酶(EX)及FPA的活性在不同组织中有较大差异。两类群体的BG、EX及CBH有相似分布,BG和EX分别高度集中于中肠和后肠,CBH主要在中肠及后肠分布。FPA和EG在两类群体中有不同分布,室内群体的主要在中肠,野外群体的则集中于后肠。两类群体各种酶活力大小顺序同为:EX>EG≥BG>CBH。此外,室内饲养群体的大小及年限对台湾乳白蚁木质纤维素酶活力无显著影响。  相似文献   

8.
Nishida Y  Suzuki K  Kumagai Y  Tanaka H  Inoue A  Ojima T 《Biochimie》2007,89(8):1002-1011
Glycoside-hydrolase-family 9 (GHF9) cellulases are known to be widely distributed in metazoa. These enzymes have been appreciably well investigated in protostome invertebrates such as arthropods, nematodes, and mollusks but have not been characterized in deuterostome invertebrates such as sea squirts and sea urchins. In the present study, we isolated the cellulase from the Japanese purple sea urchin Strongylocentrotus nudus and determined its enzymatic properties and primary structure. The sea urchin enzyme was extracted from the acetone-dried powder of digestive tract of S. nudus and purified by conventional chromatographies. The purified enzyme, which we named SnEG54, showed a molecular mass of 54kDa on SDS-PAGE and exhibited high hydrolytic activity toward carboxymethyl cellulose with an optimum temperature and pH at 35 degrees C and 6.5, respectively. SnEG54 degraded cellulose polymer and cellooligosaccharides larger than cellotriose producing cellotriose and cellobiose but not these small cellooligosaccharides. From a cDNA library of the digestive tract we cloned 1822-bp cDNA encoding the amino-acid sequence of 444 residues of SnEG54. This sequence showed 50-57% identity with the sequences of GHF9 cellulases from abalone, sea squirt, and termite. The amino-acid residues crucial for the catalytic action of GHF9 cellulases are completely conserved in the SnEG54 sequence. An 8-kbp structural gene fragment encoding SnEG54 was amplified by PCR from chromosomal DNA of S. nudus. The positions of five introns are consistent with those in other animal GHF9 cellulase genes. Thus, we confirmed that the sea urchin produces an active GHF9 cellulase closely related to other animal cellulases.  相似文献   

9.
Abstract.  Termites (Isoptera) are eusocial insects and express polyphenism. Soldiers have specialized morphology for colony defense, but their feeding activity is dependent on other colony members. To determine differences in cellulose degradation between soldier and worker termites, enzymatic activity and cellulase gene expression, as well digestive tract histology, are examined in two phylogenetically distant species. In Hodotermopsis sjostesti (family Termopsidae) , endo-β-1,4-glucanase activity is identified in the salivary glands, whereas β-glucosidase activity is identified in salivary glands and hindgut. The relative expression levels of endo-β-1,4-glucanase genes in soldiers are significantly lower than in workers. Thin sections of salivary gland of workers and soldiers are different in H. sjostedti . In Nasutitermes takasagoensis (family Termitidae), the endo-β-1,4-glucanase activity is restricted to the midgut in four tested castes (i.e. three types of workers and soldier). Examination of activity per termite reveals the highest activity in minor workers and the lowest activity in major workers and soldiers. The β-glucosidase activity is also concentrated on the midgut in all four castes. The relative expression level of the endo-β-1,4-glucanase gene does not correspond with its activity in the midgut. In thin sections prepared from N. takasagoensis , the folds and pulvillus in the gizzards, and cuticle structure of soldiers are less developed compared with the other three worker castes. The differences in digestive system among termite castes in terms of caste development in each species are discussed.  相似文献   

10.
11.
Endogenous endo-beta-1,4-glucanase (EGase, EC 3.2.1.4) cDNAs were cloned from representatives of the termite families Termitidae and Rhinotermitidae. These EGases are all composed of 448 amino acids and belong to glycosyl hydrolase family 9 (GHF9), sharing high levels of identity (40-52%) with selected bacterial, mycetozoan and plant EGases. Like most plant EGases, they consist of a single catalytic domain, lacking the ancillary domains found in most microbial cellulases. Using a PCR-based strategy, the entire sequence of the coding region of NtEG, a gene putatively encoding an EGase from Nasutitermes takasagoensis (Termitidae), was determined. NtEG consists of 10 exons interrupted by 9 introns and contains typical eukaryotic promoter elements. Genomic fragments of EGase genes from Reticulitermes speratus (Rhinotermitidae) were also sequenced. In situ hybridization of N. takasagoensis guts with an antisense NtEG RNA probe demonstrated that expression occurs in the midgut, which contrasts to EGase expression being detected only in the salivary glands of R. speratus. NtEG, when expressed in Escherichia coli, was shown to have in vitro activity against carboxymethylcellulose.  相似文献   

