首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Symptoms suggestive of phytoplasma diseases were observed in infected sweet cherry trees growing in the central regions of Iran. Phytoplasmas were detected in symptomatic trees by the nested polymerase chain reaction (nested PCR) using phytoplasma universal primer pairs (P1/Tint, PA2F/R, R16F2/R2 and NPA2F/R). Restriction fragment length polymorphism analyses of 485 bp DNA fragments amplified in nested PCR revealed that different phytoplamas were associated with infected trees. Sequence analyses of phytoplasma 16S rRNA gene and 16S-23S intergenic spacer region indicated that the phytoplasmas related to ' Ca. Phytoplasma asteris ' and peanut WB group infect sweet cherry trees in these regions. This is the first report of the presence of phytoplasmas related to ' Ca. Phytoplasma asteris' and peanut WB group in sweet cherry trees.  相似文献   

2.
A survey was made to determine the incidence of phytoplasmas in 39 sweet and sour cherry, peach, nectarine, apricot and plum commercial and experimental orchards in seven growing regions of Poland. Nested polymerase chain reaction (PCR) using the phytoplasma‐universal primer pairs P1/P7 followed by R16F2n/R16R2 showed the presence of phytoplasmas in 29 of 435 tested stone fruit trees. The random fragment length polymorphism (RFLP) patterns obtained after digestion of the nested PCR products separately with RsaI, AluI and SspI endonucleases indicated that selected Prunus spp. trees were infected by phytoplasmas belonging to three different subgroups of the apple proliferation group (16SrX‐A, ‐B, ‐C). Nucleotide sequence analysis of 16S rDNA fragment amplified with primers R16F2n/R16R2 confirmed the PCR/Restriction Fragment Length Polymorphism (RFLP) results and revealed that phytoplasma infecting sweet cherry cv. Regina (Reg), sour cherry cv. Sokowka (Sok), apricots cv. Early Orange (EO) and AI/5, Japanese plum cv. Ozark Premier (OzPr) and peach cv. Redhaven (RedH) was closely related to isolate European stone fruit yellows‐G1 of the ‘Candidatus Phytoplasma prunorum’ (16SrX‐B). Sequence and phylogenetic analyses resulted in the highest similarity of the 16S rDNA fragment of phytoplasma from nectarine cv. Super Queen (SQ) with the parallel sequence of the strain AP15 of the ‘Candidatus Phytoplasma mali’ (16SrX‐A). The phytoplasma infecting sweet cherry cv. Kordia (Kord) was most similar to the PD1 strain of the ‘Candidatus Phytoplasma pyri’ (16SrX‐C). This is the first report of the occurrence of ‘Ca. P. prunorum’, ‘Ca. P. mali’ and ‘Ca. P. pyri’ in naturally infected stone fruit trees in Poland.  相似文献   

3.
In 2011, typical symptoms suggestive of phytoplasma infection such as reddening of leaves were observed in peach trees in Fuping, Shaanxi Province, China. Phytoplasma‐like bodies were observed by transmission electron microscope in the petiole tissues of symptomatic peach trees. Products of c. 1.2 kb were generated from all symptomatic peach leaf samples by a nested polymerase chain reaction using phytoplasma universal primer pairs P1?P7 and R16F2n?R16R2, whereas no such amplicon was obtained from healthy samples. Results of phylogenetic analysis and restriction fragment length polymorphism suggested that the phytoplasma associated with such peach red leaf disease was a member of subgroup 16SrI‐C. To our knowledge, this is the first record of 16SrI‐C subgroup phytoplasma occurred in peach tree in China.  相似文献   

