首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen fertilization strategies were widely adopted to enhance grain production and improve nitrogen utilization in rice all over the world. For fertilization timing strategy, ear fertilization was usually employed in recent years. For fertilization amount strategy, nitrogen fertilization would continually increase to meet the demands of increasing people for food. However, under heavy ear fertilization as well as great nitrogen amount (NA), physiological N-use efficiency (PE, defined as grain production per unit nitrogen uptake by plants) decreased. Under three NA and two ratios of fertilization given during ear development period to total NA (ear fertilization distribution ratio, EFDR), net photosynthetic rate (Pn), Pn to nitrogen content per unit area (photosynthetic N-use efficiency, Pn/N), nitrogen accumulation in plant tissues and PE of three rice (Oryza sativaL.) genotypes, Jinyou 253, Liangyoupeijiu and Baguixiang were screened in the first and second seasons in 2002 so as to understand the fluctuation patterns of Pn/N and nitrogen distribution in leaf blades under great NA & EFDR and relationship with PE in rice. Results showed that under greater NA & EFDR, Pn in flag leaves at heading and plant nitrogen accumulation at maturity always increased and PE & Pn/N always decreased in spite of increased grain production. Rice distributed more nitrogen in leaf blade under greater NA and EFDR. PE indicated significantly (P<0.05) positive relationship with Pn/N and negative relationship with nitrogen distribution ratio in leaf blades at heading and maturity, and no association with Pn in two growing seasons. Results suggested that low PE in rice under great NA and heavy ear fertilization is associated to more nitrogen distribution in leaf blades and decreases in photosynthetic efficiency.  相似文献   

2.
The photosynthetic rates and various components of photosynthesis including ribulose-1,5-bisphosphate carboxylase (Rubisco; EC 4.1.1.39), chlorophyll (Chl), cytochrome (Cyt) f, and coupling factor 1 (CF1) contents, and sucrose-phosphate synthase (SPS; EC 2.4.1.14) activity were examined in young, fully expanded leaves of rice (Oryza sativa L.) grown hydroponically under two irradiances, namely, 1000 and 350 μmol quanta · m−2 · s−1, at three N concentrations. The light-saturated rate of photosynthesis measured at 1800 μmol · m−2 · s−1 was almost the same for a given leaf N content irrespective of growth irradiance. Similarly, Rubisco content and SPS activity were not different for the same leaf N content between irradiance treatments. In contrast, Chl content was significantly greater in the plants grown at 350 μmol · m−2 · s−1, whereas Cyt f and CF1 contents tended to be slightly smaller. However, these changes were not substantial, as shown by the fact that the light-limited rate of photosynthesis measured at 350 μmol · m−2 · s−1 was the same or only a little higher in the plants grown at 350 μmol · m−2 · s−1 and that CO2-saturated photosynthesis did not differ between irradiance treatments. These results indicate that growth-irradiance-dependent changes in N partitioning in a leaf were far from optimal with respect to N-use efficiency of photosynthesis. In spite of the difference in growth irradiance, the relative growth rate of the whole plant did not differ between the treatments because there was an increase in the leaf area ratio in the low-irradiance-grown plants. This increase was associated with the preferential N-investment in leaf blades and the extremely low accumulation of starch and sucrose in leaf blades and sheaths, allowing a more efficient use of the fixed carbon. Thus, morphogenic responses at the whole-plant level may be more important for plants as an adaptation strategy to light environments than a response of N partitioning at the level of a single leaf. Received: 23 February 1997 / Accepted: 8 May 1997  相似文献   

3.
Mae  Tadahiko 《Plant and Soil》1997,196(2):201-210
Characteristics of rice (Oryza sativa) as a crop plant are briefly introduced, and the relationship between formation of yield potential and nitrogen (N) nutrition is described on the basis of studies using 15N as a tracer. In addition, the relationship between the leaf photosynthetic capacity and leaf N, and the factors limiting leaf photosynthesis under different growth conditions are reviewed. Finally, targets for improving rice yield potential are discussed with a focus on the role of increased photosynthesis efficiency in relation to leaf N status and the photosynthetic components in the leaves.  相似文献   

