首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Androgenic steroids regulate the development and size of mammalian prostate epithelial cells. To evaluate the relationship between Fas-Fas ligand system and apoptosis in prostate epithelial cells of the castrated rats, we have examined immunocytochemical localization of Fas antigen in the castrated rat prostate glands at a series of different times. We used a rabbit polyclonal anti-Fas antibody with a streptavidin-biotin method and confocal laser scanning method or an immunogold method. Fas immunolocalization was examined in ventral lobes of prostate glands taken from intact or castrated adult male Wistar rats on day 1, 2, 3, 4 and 5 by light or electron microscopy. At a light microscopic level, the castrated prostate epithelial cells showed mostly Fas immunolocalization in their apical parts of cytoplasm on day 2 after the castration. In addition, their extent of the Fas expression was expanded throughout the cytoplasm in proportion to the androgen ablation periods, and later the Fas expression was detected at luminar or basolateral sides of the epithelial cells. Both immunogold labeling with ultrathin sections and immunoperoxidase technique with cryostat sections demonstrated that Fas was localized mainly in secretory granules of the castrated prostate epithelial cells and some parts of their cell membranes at later stages. Our immunocytochemical findings showed that Fas expression was time-dependently induced in most of the prostatic epithelial cells after castration of rats. The rate of Fas-expressing epithelial cells was too high and inconsistent with the previously reported rate of TUNEL-positive ones. The membrane-associated Fas may have little effect on the apoptosis in the present case, bacause a lot of soluble Fas was secreted from the prostatic epithelial cells. A further study is needed to clarify some significance of the secretory Fas in the prostatic epithelium after the rat castration.  相似文献   

3.
This study aims to investigate the expression of retinoblastoma binding protein 6 (RBBP6) in prostate cancer (PCa) and its association with the c‐Jun N‐terminal kinase (JNK) pathway. Immunohistochemistry was used to detect RBBP6 and JNK1/2 expression in PCa and benign prostatic hyperplasia tissues. RBBP6 expression in PCa cells (LNCap, PC3, and DU145) and noncancerous prostate epithelial cells (RWPE‐1) was determined by quantitative real‐time polymerase chain reaction and western blot analysis. PC3 and DU145 cells were transfected with RBBP6 small interfering RNAs (siRNAs) to examine the biological characteristics. Anisomycin (a JNK activator) with/without RBBP6 siRNA was used to treat PC3 cells for further investigating the ramification of the RBBP6‐mediated JNK pathway in PCa. PCa tissues and cells showed higher RBBP6 and JNK1/2 expression. RBBP6 was positively correlated with JNK1/2 in PCa tissues. Besides, RBBP6 expression was correlated to clinical tumor stage, lymph node metastasis, Gleason grade, preoperative prostate‐specific antigen level, as well as prognosis of PCa. RBBP6 siRNA reduced cell proliferation, arrested cells at G2/M, and promoted cell apoptosis, and suppressed JNK pathway. In addition, migration and invasion decreased after the RBBP6 siRNA transfection with downregulated matrix metallopeptidase‐2 (MMP‐2) and MMP‐9. Anisomycin promoted the proliferation, invasion, and migration of PC3 cells and inhibited PC3 cell apoptosis, which could be reversed by RBBP6 siRNA. RBBP6 expression was upregulated in PCa tissues and positively correlated with expression level of JNK1/2. With inhibition of RBBP6 expression, the proliferation, invasion, and migration of PCa cells decreased dramatically, while PC3 cell apoptosis increased appreciably, accompanied by the suppression of the JNK pathway.  相似文献   

4.
5.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme known to play a critical role in neuronal apoptosis. We undertook the current studies to determine whether GAPDH also plays a role in prostate epithelial cell apoptosis in response to androgen deprivation. To do so, we analyzed GAPDH staining by immunohistochemistry during castration-induced involution and androgen-induced regeneration of rat ventral prostate. We found that GAPDH was undetectable in secretory epithelial cells at baseline and that staining did not increase in the epithelium during the period of peak apoptosis from 1 to 3 days after castration. However, GAPDH levels did increase within nuclei of some basal epithelial cells 5 days after castration and within the cytoplasm of all secretory epithelial cells 7 days after castration. GAPDH was also abundant within the cytoplasm of secretory epithelial cells during the period of maximal cell proliferation from 2 to 3 days after androgen replacement and was clearly apparent within nuclei of some epithelial cells 4 days after androgen replacement. Our studies suggest that GAPDH plays multiple roles during prostate epithelial cell apoptosis and proliferation.  相似文献   

