首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
One of the most conspicuous and widely analyzed patterns in ecology is the latitudinal gradient in species richness. Over the 200 years since its recognition, several hypotheses have accumulated in order to account for spatial variations in diversity. Geographic variations in seasonality have been repeatedly proposed as a determinant of community richness. However, the geographic structure of community seasonality has not yet been analyzed. In the present work we evaluated three hypotheses that account for variations in the temporal structuring of communities: first, environmental seasonality determines community seasonality; second, community richness determines its degree of structuring; and third, the presence of an increase in species segregation with latitude, reflected in a pattern of species negative co‐occurrence. The hypotheses were evaluated using path analysis on 29 amphibian communities from South America, connecting latitude, environmental conditions, diversity, seasonality, and coexistence structure – nestedness and negative co‐occurrence – within communities. Latitude positively affects community seasonality through an increase in temperature seasonality, but a weak negative direct effect suggests that other variables not considered in the model – such as the strength of biotic interactions – could also be involved. Both latitude and diversity (directly and indirectly) determine an increase in negative co‐occurrence and nestedness. This suggests that groups of species that are mutually nested in time are internally segregated. Further, the strength of this structure is determined by community diversity and latitude. Temporal structuring of a community is associated with latitude and diversity, pointing to the existence of a systematic change in community organization far beyond, but probably interrelated, with the recognized latitudinal trend in richness. The available information and analysis supported the three hypotheses evaluated.  相似文献   

2.
The structure of species interaction networks is important for species coexistence, community stability and exposure of species to extinctions. Two widespread structures in ecological networks are modularity, i.e. weakly connected subgroups of species that are internally highly interlinked, and nestedness, i.e. specialist species that interact with a subset of those species with which generalist species also interact. Modularity and nestedness are often interpreted as evolutionary ecological structures that may have relevance for community persistence and resilience against perturbations, such as climate‐change. Therefore, historical climatic fluctuations could influence modularity and nestedness, but this possibility remains untested. This lack of research is in sharp contrast to the considerable efforts to disentangle the role of historical climate‐change and contemporary climate on species distributions, richness and community composition patterns. Here, we use a global database of pollination networks to show that historical climate‐change is at least as important as contemporary climate in shaping modularity and nestedness of pollination networks. Specifically, on the mainland we found a relatively strong negative association between Quaternary climate‐change and modularity, whereas nestedness was most prominent in areas having experienced high Quaternary climate‐change. On islands, Quaternary climate‐change had weak effects on modularity and no effects on nestedness. Hence, for both modularity and nestedness, historical climate‐change has left imprints on the network structure of mainland communities, but had comparably little effect on island communities. Our findings highlight a need to integrate historical climate fluctuations into eco‐evolutionary hypotheses of network structures, such as modularity and nestedness, and then test these against empirical data. We propose that historical climate‐change may have left imprints in the structural organisation of species interactions in an array of systems important for maintaining biological diversity.  相似文献   

3.
Brody Sandel 《Ecography》2018,41(5):837-844
Phylogenetic diversity indices are widely used to characterize the structure and diversity of ecological communities. Most indices are based on a metric that is expected to vary with species richness, so they are standardized to remove this richness‐dependence. With this standardization, values of 0 are consistent with random phylogenetic structure, while phylogenetic clustering is associated with either negative or positive values (depending on the index). One common interpretation of phylogenetic clustering is that it indicates some combination of environmental and biological filtering that restricts the species that can be present in a community. Increasingly, studies are comparing phylogenetic indices along environmental gradients to infer differences in the factors structuring communities. This comparison implicitly assumes that index values are comparable among communities with different numbers of species. Using a set of simulations, I show here that this assumption is incorrect. Holding the strength of filtering constant, communities composed of more species show larger absolute index values. This problem is most pronounced when the environmental filter favors a moderate‐sized clade strongly over others and when using the net relatedness index (NRI) to measure clustering. This bias potentially casts doubt on studies studying phylogenetic index patterns along gradients where richness also varies. Fortunately, the arising generality that more stressful environments have lower species richness and stronger clustering is opposite to this bias and therefore robust. I also show that a simple rarefaction can remove the richness‐dependence of these indices, at the expense of increased error.  相似文献   