4.
伤根对玉米光合作用和水分利用效率的影响   总被引:14,自引:2,他引:12  
1 引  言在世界范围内 ,水资源的短缺日益受到人们的关注 ,农业水资源的高效利用已是世界农业亟待解决的主要问题 .因此 ,现代农业不应再单纯满足于高产 ,还应着眼于节约资源 ,提高水资源利用效率 .近年来 ,为了提高产量及水分利用效率 ,农业科技工作者在植物 水分方面做了大量的工作[1~ 3 ,5~ 7,9~ 12 ] .在人类的农业生产实践中 ,水稻插秧、幼苗移栽以及对作物的中耕等都可以使植株生长状况好转 ,作物产量提高 ,而这些措施都会对植物根系产生一定的影响 .对作物根系进行人为的伤害 ,也可能会改善作物生长状况 ,调节作物对有限土壤水…  相似文献   

5.
Metabolites are the intermediate and final products of metabolism, which play essential roles in plant growth, evolution and adaptation to changing climates. However, it is unclear how evolution contributes to metabolic variation in plants. Here, we investigated the metabolomics data from leaf and seed tissues in maize and rice. Using principal components analysis based on leaf metabolites but not seed metabolites, metabolomics data could be clearly separated for rice Indica and Japonica accessions, while two maize subgroups, temperate and tropical, showed more visible admixture. Rice and maize seed exhibited significant interspecific differences in metabolic variation, while within rice, leaf and seed displayed similar metabolic variations. Among 10 metabolic categories, flavonoids had higher variation in maize than rice, indicating flavonoids are a key constituent of interspecific metabolic divergence. Interestingly, metabolic regulation was also found to be reshaped dramatically from positive to negative correlations, indicative of the differential evolutionary processes in maize and rice. Moreover, perhaps due to this divergence significantly more metabolic interactions were identified in rice than maize. Furthermore, in rice, the leaf was found to harbor much more intense metabolic interactions than the seed. Our result suggests that metabolomes are valuable for tracking evolutionary history, thereby complementing and extending genomic insights concerning which features are responsible for interspecific differentiation in maize and rice.  相似文献   

6.

Nitrogen (N) is the basis of plant growth and development and, is considered as one of the priming agents to elevate a range of stresses. Plants use solar radiations through photosynthesis, which amasses the assimilatory components of crop yield to meet the global demand for food. Nitrogen is the main regulator in the allocation of photosynthetic apparatus which changes of the photosynthesis (Pn) and quantum yield (Fv/Fm) of the plant. In the present study, dynamics of the photosynthetic establishment, N-dependent relation with chlorophyll fluorescence attributes and Rubisco efficacy was evaluated in low-N tolerant (cv. CR Dhan 311) and low-N sensitive (cv. Rasi) rice cultivars under low-N and optimum-N conditions. There was a decrease in the stored leaf N under low-N condition, resulting in the decreased Pn and Fv/Fm efficiency of the plants through depletion in the activity and content of Rubisco. The Pn and Fv/Fm followed the parallel trend of leaf N content during low-N condition along with depletion of intercellular CO2 concentration and overall conductance under low-N condition. Photosynthetic saturation curve cleared abrupt decrease of effective quantum yield in the low-N sensitive rice cultivar than the low-N tolerant rice. Also, the rapid light curve highlighted the unacclimated regulation of photochemical and non-photochemical quenching in the low-N condition. The low-N sensitive rice cultivar triumphed non-photochemical quenching, whereas the low-N tolerant rice cultivar rose gradually during the light curve. Our study suggested that the quantum yield is the key limitation for photosynthesis in low-N condition. Regulation of Rubisco, photochemical and non-photochemical quenching may help plants to grow under low-N level.

