首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
3.
Antheraea pernyi is a semi‐domesticated lepidopteran insect species valuable to the silk industry, human health, and ecological tourism. Owing to its economic influence and developmental properties, it serves as an ideal model for investigating divergence of the Bombycoidea super family. However, studies on the karyotype evolution and functional genomics of A. pernyi are limited by scarce genomic resource. Here, we applied PacBio sequencing and chromosome structure capture technique to assemble the first high‐quality A. pernyi genome from a single male individual. The genome is 720.67 Mb long with 49 chromosomes and a 13.77‐Mb scaffold N50. Approximately 441.75 Mb, accounting for 60.74% of the genome, was identified as repeats. The genome comprises 21,431 protein‐coding genes, 85.22% of which were functionally annotated. Comparative genomics analysis suggested that A. pernyi diverged from its common ancestor with A. yamamai ~30.3 million years ago, and that chromosome fission contributed to the increased chromosome number. The genome assembled in this work will not only facilitate future research on A. pernyi and related species but also help to progress comparative genomics analyses in Lepidoptera.  相似文献   

4.
5.
6.
7.
Onychostoma macrolepis is an emerging commercial cyprinid fish species. It is a model system for studies of sexual dimorphism and genome evolution. Here, we report the chromosome‐level assembly of the O.macrolepis genome obtained from the integration of nanopore long‐read sequencing with physical maps produced using Bionano and Hi‐C technology. A total of 87.9 Gb of nanopore sequence provided approximately 100‐fold coverage of the genome. The preliminary genome assembly was 883.2 Mb in size with a contig N50 size of 11.2 Mb. The 969 corrected contigs obtained from Bionano optical mapping were assembled into 853 scaffolds and produced an assembly of 886.5 Mb with a scaffold N50 of 16.5 Mb. Finally, using the Hi‐C data, 881.3 Mb (99.4% of genome) in 526 scaffolds were anchored and oriented in 25 chromosomes ranging in size from 25.27 to 56.49 Mb. In total, 24,770 protein‐coding genes were predicted in the genome, and ~96.85% of the genes were functionally annotated. The annotated assembly contains 93.3% complete genes from the BUSCO reference set. In addition, we identified 409 Mb (46.23% of the genome) of repetitive sequence, and 11,213 non‐coding RNAs, in the genome. Evolutionary analysis revealed that O. macrolepis diverged from common carp approximately 24.25 million years ago. The chromosomes of O. macrolepis showed an unambiguous correspondence to the chromosomes of zebrafish. The high‐quality genome assembled in this work provides a valuable genomic resource for further biological and evolutionary studies of O. macrolepis.  相似文献   

8.
Welwitschia mirabilis, which is endemic to the Namib Desert, is the only living species within the family Welwitschiaceae. This species has an extremely long lifespan of up to 2,000 years and bears a single pair of opposite leaves that persist whilst alive. However, the underlying genetic mechanisms and evolution of the species remain poorly elucidated. Here, we report on a chromosome-level genome assembly for W. mirabilis, with a 6.30-Gb genome sequence and contig N50 of 27.50 Mb. In total, 39,019 protein-coding genes were predicted from the genome. Two brassinosteroid-related genes (BRI1 and CYCD3), key regulators of cell division and elongation, were strongly selected in W. mirabilis and may contribute to their long ever-growing leaves. Furthermore, 29 gene families in the mitogen-activated protein kinase signalling pathway showed significant expansion, which may contribute to the desert adaptations of the plant. Three positively selected genes (EHMT1, EIF4E, SOD2) may be involved in the mechanisms leading to long lifespan. Based on molecular clock dating and fossil calibrations, the divergence time of W. mirabilis and Gnetum montanum was estimated at ~123.5 million years ago. Reconstruction of population dynamics from genome data coincided well with the aridification of the Namib Desert. The genome sequence detailed in the current study provides insight into the evolution of W. mirabilis and should be an important resource for further study on gnetophyte and gymnosperm evolution.  相似文献   

9.
10.
Global biodiversity patterns in deep time can only be understood fully when the relative preservation potential of each clade is known. The relative preservation potential of marine arthropod clades, a diverse and ecologically important component of modern and past ecosystems, is poorly known. We tackled this issue by carrying out a 205‐day long comprehensive, comparative, taphonomic experiment in a laboratory by scoring up to ten taphonomic characters for multiple specimens of seven crustacean and one chelicerate species (two true crabs, one shrimp, one lobster, one hermit crab, one stomatopod, one barnacle and one horseshoe crab). Although the results are preliminary because we used a single experimental setup and algal growth partially hampered observations, some parts of hermit crabs, stomatopods, swimming crabs and barnacles decayed slowly relative to other parts, implying differential preservation potentials within species, largely consistent with the fossil record of these groups. An inferred parasitic isopod, manifested by a bopyriform swelling within a hermit crab carapace, decayed relatively fast. We found limited variation in the decay rate between conspecifics, and we did not observe size‐related trends in decay rate. Conversely, substantial differences in the decay rate between species were seen after c. 50 days, with shrimps and stomatopods decaying fastest, suggesting a relatively low preservation potential, whereas the lobster, calico crabs, horseshoe crabs and barnacles showed relatively slow decay rates, suggesting a higher preservation potential. These results are supported by two modern and fossil record‐based preservation potential metrics that are significantly correlated to decay rate ranks. Furthermore, we speculate that stemward slippage may not be ubiquitous in marine arthropods. Our results imply that diversity studies of true crabs, lobsters, horseshoe crabs and barnacles are more likely to yield patterns that are closer to their true biodiversity patterns than those for stomatopods, shrimps and hermit crabs.  相似文献   