4.
In the context of the metabolic theory of ecology (MTE), the activation energy (E) reflects the temperature dependence of metabolism and organism performance in different activities, such as calling behavior. In this contribution we test the role of temperature in affecting local amphibian community structure, particularly the number of species engaged in calling behavior across a temperature gradient. Toward this aim, we compiled phenological calling activity for 52 Neotropical anuran communities. For each community we estimated the activation energy of calling behavior (E), finding values significantly higher than previous reports. A wide range of methodological issues with the potential to produce overestimated E‐values were shown to have no significant effect on reported E‐values, supporting a biological interpretation of their high values and of geographic trends. Further, a path analysis related variation in E among communities with communities’ phylogenetic structure, local environmental conditions, richness, and seasonality. The decrease of activation energy at higher latitudes and less productive environments suggests that amphibians’ activity could become more dependent of internal individuals’ resources once external sources are reduced. The increase in phylogenetic attraction with latitude points to a rise in the role of niche conservatism and community filtering operating over conserved traits. Finally, flexibility in activation energy related to amphibians’ calling could be an important and poorly recognized determinant of their thermal dependence. The temporal structuring of amphians’ communities was related here with the interplay between ecological and evolutionary processes operating at different scales. Our results support the view of activation energy as an important parameter of biodiversity organization, which unravels the effects of ecological and evolutionary processes on biodiversity structure and function.  相似文献   

5.
We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change.  相似文献   

6.
Large‐scale habitat destruction and climate change result in the non‐random loss of evolutionary lineages, reducing the amount of evolutionary history represented in ecological communities. Yet, we have limited understanding of the consequences of evolutionary history on the structure of food webs and the services provided by biological communities. Drawing on 11 years of data from a long‐term plant diversity experiment, we show that evolutionary history of plant communities – measured as phylogenetic diversity – strongly predicts diversity and abundance of herbivorous and predatory arthropods. Effects of plant species richness on arthropods become stronger when phylogenetic diversity is high. Plant phylogenetic diversity explains predator and parasitoid richness as strongly as it does herbivore richness. Our findings indicate that accounting for evolutionary relationships is critical to understanding the severity of species loss for food webs and ecosystems, and for developing conservation and restoration policies.  相似文献   

7.
Determining which drivers lead to a specific species assemblage is a central issue in community ecology. Although many processes are involved, plant–plant interactions are among the most important. The phylogenetic limiting similarity hypothesis states that closely related species tend to compete stronger than distantly related species, although evidence is inconclusive. We used ecological and phylogenetic data on alpine plant communities along an environmental severity gradient to assess the importance of phylogenetic relatedness in affecting the interaction between cushion plants and the whole community, and how these interactions may affect community assemblage and diversity. We first measured species richness and individual biomass of species growing within and outside the nurse cushion species, Arenaria tetraquetra. We then assembled the phylogenetic tree of species present in both communities and calculated the phylogenetic distance between the cushion species and its beneficiary species, as well as the phylogenetic community structure. We also estimated changes in species richness at the local level due to the presence of cushions. The effects of cushions on closely related species changed from negative to positive as environmental conditions became more severe, while the interaction with distantly related species did not change along the environmental gradient. Overall, we found an environmental context‐dependence in patterns of phylogenetic similarity, as the interaction outcome between nurses and their close and distantly‐related species showed an opposite pattern with environmental severity.  相似文献   

8.
Question: Vascular epiphytes and hemiepiphytes (E/HE) in neotropical forests account for a large fraction of plant richness, but little is known of how the interplay between phorophyte architectural characteristics and habitat perturbation affect communities of E/HE. Location: Sabal mexicana forests in a coastal area of Veracruz, Mexico. Methods: We compared communities of E/HE on phorophytes with different architectural characteristics – the palm S. mexicana and non‐palm phorophytes – in three environments: conserved sites, perturbed sites and small regenerated forest fragments. We combined traditional (abundance, species richness, similarity and complementarity indices) and more recent (phylogenetic diversity) metrics to describe the communities of E/HE. Results: Overall, we recorded 924 E/HE individuals (nine families, 16 genera and 21 species). The abundance and species richness of E/HE was higher on palms than on non‐palm phorophytes. Abundance‐based complementarities between phorophytes and sites were high. We detected clear changes in community structure of E/HE with habitat perturbation, but there were no effects on the phylogenetic diversity of the E/HE community. Palm phorophytes hosted a more phylogenetically diverse community of E/HE than did non‐palm phorophytes. Conclusions: Palm phorophytes are key elements supporting the conservation of resilient communities of E/HE in S. mexicana forest. Habitat fragmentation has a strong effect on the structure of the E/HE community in S. mexicana forests. Ferns are the group of epiphytes most severely affected by habitat perturbation, but we detected no significant effect on the phylogenetic diversity of the community.  相似文献   