  相似文献   

7.
8.
Maize and grain sorghum seeds were sown in pots and grown for 39 days in sunlit controlled-environment chambers at 360 (ambient) and 720 (double-ambient, elevated) μmol mol−1 carbon dioxide concentrations [CO2]. Canopy net photosynthesis (PS) and evapotranspiration (TR) was measured throughout and summarized daily from 08:00 to 17:00 h Eastern Standard Time. Irrigation was withheld from matched pairs of treatments starting on 26 days after sowing (DAS). By 35 DAS, cumulative PS of drought-stress maize, compared to well-watered plants, was 41% lower under ambient [CO2] but only 13% lower under elevated [CO2]. In contrast, by 35 DAS, cumulative PS of drought-stress grain sorghum, compared to well-watered plants, was only 9% lower under ambient [CO2] and 7% lower under elevated [CO2]. During the 27-35 DAS drought period, water use efficiency (WUE, mol CO2 Kmol−1 H2O), was 3.99, 3.88, 5.50, and 8.65 for maize and 3.75, 4.43, 5.26, and 9.94 for grain sorghum, for ambient-[CO2] well-watered, ambient-[CO2] stressed, elevated-[CO2] well-watered and elevated-[CO2] stressed plants, respectively. Young plants of maize and sorghum used water more efficiently at elevated [CO2] than at ambient [CO2], especially under drought. Reductions in biomass by drought for young maize and grain sorghum plants were 42 and 36% at ambient [CO2], compared to 18 and 14% at elevated [CO2], respectively. Results of our water stress experiment demonstrated that maintenance of relatively high canopy photosynthetic rates in the face of decreased transpiration rates enhanced WUE in plants grown at elevated [CO2]. This confirms experimental evidence and conceptual models that suggest that an increase of intercellular [CO2] (or a sustained intercellular [CO2]) in the face of decreased stomatal conductance results in relative increases of growth of C4 plants. In short, drought stress in C4 crop plants can be ameliorated at elevated [CO2] as a result of lower stomatal conductance and sustaining intercellular [CO2]. Furthermore, less water might be required for C4 crops in future higher CO2 atmospheres, assuming weather and climate similar to present conditions.  相似文献   

9.
Alternative respiratory pathway was investigated in rice seedlings grown under total darkness, light/dark cycle, or continuous light. The capacity of the alternative pathway was relatively higher in leaves that had longer light exposure. An analysis of rice AOX1 multigene family revealed that AOX1c, but not AOX1a and AOX1b, had a light-independent expression. The alternative oxidase (AOX) inhibitor, salicylhydroxamic acid (SHAM, 1mM), inhibited nearly 68% of the capacity of the alternative pathway in leaves grown under different light conditions. The plants grown under different light periods were treated with SHAM and then were exposed to illumination for 4h. The transition from dark to 4h of light stimulated the capacity of alternative pathway in etiolated rice seedlings and in those grown under light/dark cycle, whereas the capacity of the alternative pathway was constant in seedlings grown under continuous light with additional 4h of illumination. Etiolated leaves did not show any CO(2) fixation after 4h of illumination, and the increase in chlorophyll content was delayed by the SHAM pretreatment. When seedlings grown under light/dark cycle were moved from dark and exposed to 4h of light, increases in chlorophyll content and CO(2) fixation rate were reduced by SHAM. Although these parameters were stable in plants grown under continuous light, SHAM decreased CO(2) fixation rate but not the chlorophyll content. These results indicate that the role and regulation of AOX in light are determined by the developmental stage of plant photosynthetic apparatus.  相似文献   