12.
Termite gut symbiotic archaezoa are becoming living metabolic fossils   总被引:5,自引:0,他引:5  
Over the course of several million years, the eukaryotic gut symbionts of lower termites have become adapted to a cellulolytic environment. Up to now it has been believed that they produce nutriments using their own cellulolytic enzymes for the benefit of their termite host. However, we have now isolated two endoglucanases with similar apparent molecular masses of approximately 36 kDa from the not yet culturable symbiotic Archaezoa living in the hindgut of the most primitive Australian termite, Mastotermes darwiniensis. The N-terminal sequences of these cellulases exhibited significant homology to cellulases of termite origin, which belong to glycosyl hydrolase family 9. The corresponding genes were detected not in the mRNA pool of the flagellates but in the salivary glands of M. darwiniensis. This showed that cellulases isolated from the flagellate cells originated from the termite host. By use of a PCR-based approach, DNAs encoding cellulases belonging to glycosyl hydrolase family 45 were obtained from micromanipulated nuclei of the flagellates Koruga bonita and Deltotrichonympha nana. These results indicated that the intestinal flagellates of M. darwiniensis take up the termite's cellulases from gut contents. K. bonita and D. nana possess at least their own endoglucanase genes, which are still expressed, but without significant enzyme activity in the nutritive vacuole. These findings give the impression that the gut Archaezoa are heading toward a secondary loss of their own endoglucanases and that they use exclusively termite cellulases.  相似文献   

13.
The activities of the pyruvate dehydrogenase complex in extracts of the gutted body, head, foregut/midgut and hindgut (hindgut epithelium and microorganisms) tissues of the lower termite Coptotermes formosanus (Shiraki) were determined by measuring the [14C]-acetyl-CoA produced from [2-14C]-pyruvate and the 14CO2 produced from [1-14C]-pyruvate. The activities of pyruvate dehydrogenase, l-lactate dehydrogenase, acetyl-CoA synthetase, malate dehydrogenase (decarboxylating), and acetate kinase in the termite tissues and the hindgut also were determined. The sum (7.1 nmol/termite/h) of the pyruvate dehydrogenase complex activities in the termite tissues other than the hindgut was five times higher than the activity in the hindgut. Significant amounts of l-lactate dehydrogenase activity were found in all of the tissues. All of the tissues other than the hindgut had significant amounts of acetyl-CoA synthetase activity. Malate dehydrogenase (decarboxylating) activity was about ten times higher in the hindgut extract than in the gutted body and head extracts and the activity in the foregut/midgut extract was very low. These results indicate that acetyl-CoA for the TCA cycle is produced effectively in the tissues of the termite itself, both from pyruvate by the pyruvate dehydrogenase complex and from acetate by acetyl-CoA synthetase.  相似文献   

14.
15.
Abstract.  Throughout the history of studies on cellulose digestion in termites, carboxymethyl-cellulose has been preferably used as a substrate for measuring cellulase activity in termites due to its high solubility. However, carboxymethyl-cellulose degradation is not directly related to digestibility of naturally occurring cellulose because many noncellulolytic organisms can also hydrolyse carboxymethyl-cellulose. To address this issue, a comparative study of microcrystalline cellulose digestion is performed in diverse xylophagous termites, using gut homogenates. For those termites harbouring gut flagellates , the majority of crystalline cellulose appears to be digested in the hindgut, both in the supernatant and the pellet. For Nasutitermes takasagoensis , a termite free of gut flagellates, crystalline cellulose is degraded primarily in the midgut supernatant, and partially in the pellet of the hindgut. The fungus-growing termite Odontotermes formosanus , which also does not possess intestinal flagellates, shows only a trace of crystalline cellulose hydrolysis throughout the gut. Comparison of levels of activity against crystalline cellulose with previously reported levels of activity against carboxymethyl-cellulose in the gut of each termite reveals significant differences between these activities. The results suggest that the hindgut flagellates produce commonly cellobiohydrolases in addition to endo-β-1,4-glucanases, which presumably act synergistically to digest cellulose. Preliminary evidence for the involvement of bacteria in the cellulose digestion of N. takasagoensis is also found.  相似文献   