9.
Ectomycorrhizal (ECM) fungi play major ecological roles in temperate and tropical ecosystems. Although the richness of ECM fungal communities and the factors controlling their structure have been documented at local spatial scales, how they vary at larger spatial scales remains unclear. In this issue of Molecular Ecology, Tedersoo et al. (2012) present the results of a meta‐analysis of ECM fungal community structure that sheds important new light on global‐scale patterns. Using data from 69 study systems and 6021 fungal species, the researchers found that ECM fungal richness does not fit the classic latitudinal diversity gradient in which species richness peaks at lower latitudes. Instead, richness of ECM fungal communities has a unimodal relationship with latitude that peaks in temperate zones. Intriguingly, this conclusion suggests the mechanisms driving ECM fungal community richness may differ from those of many other organisms, including their plant hosts. Future research will be key to determine the robustness of this pattern and to examine the processes that generate and maintain global‐scale gradients of ECM fungal richness.  相似文献   

10.
Climate change has changed the phenologies of species worldwide, but it remains unclear how these phenological changes will affect species interactions and the structure of natural communities. Using a novel approach to analyse long‐term data of 66 amphibian species pairs across eight communities, we demonstrate that phenological shifts can significantly alter the interaction potential of coexisting competitors. Importantly, these changes in interaction potential were mediated by non‐uniform, species‐specific shifts in entire phenological distributions and consequently could not be captured by metrics traditionally used to quantify phenological shifts. Ultimately, these non‐uniform shifts in phenological distributions increased the interaction potential for 25% of species pairs (and did not reduce interaction potential for any species pair), altering temporal community structure and potentially increasing interspecific competition. These results demonstrate the potential of phenological shifts to reshape temporal structure of natural communities, emphasising the importance of considering entire phenological distributions of natural populations.  相似文献   

11.
Host and parasite richness are generally positively correlated, but the stability of this relationship in response to global change remains poorly understood. Rapidly changing biotic and abiotic conditions can alter host community assembly, which in turn, can alter parasite transmission. Consequently, if the relationship between host and parasite richness is sensitive to parasite transmission, then changes in host composition under various global change scenarios could strengthen or weaken the relationship between host and parasite richness. To test the hypothesis that host community assembly can alter the relationship between host and parasite richness in response to global change, we experimentally crossed host diversity (biodiversity loss) and resource supply to hosts (eutrophication), then allowed communities to assemble. As previously shown, initial host diversity and resource supply determined the trajectory of host community assembly, altering post‐assembly host species richness, richness‐independent host phylogenetic diversity, and colonization by exotic host species. Overall, host richness predicted parasite richness, and as predicted, this effect was moderated by exotic abundance—communities dominated by exotic species exhibited a stronger positive relationship between post‐assembly host and parasite richness. Ultimately, these results suggest that, by modulating parasite transmission, community assembly can modify the relationship between host and parasite richness. These results thus provide a novel mechanism to explain how global environmental change can generate contingencies in a fundamental ecological relationship—the positive relationship between host and parasite richness.  相似文献   

12.
Knowledge about the phylogeny and ecology of communities along environmental gradients helps to disentangle the role of competition-driven processes and environmental filtering for community assembly. In this study, we evaluated patterns in species richness, phylogenetic structure and life-history traits of bee communities along altitudinal gradients in the Alps, Germany. We found a linear decline in species richness and abundance but increasing phylogenetic clustering in communities with increasing altitude. The proportion of social- and ground-nesting species, as well as mean body size and altitudinal range of bee communities, increased with increasing altitude, whereas the mean geographical distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, whereas the relative importance of competition increases at low altitudes. We conclude that inherent phylogenetic and ecological species attributes at high altitudes pose a threat for less competitive alpine specialists with ongoing climate change.  相似文献   

13.
High latitude communities have low species richness and are rapidly warming with climate change. Thus, temporal changes in community composition are expected to be greatest at high latitudes. However, at the same time traits such as body size can also change with latitude, potentially offsetting or increasing changes to community composition over time. We tested how zooplankton communities (copepods and cladocerans) have changed over a 25–75 year time span by assessing colonization and extinction rates from lakes across an 1800 km latitudinal gradient, and further tested whether species traits predict rates of community change over time. Lake‐level dissimilarity, measured with Sorenson distance, decreased at higher latitudes. This decrease was due to higher colonization rates of cladocerans in lower latitude lakes and consistent extinction rates across the latitudinal gradient. At the species level, colonization increased with regional occupancy, and tended to be higher for smaller bodied, locally abundant, species. Local extinction rates were negatively correlated with local abundance and regional occupancy, but were not influenced by body size. None of these species‐specific characteristics changed predictably with latitude. Contrary to our expectations, low‐latitude zooplankton communities changed more rapidly than high‐latitude communities by becoming more species rich, not by losing species that were historically present. Moreover, colonization and extinction trends suggest that lakes have become increasingly dominated by species with smaller body sizes and that are already common locally and regionally. Together, these findings indicate that rates of species turnover in freshwater lakes across a latitudinal gradient are not predicted by rates of temperature change, but that turnover is nonetheless resulting in trait‐shifts that favour small, generalist species.  相似文献   