4.
Chinese cinnamon (Cinnamomum cassia Presl), an evergreen tree native to China, is a multifaceted medicinal plant. The stem bark of cinnamon is used worldwide in traditional and modern medicines and is one of the most popular cooking spices. In recent years, cinnamon with pronounced yellow leaf symptoms has been observed in their natural habitat in Hainan, China. Phytoplasmas were detected from symptomatic cinnamon trees via polymerase chain reaction using phytoplasma universal primers P1/P7 followed by R16F2n/R16R2. No amplification products were obtained from templates of asymptomatic cinnamon trees. These results indicated a direct association between phytoplasma infection and the cinnamon yellow leaf (CYL) disease. Sequence analysis of the CYL phytoplasma 16S rRNA gene determined that CYL phytoplasma is a ‘Candidatus Phytoplasma australasiae’‐related strain. Furthermore, virtual restriction fragment length polymorphism pattern analysis and phylogenetic studies showed that CYL phytoplasma belongs to the peanut witches’‐broom (16SrII) group, subgroup A. This is the first report of a 16SrII group phytoplasma infecting cinnamon under natural conditions.  相似文献   

5.
During several surveys in extensive areas in central Iran, apple trees showing phytoplasma diseases symptoms were observed. PCR tests using phytoplasma universal primer pairs P1A/P7A followed by R16F2n/R16R2 confirmed the association of phytoplasmas with symptomatic apple trees. Nested PCR using 16SrX group‐specific primer pair R16(X)F1/R1 and aster yellows group‐specific primer pairs rp(I)F1A/rp(I)R1A and fTufAy/rTufAy indicated that apple phytoplasmas in these regions did not belong to the apple proliferation group, whereas aster yellows group‐related phytoplasmas caused disease on some trees. Restriction fragment length polymorphism (RFLP) analyses using four restriction enzymes (HhaI, HpaII, HaeIII and RsaI) and sequence analyses of partial 16S rRNA and rp genes demonstrated that apple phytoplasma isolates in the centre of Iran are related to ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma aurantifolia’. This is the first report of apples infected with ‘Ca. Phytoplasma asteris’ in Iran and the first record from association of ‘Ca. Phytoplasma aurantifolia’ with apples worldwide.  相似文献   

6.
A new cauliflower disease characterised by the formation of leaf‐like inflorescences and malformed flowers occurred in a seed production field located in Yunnan, a southwest province of China. Detection of phytoplasma‐characteristic 16S rRNA gene sequences in DNA samples from diseased plants linked the cauliflower disease to phytoplasmal infection. Results from phylogenetic and virtual restriction fragment length polymorphism analyses of the 16S rRNA gene sequence indicated that the cauliflower‐infecting agent is a ‘Candidatus Phytoplasma aurantifolia’‐related strain and is a new member of the peanut witches'‐broom phytoplasma group, subgroup A (16SrII‐A). Multilocus genotyping showed close genetic relationship between this cauliflower phytoplasma and a broad host range phytoplasma lineage found only in East Asia thus far. Molecular markers present in the secY and rp loci distinguished this phytoplasma from other members of the subgroup 16SrII‐A.  相似文献   

7.
Phytoplasmas are phloem‐inhabiting, cell wall‐less bacteria that cause numerous plant diseases worldwide. Plants infected by phytoplasmas often exhibit various symptoms indicative of hormonal imbalance. In this study, we investigated the effects of potato purple top (PPT) phytoplasma infection on gibberellin homeostasis in tomato plants. We found that PPT phytoplasma infection caused a significant reduction in endogenous levels of gibberellic acid (GA3). The decrease in GA3 content in diseased plants was correlated with down regulation of genes responsible for biosynthesis of bioactive GAs ( GA20ox1 and GA3ox1) and genes involved in formation of GA precursors [geranyl diphosphate synthase (GPS) and copalyldiphosphate synthase (CPS)]. Exogenous application of GA3 at 200 µmol L?1 was able to restore the GA content in infected plants to levels comparable to those in healthy controls, and to attenuate the characteristic ‘big bud’ symptoms induced by the phytoplasma. The interesting observation that PPT phytoplasma‐infected plants had prolonged low expression of key GA biosynthesis genes GA20ox1 and GA3ox1 under GA deficiency conditions led us to hypothesise that there was a diminished sensitivity of the GA metabolism feedback regulation, especially GA biosynthesis negative feedback regulation, in those affected plants, and such diminished sensitization in early stages of infection may represent a central element of the phytoplasma‐induced disruption of GA homeostasis and pathogenesis.  相似文献   