10.
Modeling stomatal behavior is critical in research on land–atmosphere interactions and climate change. The most common model uses an existing relationship between photosynthesis and stomatal conductance. However, its parameters have been determined using infrequent and leaf‐scale gas‐exchange measurements and may not be representative of the whole canopy in time and space. In this study, we used a top‐down approach based on a double‐source canopy model and eddy flux measurements throughout the growing season. Using this approach, we quantified the canopy‐scale relationship between gross photosynthesis and stomatal conductance for 3 years and their relationships with leaf nitrogen content throughout each growing season above a paddy rice canopy in Japan. The canopy‐averaged stomatal conductance (gsc) increased with increasing gross photosynthesis per unit green leaf area (Ag), as was the case with leaf‐scale measurements, and 41–90% of its variation was explained by variations in Ag adjusted to account for the leaf‐to‐air vapor‐pressure deficit and CO2 concentration using the Leuning model. The slope (m) in this model (gsc versus the adjusted Ag) was almost constant within a 15‐day period, but changed seasonally. The m values determined using an ensemble dataset for two mid‐growing‐season 15‐day periods were 30.8 (SE = 0.5), 29.9 (SE = 0.7), and 29.9 (SE = 0.6) in 2004, 2005, and 2006, respectively; the overall mid‐season value was 30.3 and did not greatly differ among the 3 years. However, m appeared to be higher during the early and late growing seasons. The ontogenic changes in leaf nitrogen content strongly affected Ag and thus gsc. In addition, we have discussed the agronomic impacts of the interactions between leaf nitrogen content and gsc. Despite limitations in the observations and modeling, our canopy‐scale results emphasize the importance of continuous, season‐long estimates of stomatal model parameters for crops using top‐down approaches.  相似文献   

11.
Photosynthetic light curve, chlorophyll (Chl) content, Chl fluorescence parameters, malondialdehyde (MDA) content, phosphoenolpyruvate carboxylase (PEPC) activity and reactive oxygen metabolism were studied under drought stress in two autotetraploid rice lines and corresponding diploid rice lines. Net photosynthetic rate decreased dramatically, especially under severe drought stress and under high photosynthetic active radiation in diploid rice, while it declined less under the same conditions in autotetraploid lines. Compared with the corresponding diploid lines, the Chl content, maximum photochemical efficiency of photosystem (PS) II, and actual photochemical efficiency of PSII were reduced less in autotetraploid lines. PEPC activities were higher in autotetraploid rice lines. PEPC could alleviate inhibition of photosynthesis caused by drought stress. The chromosome-doubling enhanced rice photoinhibition tolerance under drought stress. The lower MDA content and superoxide anion production rate was found in the autotetraploid rice indicating low peroxidation level of cell membranes. At the same time, the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were higher in autotetraploid rice lines. SOD, POD, and CAT could effectively diminish the reactive oxygen species and reduced the membrane lipid peroxidation.  相似文献   

12.
Mechanical efficiency (ME) of jumping exercises was compared between power-trained (n = 11) and endurance-trained athletes (n = 10) using both a biomechanical and a physiological approach. In drop jumps and in stretch-shortening cycle exercise on a special sledge (sledge jumps), the subjects performed 60 muscle actions from a dropping height of optimum minus 40 cm (O – 40), as well as from dropping heights of optimum (O) and optimum plus 40 cm (O + 40). Thus, they were tested in six different tests which lasted for a total of 3 min for each. The mean ME values in the drop jumps from the lowest dropping height upwards were as follows: 23.8 (SD 5.3)%, 35.5 (SD 10.8)% and 39.2 (SD 6.6)% for the power group, and 30.8 (SD 6.5)%, 37.5 (SD 8.7)% and 41.4 (SD 7.0)% for the endurance group. In the sledge jumps the ME values were 37.0 (SD 5.6)%,48.4 (SD 4.0)% and 54.9 (SD 8.5)% for the power group, and 40.2 (SD 5.9)%, 46.9 (SD 5.7)% and 58.5 (SD 5.5)% for the endurance group. As can be seen, the ME values increased with increasing stretch load. However, the groups did not differ from each other except in the drop jump condition of O – 40 (P < 0.05). The higher power (P < 0.001) among the power athletes in every measured condition was associated with a faster rate of electromyogram development during the pre-activity, and smoother muscle activity patterns in the ground contact. On the other hand, the endurance athletes had a lower blood lactate concentration after every test, and in addition a lower heart rate and ventilation during the sledge jumps than their power counterparts. Therefore, it would seem that the similar mean ME values between the subject groups could be explained by improved function of the neuromuscular system among the power group and improved metabolism among the endurance group.  相似文献   