11.
Chimonanthus salicifolius, a member of the Calycanthaceae of magnoliids, is one of the most famous medicinal plants in Eastern China. Here, we report a chromosome‐level genome assembly of Csalicifolius, comprising 820.1 Mb of genomic sequence with a contig N50 of 2.3 Mb and containing 36 651 annotated protein‐coding genes. Phylogenetic analyses revealed that magnoliids were sister to the eudicots. Two rounds of ancient whole‐genome duplication were inferred in the Csalicifolious genome. One is shared by Calycanthaceae after its divergence with Lauraceae, and the other is in the ancestry of Magnoliales and Laurales. Notably, long genes with > 20 kb in length were much more prevalent in the magnoliid genomes compared with other angiosperms, which could be caused by the length expansion of introns inserted by transposon elements. Homologous genes within the flavonoid pathway for Csalicifolius were identified, and correlation of the gene expression and the contents of flavonoid metabolites revealed potential critical genes involved in flavonoids biosynthesis. This study not only provides an additional whole‐genome sequence from the magnoliids, but also opens the door to functional genomic research and molecular breeding of Csalicifolius.  相似文献   

12.
13.
14.
Cicer arietinum L. (chickpea) is the third most important food legume crop. We have generated the draft sequence of a desi‐type chickpea genome using next‐generation sequencing platforms, bacterial artificial chromosome end sequences and a genetic map. The 520‐Mb assembly covers 70% of the predicted 740‐Mb genome length, and more than 80% of the gene space. Genome analysis predicts the presence of 27 571 genes and 210 Mb as repeat elements. The gene expression analysis performed using 274 million RNA‐Seq reads identified several tissue‐specific and stress‐responsive genes. Although segmental duplicated blocks are observed, the chickpea genome does not exhibit any indication of recent whole‐genome duplication. Nucleotide diversity analysis provides an assessment of a narrow genetic base within the chickpea cultivars. We have developed a resource for genetic markers by comparing the genome sequences of one wild and three cultivated chickpea genotypes. The draft genome sequence is expected to facilitate genetic enhancement and breeding to develop improved chickpea varieties.  相似文献   

15.
16.
17.
Triplophysa is an endemic fish genus of the Tibetan Plateau in China. Triplophysa tibetana, which lives at a recorded altitude of ~4,000 m and plays an important role in the highland aquatic ecosystem, serves as an excellent model for investigating high‐altitude environmental adaptation. However, evolutionary and conservation studies of T. tibetana have been limited by scarce genomic resources for the genus Triplophysa. In the present study, we applied PacBio sequencing and the Hi‐C technique to assemble the T. tibetana genome. A 652‐Mb genome with 1,325 contigs with an N50 length of 3.1 Mb was obtained. The 1,137 contigs were further assembled into 25 chromosomes, representing 98.7% and 80.47% of all contigs at the base and sequence number level, respectively. Approximately 260 Mb of sequence, accounting for ~39.8% of the genome, was identified as repetitive elements. DNA transposons (16.3%), long interspersed nuclear elements (12.4%) and long terminal repeats (11.0%) were the most repetitive types. In total, 24,372 protein‐coding genes were predicted in the genome, and ~95% of the genes were functionally annotated via a search in public databases. Using whole genome sequence information, we found that T. tibetana diverged from its common ancestor with Danio rerio ~121.4 million years ago. The high‐quality genome assembled in this work not only provides a valuable genomic resource for future population and conservation studies of T. tibetana, but it also lays a solid foundation for further investigation into the mechanisms of environmental adaptation of endemic fishes in the Tibetan Plateau.  相似文献   

18.
19.

Background  

Alu elements are short (~300 bp) interspersed elements that amplify in primate genomes through a process termed retroposition. The expansion of these elements has had a significant impact on the structure and function of primate genomes. Approximately 10 % of the mass of the human genome is comprised of Alu elements, making them the most abundant short interspersed element (SINE) in our genome. The majority of Alu amplification occurred early in primate evolution, and the current rate of Alu retroposition is at least 100 fold slower than the peak of amplification that occurred 30–50 million years ago. Alu elements are therefore a rich source of inter- and intra-species primate genomic variation.  相似文献   

20.
Sarcophaga peregrina is considered to be of great ecological, medical and forensic significance, and has unusual biological characteristics such as an ovoviviparous reproductive pattern and adaptation to feed on carrion. The availability of a high‐quality genome will help to further reveal the mechanisms underlying these charcateristics. Here we present a de novo‐assembled genome at chromosome scale for S. peregrina. The final assembled genome was 560.31 Mb with contig N50 of 3.84 Mb. Hi‐C scaffolding reliably anchored six pseudochromosomes, accounting for 97.76% of the assembled genome. Moreover, 45.70% of repeat elements were identified in the genome. A total of 14,476 protein‐coding genes were functionally annotated, accounting for 92.14% of all predicted genes. Phylogenetic analysis indicated that S. peregrina and S. bullata diverged ~ 7.14 million years ago. Comparative genomic analysis revealed expanded and positively selected genes related to biological features that aid in clarifying its ovoviviparous reproduction and carrion‐feeding adaptations, such as lipid metabolism, olfactory receptor activity, antioxidant enzymes, proteolysis and serine‐type endopeptidase activity. Protein‐coding genes associated with ovoviparity, such as yolk proteins, transferrin and acid sphingomyelinase, were identified. This study provides a valuable genomic resource for S. peregrina, and sheds insight into further revealing the underlying molecular mechanisms of adaptive evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号