8.
A survey for phytoplasma diseases was conducted in a sweet and sour cherry germplasm collection and in cherry orchards within the Czech Republic during 2014–2015. Phytoplasmas were detected in 21 symptomatic trees. Multiple infections of cherry trees by diverse phytoplasmas of 16SrI and 16SrX groups and 16SrI‐A, 16SrI‐B, 16SrI‐L, 16SrX‐A subgroups were detected by restriction fragment length polymorphism (RFLP). Nevertheless, phylogenetic analysis placed subgroups 16SrI‐B and 16SrI‐L inseparable together onto one branch of phylogenetic tree. This is the first report of subgroups 16SrI‐A and 16SrI‐L in Prunus spp., and subgroup 16SrX‐A in sour cherry trees. Additionally, novel RFLP profiles for 16SrI‐A and 16SrI‐B‐related phytoplasmas were found in cherry samples. Phytoplasmas with these novel profiles belong, however, to their respective 16SrI‐A or 16SrI‐B phylogenetic clades.  相似文献   

9.
Symptoms of unknown aetiology on Rhododendron hybridum cv. Cunningham's White were observed in the Czech Republic in 2010. The infected plant had malformed leaves, with irregular shaped edges, mosaic, leaf tip necrosis and multiple axillary shoots with smaller leaves. Transmission electron microscopy showed phytoplasma‐like bodies in phloem cells of the symptomatic plant. Phytoplasma presence was confirmed by polymerase chain reaction using phytoplasma‐specific, universal and group‐specific primer pairs. Restriction fragment length polymorphism analysis of 16S rDNA enabled classification of the detected phytoplasma into the aster yellows subgroup I‐C. Sequence analysis of the 16S‐23S ribosomal operon of the amplified phytoplasma genome from the infected rhododendron plant (1724 bp) confirmed the closest relationship with the Czech Echinacea purpurea phyllody phytoplasma. These data suggest Rhododendron hybridum is a new host for the aster yellows phytoplasma subgroup 16SrI‐C in the Czech Republic and worldwide.  相似文献   

10.
Plants of alfalfa (Medicago sativa) exhibiting general stunting, proliferation and phyllody associated with leaf yellowing and reddening were observed in three localities of Central Serbia. Phytoplasma strains belonging to 16SrIII‐B and 16SrXII‐A groups were detected and identified by RFLP and sequence analysis of 16S rDNA. Stolbur phytoplasma tuf gene RFLP analysis showed the presence of the TufAY‐b‐type phytoplasma subgroup in 80% of symptomatic samples. This is the first report of 16SrIII‐B and 16SrXII‐A phytoplasma groups affecting alfalfa in Serbia.  相似文献   

11.
To clarify the phytoplasma associated with Huanglongbing (HLB), a detection survey of phytoplasma in field citrus trees was performed using the standardized nested PCR assay with primer set P1/16S‐Sr and R16F2n/R16R2. The HLB‐diseased citrus trees with typical HLB symptoms showed a high detection of 89.7% (322/359) of HLB‐Las, while a low detection of phytoplasma at 1.1% (4/359) was examined in an HLB‐affected Wentan pummelo (Citrus grandis) tree (1/63) and Tahiti lime (C. latifolia) trees (3/53) that were co‐infected with HLB‐Las. The phytoplasma alone was also detected in a healthy Wentan pummelo tree (1/60) at a low incidence total of 0.3% (1/347). Healthy citrus plants were inoculated with the citrus phytoplasma (WP‐DL) by graft inoculation with phytoplasma‐infected pummelo scions. Positive detections of phytoplasma were monitored only in the Wentan pummelo plant 4 months and 3.5 years after inoculation, and no symptoms developed. The citrus phytoplasma infected and persistently survived in a low titre and at a very uneven distribution in citrus plants. Peanut witches' broom (PnWB) phytoplasma (16SrII‐A) and periwinkle leaf yellowing (PLY) phytoplasma belonging to the aster yellows group (16SrI‐B) maintained in periwinkle plants were inoculated into healthy citrus plants by dodder transmission. The PnWB phytoplasma showed infection through positive detection of the nested PCR assay in citrus plants and persistently survived without symptom expression up to 4 years after inoculation. Positive detections of the phytoplasma were found in a low titre and several incidences in the other inoculated citrus plants including Ponkan mandarin, Liucheng sweet orange, Eureka lemon and Hirami lemon. None of the phytoplasma‐infected citrus plants developed symptoms. Furthermore, artificial inoculation of PLY phytoplasma (16SrI‐B) into the healthy citrus plants demonstrated no infection. The citrus symptomless phytoplasma was identified to belong to the PnWB phytoplasma group (16SrII‐A).  相似文献   