14.
Climate change alters the environments of all species. Predicting species responses requires understanding how species track environmental change, and how such tracking shapes communities. Growing empirical evidence suggests that how species track phenologically – how an organism shifts the timing of major biological events in response to the environment – is linked to species performance and community structure. Such research tantalizingly suggests a potential framework to predict the winners and losers of climate change, and the future communities we can expect. But developing this framework requires far greater efforts to ground empirical studies of phenological tracking in relevant ecological theory. Here we review the concept of phenological tracking in empirical studies and through the lens of coexistence theory to show why a community-level perspective is critical to accurate predictions with climate change. While much current theory for tracking ignores the importance of a multi-species context, basic community assembly theory predicts that competition will drive variation in tracking and trade-offs with other traits. We highlight how existing community assembly theory can help understand tracking in stationary and non-stationary systems. But major advances in predicting the species- and community-level consequences of climate change will require advances in theoretical and empirical studies. We outline a path forward built on greater efforts to integrate priority effects into modern coexistence theory, improved empirical estimates of multivariate environmental change, and clearly defined estimates of phenological tracking and its underlying environmental cues.  相似文献   

15.
Aims The aims were (1) to assess the species richness and structure of phytophagous Hemiptera communities along a latitudinal gradient, (2) to identify the importance of rare species in structuring these patterns, and (3) to hypothesize about how phytophagous Hemiptera communities may respond to future climate change. Location East coast of Australia. Methods Four latitudes within the 1150 km coastal distribution of Acacia falcata were selected. The insect assemblage on the host plant Acacia falcata was sampled seasonally over two years. Congeneric plant species were also sampled at the sites. Results Ninety‐eight species of phytophagous Hemiptera were collected from A. falcata. Total species richness was significantly lower at the most temperate latitude compared to the three more tropical latitudes. We classified species into four climate change response groups depending on their latitudinal range and apparent host specificity. Pairwise comparisons between groups showed that the cosmopolitan, generalist feeders and specialists had a similar community structure to each other, but the climate generalists had a significantly different structure. Fifty‐seven species were identified as rare. Most of these rare species were phloem hoppers and their removal from the dataset led to changes in the proportional representation of all guilds in two groups: the specialist and generalist feeders. Main conclusions We found no directional increase in phytophagous Hemiptera species richness. This indicates that, at least in the short term, species richness patterns of these communities may be similar to that found today. As the climate continues to change, however, we might expect some increases in species richness at the more temperate latitudes as species migrate in response to shifting climate zones. In the longer term, more substantial changes in community composition will be expected because the rare species, which comprise a large fraction of these communities, will be vulnerable to both direct climatic changes, and indirect effects via changes to their host's distribution.  相似文献   

16.
Beta多样性度量不同时空尺度物种组成的变化,是生物多样性的重要组成部分;理解其地理格局和形成机制已成为当前生物多样性研究的热点问题。基于Alwyn H. Gentry在美洲收集的131个森林样方数据,采用倍性和加性分配方法度量群落beta多样性,检验beta多样性随纬度的变化趋势,并分析其形成机制。研究表明:(1) 美洲森林群落beta多样性随纬度增加显著下降,热带和亚热带地区beta多样性高于温带地区;此格局可由物种分布范围的纬度梯度性和不同粒度(grain)下物种丰富度与纬度回归斜率的差异推论得出;(2) 加性分配方法表明beta多样性对各个温度带森林群落gamma多样性的相对贡献率平均为78.2%,并且随纬度升高而降低;(3) 美洲南半球森林群落beta多样性高于其北半球,这可能反映了区域间物种进化和环境变迁历史的差异。此外,还探讨了不同beta多样性计算方法的适用情景,首次证实了森林生态系统群落水平beta多样性的纬度梯度性,这对研究生物多样性的形成机制和生物多样性保护都具有重要的意义。  相似文献   