13.
Experiments were conducted to study the effect of plant type on canopy photosynthesis under field conditions. A chamber made of aluminium frame covered with clear plastic material was used to estimate canopy CO2-exchange rates over a land area of 1.33 m2. The plant type of maize “Shendan 7” [planophile type, original-type (OT)] was changed to erectophile type [altered-type (AT)] at silking stage. The rates of canopy apparent photosynthesis (CAP) were measured in both types of maize grown at five plant densities during the reproductive phase. It was shown that AT canopies had greater rates (about 17.2%) of CAP than did OT canopies and the yield increased by about 5.9–8.6% in AT canopies. The vertical distribution of photosynthetic photon flux density and CO2 concentration in AT canopies were more uniform than those in OT ones. It was suggested that the compact architecture of maize canopy was excellent for photosynthesis and yield formation.  相似文献   

14.
Two different rice cultivars, Yangdao 6 [Indica rice cultivar with high nitrogen-use efficiency (NUE)] and Nongken 57 (Japonica rice cultivar with low NUE) were used to study the relationship between NUE and nitrification activity in the rice seedling rhizosphere soil using a rhizobox with three compartments, and a soil-slicing method. The roots of both rice cultivars developed aerenchyma tissue [expressed as percentage porosity of root (POR)], but Yangdao 6 showed better development than Nongken 57. This root morphology change results in more radial oxygen loss (ROL) into the rhizosphere. Leaf glutamine synthetase activity (GSA) and nitrate (NO3-) reductase activity (NRA) of Yangdao 6 were significantly higher than those of Nongken 57, while there was no significant difference in root NRA between the cultivars. The nitrification activities were maximal in rhizosphere soil, followed by those in the bulk soil and the root surface for both cultivars. The rhizosphere nitrification activity, NO3- concentration and abundance of ammonia-oxidizing bacteria (AOB) associated with Yangdao 6 were always higher than those of Nongken 57. Therefore, we conclude that the greater N uptake by Yangdao 6 when compared to Nongken 57 can be mainly attributed to the bigger capacity for nitrification in Yangdao 6.  相似文献   

15.
16.
We determined the effects of exogenous nitric oxide on photosynthesis and gene expression in transgenic rice plants (PC) over-expressing the maize C4 pepc gene, which encodes phosphoenolpyruvate carboxylase (PEPC). Seedlings were subjected to treatments with NO donors, an NO scavenger, phospholipase inhibitors, a Ca2+ chelator, a Ca2+ channel inhibitor, and a hydrogen peroxide (H2O2) inhibitor, individually and in various combinations. The NO donors significantly increased the net photosynthetic rate (PN) of PC and wild-type (WT), especially that of PC. Treatment with an NO scavenger did inhibit the PN of rice plants. The treatments with phospholipase inhibitors and a Ca2+ chelator decreased the PN of WT and PC, and photosynthesis was more strongly inhibited in WT than in PC. Further analyses showed that the NO donors increased endogenous levels of NO and PLD activity, but decreased endogenous levels of Ca2+ both WT and PC. However, there was a greater increase in NO in WT and a greater increase in PLD activity and Ca2+ level in PC. The NO donors also increased both PEPC activity and pepc gene expression in PC. PEPC activity can be increased by SNP alone. But the expression of its encoding gene in PC might be regulated by SNP, together with PA and Ca2+.  相似文献   