12.
Apple proliferation (AP) is an important disease and is prevalent in several European countries. The causal agent of AP is ‘Candidatus Phytoplasma mali’ (‘Ca. Phytoplasma mali’). In this work, isolates of ‘Ca. Phytoplasma mali’ were detected and characterized through polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analyses of 16S rRNA gene and non‐ribosomal DNA fragment. The presence of three AP subtypes (AT‐1, AT‐2 and AP‐15) was identified in 31 symptomatic apple trees and two samples each constituted by a pool of five insects, collected in north‐western Italy, where AT‐1 is a dominant subtype. Subsequent nucleotide sequence analysis of the PCR‐amplified 1.8 kb (P1/P7) fragment, containing the 16S rDNA, the 16S–23S intergenic ribosomal region and the 5′‐end of the 23S rDNA, revealed the presence of at least two phytoplasmal genetic lineages within the AT‐1 subtype, designed AT‐1a and AT‐1b. Moreover, in silico single nucleotide polymorphism (SNP) analysis based on 16S rDNA sequence can differentiate AT‐1 subtype from AT‐2 and AP‐15 subtypes. Our data showed a high degree of genetic diversity among ‘Ca. Phytoplasma mali’ population in north‐western Italy and underlined the possible use of the 16S rDNA analysis for the identification and the geographical origin assignation of isolates of AP phytoplasma. Molecular markers on 16S rDNA, here identified, could be useful for studying the epidemiology of AP disease.  相似文献   

13.
In the year 2010, in a survey in Guangxi Province, China, to detect and characterize phytoplasmas in a huanglongbing (HLB)‐infected grapefruit (Citrus paradisi) orchard, 87 leaf samples with symptoms of blotchy mottle were collected from symptomatic grapefruit trees, and 320 leaf samples from symptomless trees adjacent to the symptomatic trees. Nested polymerase chain reaction (PCR) using universal phytoplasma primer set P1/P7 followed by primer set fU5/rU3 identified 7 (8.0%) positive samples from symptomatic samples but none from symptomless samples. Of the 87 symptomatic samples, 77 (88.5%) were positive for ‘Candidatus Liberibacter asiaticus’ and 5 for both phytoplasma and ‘Ca. L. asiaticus’. Sequence analysis indicated that seven 881‐bp amplicons, amplified by nested phytoplasma primer sets P1/P7 and fU5/rU3, shared 100.0% sequence identity with each other. Genome walking was then performed based on the 881 bp known sequences, and 5111 bp of upstream and downstream sequences were obtained. The total 5992 bp sequences contained a complete rRNA operon, composed of a 16S rRNA gene, a tRNAIle gene, a 23S rRNA gene and a 5S rRNA gene followed by eight tRNA genes. Phylogenetic analysis and virtual restriction fragment length polymorphism analysis confirmed the phytoplasma was a variant (16SrII‐A*) of phytoplasma subgroup 16SrII‐A. As phytoplasmas were only detected in blotchy‐mottle leaves, the 16SrII‐A* phytoplasma identified was related to HLB‐like symptoms.  相似文献   