16.
Termites and their gut microbial symbionts efficiently degrade lignocellulose into fermentable monosaccharides. This study examined three glycosyl hydrolase family 7 (GHF7) cellulases from protist symbionts of the termite Reticulitermes flavipes. We tested the hypotheses that three GHF7 cellulases (GHF7‐3, GHF7‐5, and GHF7‐6) can function synergistically with three host digestive enzymes and a fungal cellulase preparation. Full‐length cDNA sequences of the three GHF7s were assembled and their protist origins confirmed through a combination of quantitative PCR and cellobiohydrolase (CBH) activity assays. Recombinant versions of the three GHF7s were generated using a baculovirus‐insect expression system and their activity toward several model substrates compared with and without metallic cofactors. GHF7‐3 was the most active of the three cellulases; it exhibited a combination of CBH, endoglucanase (EGase), and β‐glucosidase activities that were optimal around pH 7 and 30°C, and enhanced by calcium chloride and zinc sulfate. Lignocellulose saccharification assays were then done using various combinations of the three GHF7s along with a host EGase (Cell‐1), beta‐glucosidase (β‐glu), and laccase (LacA). GHF7‐3 was the only GHF7 to enhance glucose release by Cell‐1 and β‐glu. Finally, GHF7‐3, Cell‐1, and β‐glu were individually tested with a commercial fungal cellulase preparation in lignocellulose saccharification assays, but only β‐glu appreciably enhanced glucose release. Our hypothesis that protist GHF7 cellulases are capable of synergistic interactions with host termite digestive enzymes is supported only in the case of GHF7‐3. These findings suggest that not all protist cellulases will enhance saccharification by cocktails of other termite or fungal lignocellulases.  相似文献   

17.
A multi-enzyme distribution of endo-beta-1,4-glucanase activity was found in the digestive system of a worker caste of the lower termite Coptotermes formosanus (Shiraki) by zymogram analysis. Its distribution analysis demonstrated that about 80% of this activity was localized in salivary glands from where only one component (EG-E) was secreted into the digestive tract. EG-E was isolated by a combination of chromatographic and electrophoretic techniques. Its molecular mass, optimal pH and temperature, isoelectric point, and Km were 48 kDa, 6.0, 50 degrees C, 4.2, and 3.8 (mg/ml on carboxymethylcellulose), respectively. EG-E hydrolyzed cellooligosaccharides with a degree of polymerization of 4 and larger, and had low activity on crystalline cellulose. Main reaction products from low molecular weight cellulose were cellobiose and cellotriose. The N-terminal amino acid sequence of EG-E has similarity with fungal endo-beta-1,4-glucanases and cellobiohydrolases of the glycosyl hydrolase family 7 rather than the other insect endo-beta-1,4-glucanases of family 9.  相似文献   

18.
While it is widely accepted that most animals (Metazoa) do not have endogenous cellulases, relying instead on intestinal symbionts for cellulose digestion, the glycosyl hydrolase family 9 (GHF9) cellulases found in the genomes of termites, abalone, and sea squirts could be an exception. Using information from expressed sequence tags, we show that GHF9 genes (subgroup E2) are widespread in Metazoa because at least 11 classes in five phyla have expressed GHF9 cellulases. We also demonstrate that eukaryotic GHF9 gene families are ancient, forming distinct monophyletic groups in plants and animals. As several intron positions are also conserved between four metazoan phyla then, contrary to the still widespread belief that cellulases were horizontally transferred to animals relatively recently, GHF9 genes must derive from an ancient ancestor. We also found that sequences isolated from the same animal phylum tend to group together, and in some deuterostomes, GHF9 genes are characterized by substitutions in catalytically important sites. Several paralogous subfamilies of GHF9 can be identified in plants, and genes from primitive species tend to arise basally to angiosperm representatives. In contrast, GHF9 subgroup E2 genes are relatively rare in bacteria.  相似文献   

19.
A novel endogenous β-1,4-endoglucanase (EG) gene belonging to the glycosyl hydrolase family 9 (GHF 9) that is distributed throughout the digestive tract of the cricket Teleogryllus emma was cloned and characterized. This gene, named TeEG-I, consists of eight exons encoding 453 amino acid residues and exists as a single copy in the T. emma genome. TeEG-I possesses all the features, including signature motifs and catalytic domains, of GHF 9 members, sharing high levels of identity with the termite, Mastotermes darwiniensis (64% protein sequence identity), and the cockroach, Panesthia cribrata (62%), GHF 9 cellulases. Recombinant TeEG-I, which is expressed as a 47-kDa polypeptide in baculovirus-infected insect Sf9 cells, showed an optimal pH and temperature of pH 5.0 and 40 °C. The Km and Vmax values for digestion of carboxymethyl cellulose were 5.4 mg/ml and 3118.4 U/mg, respectively. Northern and Western blot analyses revealed that TeEG-I is present throughout the digestive tract, which correlated with the TeEG-I distribution and cellulase activity in the digestive tract as assayed by immunofluorescence staining and enzyme activity assay, respectively. These results indicate that TeEG-I is distributed throughout the entire digestive tract of T. emma, suggesting a functional role of endogenous TeEG-I in a sequential cellulose digestion process throughout the T. emma digestion tract.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号