17.
Maize plants (Zea mays L.) were subjected to soil flooding for 72, 96, and 120 h. A noticeable decrease in the rate of net photosynthesis (PN) and the activity of ribulose-1,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) were observed. The values of intercellular CO2 concentrations (ci) increased in all flooded plants without significant changes in stomatal conductance (gs). The activity of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) increased twofold 120 h after soil flooding. Flooding of maize plants led to a decrease in chlorophyll and protein levels and to slight increase of proline content. Flooded plants exhibited a large accumulation of leaf acidity. An increase in the values of some important parameters associated with oxidative stress, namely peroxides production, lipid peroxidation, and electrolyte leakage, confirmed the suggestion that root oxygen deficiency caused photooxidative damage in maize leaves.  相似文献   

18.
Genetic analysis of cold-tolerance of photosynthesis in maize   总被引:10,自引:0,他引:10  
The genetic basis of cold-tolerance was investigated by analyzing the quantitative trait loci (QTL) of an F2:3 population derived from a cross between two lines bred for contrasting cold-tolerance using chlorophyll fluorescence as a selection tool. Chlorophyll fluorescence parameters, CO2 exchange rate, leaf greenness, shoot dry matter and shoot nitrogen content were determined in plants grown under controlled conditions at 25/22 °C or 15/13 °C (day/night). The analysis revealed the presence of 18 and 19 QTLs (LOD > 3.5) significantly involved in the variation of nine target traits in plants grown at 25/22 °C and 15/13 °C, respectively. Only four QTLs were clearly identified in both temperatures regimes for the same traits, demonstrating that the genetic control of the performance of the photosynthetic apparatus differed, depending on the temperature regime. A major QTL for the cold-tolerance of photosynthesis was identified on chromosome 6. This QTL alone explained 37.4 of the phenotypic variance in the chronic photoinhibition at low temperature and was significantly involved in the expression of six other traits, including the rate of carbon fixation and shoot dry matter accumulation, indicating that the tolerance to photoinhibition is a key factor in the tolerance of maize to low growth temperature. An additional QTL on chromosomes 2 corresponded to a QTL identified previously in another population, suggesting some common genetic basis of the cold-tolerance of photosynthesis in different maize germplasms.  相似文献   

19.
20.
Summary Studies examined net photosynthesis (Pn) and dry matter production of mycorrhizal and nonmycorrhizalPinus taeda at 6 intervals over a 10-month period. Pn rates of mycorrhizal plants were consistently greater than nonmycorrhizal plants, and at 10 months were 2.1-fold greater. Partitioning of current photosynthate was examined by pulse-labelling with14CO2 at each of the six time intervals. Mycorrhizal plants assimilated more14CO2, allocated a greater percentage of assimilated14C to the root systems, and lost a greater percentage of14C by root respiration than did nonmycorrhizal plants. At 10 months, the quantity of14CO2 respired by roots per unit root weight was 3.6-fold greater by mycorrhizal than nonmycorrhizal plants. Although the stimulation of photosynthesis and translocation of current photosynthate to the root system by mycorrhiza formation was consistent with the source-sink concept of sink demand, foliar N and P concentrations were also greater in mycorrhizal plants.Further studies examined Pn and dry matter production ofPinus contorta in response to various combinations of N fertilization (3, 62, 248 ppm), irradiance and mycorrhizal fungi inoculation. At 16 weeks of age, 6 weeks following inoculation with eitherPisolithus tinctorius orSuillus granulatus, Pn rates and biomass were significantly greater in mycorrhizal than nonmycorrhizal plants. Mycorrhizal plants had significantly greater foliar %P, but not %N, than did nonmycorrhizal plants. Fertilization with 62 ppm N resulted in greater mycorrhiza formation than either 3 or 248 ppm. Increased irradiance resulted in increased mycorrhiza formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号