14.
Symptoms of pear decline (PD) were observed in several pear growing regions of Iran. Pear trees with typical symptoms of PD from Estahban (Fars Province) were examined for phytoplasma infection using polymerase chain reaction (PCR) assay. Graft inoculation of healthy pear trees with scions from diseased trees resulted in production of PD symptoms and transmission of phytoplasma as verified by PCR. Target DNA was amplified from symptomatic pear trees with fO1/rO1, an apple proliferation (AP) group-specific primer pair. Physical and putative restriction fragment length polymorphism (RFLP) analyses of fO1/rO1 primed PCR products showed profiles corresponding to AP group, 16SrX-C subgroup ( Candidatus Phytoplasma pyri). Percent similarity values and phylogenetic analysis of fO1/rO1 primed sequences confirmed that, as a member of AP subclade, Estahban PD phytoplasma has a closer relationship to PD and peach yellow leaf roll phytoplasmas than to AP ( Ca . Phytoplasma mali) and European stone fruit yellows ( Ca . Phytoplasma prunorum) phytoplasmas. This is the first report of PD phytoplasma in the eastern Mediterranean.  相似文献   

15.
Aim: To elucidate the possible mechanism of phytoplasma elimination from periwinkle shoots caused by indole‐3‐butyric acid (IBA) treatment. Methods and Results: It has been shown that a transfer of in vitro‐grown phytoplasma‐infected Catharanthus roseus (periwinkle) plantlets from medium supplemented with 6‐benzylaminopurine (BA) to one supplemented with IBA can induce remission of symptoms and even permanent elimination of ‘Candidatus Phytoplasma asteris’ reference strain HYDB. Endogenous auxin levels and general methylation levels in noninfected periwinkles, periwinkles infected with two ‘Candidatus Phytoplasma’ species and phytoplasma‐recovered periwinkles were measured and compared. After the transfer from cytokinin‐ to auxin‐containing media, healthy shoots maintained their phenotype, methylation levels and hormone concentrations. Phytoplasma infection caused a change in the endogenous indole‐3‐acetic acid to IBA ratio in periwinkle shoots infected with two ‘Candidatus Phytoplasma’ species, but general methylation was significantly changed only in shoots infected with ‘Ca. P. asteris’, which resulted in the only phytoplasma species eliminated from shoots after transfer to IBA‐containing medium. Both phytoplasma infection and treatment with plant growth regulators influenced callose deposition in phloem tissue, concentrations of photosynthetic pigments and soluble proteins, H2O2 levels and activities of catalase (CAT) and ascorbate peroxidase (APX). Conclusion: Lower level of host genome methylation in ‘Ca. P. asteris’‐infected periwinkles on medium supplemented with BA was significantly elevated after IBA treatment, while IBA treatment had no effect on cytosine methylation in periwinkles infected with ‘Candidatus Phytoplasma ulmi’ strain EY‐C. Significance and Impact of the Study: Hormone‐dependent recovery is a distinct phenomenon from natural recovery. As opposed to spontaneously recovered plants in which elevated peroxide levels and differential expression of peroxide‐related enzymes were observed, in hormone‐dependent recovery changes in global host genome, methylation coincide with the presence/absence of phytoplasma.  相似文献   

16.
In 2010, cabbages (Brassica oleracea L.) showing symptoms of proliferated axillary buds, crinkled leaves and plant stunting with shortened internodes typical to phytoplasma infection were found in a breeding facility in Beijing, China. Three symptomatic plants and one symptomless plant were collected, and total DNA was extracted from the midrib tissue and the flowers. With phytoplasma universal primers R16F2n/R16R2, a special fragment of 1247 bp (16S rDNA) was obtained from all three symptomatic cabbage plants, but not from the one symptomless cabbage plant. The 16S rDNA sequence showed 99% similarity with the homologous genes of the aster yellows group phytoplasma (16SrI group), and the phytoplasma was designed as CWBp‐BJ. Phylogenetic and computer‐simulated restriction fragment length polymorphism (RFLP) analysis of the 16S rDNA gene revealed that CWBp‐BJ belongs to subgroup 16SrI‐B. This is the first report of a phytoplasma associated with cabbage witches’‐broom in China.  相似文献   