17.
Abstract.  1. The enormous diversity of phytophagous insects in forest canopies is hypothesised to be supported by the number of herbivorous species per host tree species or host specificity. It is therefore necessary to examine the effect of host plant species on compositional changes in the herbivore communities.
2. The lepidopteran larval communities were examined in the canopies of 10 tree species in a temperate deciduous forest of Japan. The phylogeny and leaf flush phenology of host plant species were taken into account as factors affecting the herbivore community assembly.
3. Examination of seasonal changes in the larval community structures on each tree species showed that larval species richness, abundance, and evenness decreased significantly from spring to summer. Larval species richness and abundance were characterised by family-level phylogenetic differences among tree species, whereas evenness was determined at a higher taxonomic level.
4. Compositional changes in the larval communities among tree species showed a remarkable pattern, with a phylogenetic effect at a high taxonomic level in spring, similar to evenness, but a phenological effect in summer. This suggests that host specificity could support the lepidopteran larval diversity in spring.
5. These results suggest that the differences in host utilisation of the herbivore, which reflects the phylogenetic effect of the host plants, can be important as a factor affecting the diversity of lepidopteran larval communities in temperate forests.  相似文献   

18.
Models applying space-for-time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species. We compiled community data on zooplankton, ectothermic animals that form the consumer basis of most aquatic food webs, from over 1200 mountain lakes and ponds across western North America to assess biodiversity along geographic temperature gradients spanning nearly 3750 m elevation and 30° latitude. Species richness, phylogenetic relationships, and functional diversity all showed contrasting responses across gradients, with richness metrics plateauing at low elevations but exhibiting intermediate latitudinal maxima. The nonmonotonic/hump-shaped diversity trends with latitude emerged from geographic interactions, including weaker latitudinal relationships at higher elevations (i.e. in alpine lakes) linked to different underlying drivers. Here, divergent patterns of phylogenetic and functional trait dispersion indicate shifting roles of environmental filters and limiting similarity in the assembly of communities with increasing elevation and latitude. We further tested whether gradients showed common responses to warmer temperatures and found that mean annual (but not seasonal) temperatures predicted elevational richness patterns but failed to capture consistent trends with latitude, meaning that predictions of how climate change will influence diversity also differ between gradients. Contrasting responses to elevation- and latitude-driven warming suggest different limits on climatic refugia and likely greater barriers to northward range expansion.  相似文献   

19.
放牧干扰梯度下川西亚高山植物群落的组合机理   总被引:2,自引:1,他引:1       下载免费PDF全文
为了阐明放牧干扰对川西亚高山区域植物群落的组合过程以及群落结构的影响, 研究了放牧干扰梯度下的功能群均匀度和群落谱系结构的变化趋势。结果显示: 在干扰较轻的阔叶林与针叶林样地, 部分样方的功能群均匀度显著高于无效模型, 随着干扰梯度的增强, 功能群均匀度呈线性下降, 样方平均值从0.930降至0.840, 其高于无效模型的次数也逐渐降低, 干扰程度较大的草甸中出现部分样方的功能群均匀度显著低于无效模型。随着干扰程度的增强, 群落的谱系结构指数也呈逐渐上升趋势, 净关联指数平均值由-0.634逐渐增加至2.360, 邻近类群指数由-0.158上升至2.179。草甸与低矮灌丛受干扰较为严重, 其大部分样方的谱系结构指数显著高于随机群落, 表明干扰群落的谱系结构呈聚集分布。功能群均匀度与谱系结构的变化趋势一致, 表明生境筛滤效应与种间竞争作用的平衡决定着群落的组合过程。干扰降低了竞争作用, 促进了少数耐干扰功能群的优势地位, 造成功能群均匀度下降, 同时通过生境筛滤作用, 使群落的谱系结构呈现出聚集分布; 而未干扰的群落中由于竞争作用的效应, 功能群均匀度较高, 谱系结构也更加分散。研究区域植物群落的功能群均匀度与物种丰富度呈负相关, 表明物种间特别是相似物种间的竞争限制了群落的物种多样性。研究结果说明, 生态位分化和物种间的相互竞争在物种共存与群落组合中具有重要作用。  相似文献   

20.
Fungal community composition in the Anthropocene is driven by rapid changes in environmental conditions caused by human activities. This study examines the relative importance of two global change drivers – atmospheric nitrogen (N) deposition and annual grass invasion – on structuring fungal communities in a California chaparral ecosystem, with emphasis on arbuscular mycorrhizal fungi. We used molecular markers, functional groupings, generalized linear statistics and joint distribution modeling, to examine how environmental variables structure taxonomic and functional composition of fungal communities. Invasive grasses had a lower richness and relative abundance of symbiotic fungi (both AMF and other fungi) compared to native shrubs. We found a higher richness and abundance of rhizophilic (e.g. Glomeraceae) and edaphophilic (e.g. Gigasporaceae) AMF with increasing soil NO3. Our findings suggest that invasive persistence may decrease the presence of multiple soil symbionts that native species depend on for pathogen protection and increased access to soil resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号