17.
18.
In Argentina, amaranth is a promising crop due to high nutritional quality and ability to grow in a diversity of environments. In areas cultivated with amaranth, were observed plants exhibiting slow growth, deformed leaves, proliferation of shoots and malformed lateral panicles. Field survey revealed up to 96% disease incidence and 92% of the seeds collected from mother plants produced diseased seedlings. A phytoplasma was detected in association with seedlings and adult plants using nested PCR assays. Molecular identification by computer‐simulated RFLP and phylogenetic analysis evidenced the occurrence of a ‘Candidatus Phytoplasma hispanicum’‐related strain, affiliated with 16SrXIII‐A subgroup. The findings implicate amaranth as a new host for this subgroup and as a potential reservoir of the pathogen for other cultivated species. In addition, to the best of our knowledge, this study reports for the first time the presence of 16SrXIII‐A phytoplasma in Argentina and in South America. Furthermore, transmission assays pointed that naturally infected seed is an important vehicle of dissemination of the pathogen, threatening the expansion of the crop for new geographical areas.  相似文献   

19.
Reddening disease has recently been threatening Salvia miltiorrhiza in China, ranging from 30 to 50%. The main symptoms observed, such as plant stunting, inflorescence malformation, leaf reddening, fibrous roots browning, skin blackening and eventually root rot, are typically associated with phytoplasma infection. The presence of phytoplasmas was demonstrated through phytoplasma‐specific PCR, with the expected amplification (1.8 kb) from symptomatic S. miltiorrhiza plants from Shangluo, Shangzhou and Luonan fields in Shaanxi Province of China. The sequences of 16S rRNA, tuf, secY and vmp1 genes amplified from LN‐1 phytoplasma shared the closest homologies of 99%, 100%, 99% and 98% with those of the reference strain Candidatus Phytoplasma solani (subgroup 16SrXII‐A), respectively. The phylogenetic trees showed that LN‐1 phytoplasma clustered with the members of 16SrXII‐A group, including CaP. solani. Computer‐simulated restriction fragment length polymorphism analysis further supported this classification. Diversity analysis showed that all ‘Ca. P. solani’ strains identified from the three different regions examined shared 100% identical 16S rRNA, tuf, secY and vmp1 nucleotide sequences. To the best of our knowledge, this is the first report of phytoplasma infecting the medicinal plant of S. miltiorrhiza. The results demonstrate that ‘CaP. solani’ is the presumptive aetiological agent of S. miltiorrhiza reddening disease in China.  相似文献   

20.
Recently, peach trees showing leaf rolling, little leaf, rosetting, yellowing, bronzing of foliage and tattered and shot‐holed leaves symptoms were observed in peach growing areas in the central and north‐western regions of Iran. Polymerase chain reaction (PCR) and nested PCR using phytoplasma universal primer pairs P1/Tint, R16F2/R2, PA2F/R and NPA2F/R were employed to detect phytoplasmas. The nested PCR assays detected phytoplasma infections in 51% of symptomatic peach trees in the major peach production areas in East Azerbaijan, Isfahan, ChaharMahal‐O‐Bakhtiari and Tehran provinces. Restriction fragment length polymorphism (RFLP) analyses of 485 bp fragments amplified using primer pair NPA2F/R in nested PCR revealed that the phytoplasmas associated with infected peaches were genetically different and they were distinct from phytoplasmas that have been associated with peach and almond witches’‐broom diseases in the south of Iran. Sequence analyses of partial 16S rDNA and 16S–23S rDNA intergenic spacer regions demonstrated that ‘Candidatus Phytoplasma aurantifolia’, ‘Ca. Phytoplasma solani’ and ‘Ca. Phytoplasma trifolii’ are prevalent in peach growing areas in the central and north‐western regions of Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号