6.
7.
8.
9.
10.
Sodium 4-phenylbutyrate (PB) has been used in the therapy of urea cycle defects for many years. Recently, it has been shown to cause cellular differentiation, growth arrest, and apoptosis in certain malignancies. We have analyzed the effects of PB on human lung carcinoma cells. PB has distinct patterns of effects on different lung carcinoma cells, inducing apoptosis in NCI-H460 and NCI-H1792 cells, causing G1 arrest in A549 and SK-LU-1 cells, but having no effect on a non-transformed bronchial epithelial cell line HBE4-E6/E7. We investigated the role of MAP kinase family members, extracellular signal-regulated kinase (ERK), JNK, and p38 mitogen-activated protein kinase (MAPK), as well as other important cell survival signaling molecules in PB-induced apoptosis. We observed activation of JNK and ERK by PB in the lung cancer cells. JNK was activated only in the two apoptotic cells, whereas ERK was activated in both the apoptotic and the growth-arrested cells, demonstrating a correlation between apoptosis and activation of JNK in response to PB. Both JNK inhibitor and JNK RNA interference (RNAi) inhibited PB-induced apoptosis, whereas MEK inhibitor did not, supporting that apoptosis induced by PB is through activation of JNK. De novo protein synthesis is required for the PB-induced JNK activation and induction of apoptosis. However, the production of known upstream activators of JNK, namely Fas/Fas ligand, tumor necrosis factor (TNF)-alpha, TNF-beta, and TRAIL, are not altered by PB treatment. Therefore, PB activates JNK through an unidentified and cell type-specific mechanism. Understanding of this mechanism is of therapeutic value in treating cancer patients with PB.  相似文献   

11.
Autologous down-regulation of androgen receptor messenger ribonucleic acid   总被引:6,自引:0,他引:6  
Autoregulation of androgen receptor (AR) mRNA was investigated using Northern blot analysis with AR cDNA fragments as probes. The amount of AR mRNA increased 2- to 10-fold with androgen withdrawal and decreased below control levels after androgen stimulation in rat ventral prostate, coagulating gland, epididymis, seminal vesicle, kidney, and brain, and in a human prostate cancer cell line, LNCaP. In rat ventral prostate, AR mRNA increased 2- to 3-fold within 24 h after castration and remained elevated for 4 days. Treatment with testosterone propionate beginning 24 h after castration reduced ventral prostate AR mRNA 4-fold within 8 h of androgen replacement. Administration of estradiol 24 h after castration had no significant effect on prostatic AR mRNA. Androgens, including testosterone and the synthetic androgen methyltrienolone (R1881), or the antiandrogen cyproterone acetate down-regulated AR mRNA in vitro in LNCaP cells, whereas estradiol was without effect. Administration of testosterone propionate to rats with androgen insensitivity did not decrease AR mRNA. Down-regulation of AR mRNA by androgen is therefore a receptor-mediated process which occurs in vivo in rat tissues that differ in androgen responsiveness and in cultured human prostate cells.  相似文献   

12.
The apoptotic cell death process in the prostate is known to be under the control of androgens. Tumor necrosis factor-alpha (TNF-alpha)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF-alpha family of cytokines, known to induce apoptosis upon binding to its death domain-containing receptors, DR4/TRAIL-R1 and DR5/TRAIL-R2. Two additional TRAIL receptors, DcR1/TRAIL-R3 and DcR2/TRAIL-R4, lack functional death domains and act as decoy receptors for TRAIL. In this study, we examined whether TRAIL and cellular receptors expression was targeted by androgens during the apoptotic cell death process in the hormone sensitive ventral prostate. The role of androgens was investigated using two sets of experiment. (1) Androgen deprivation associated with an apoptotic process resulted in a decrease in DcR2 mRNA and protein expression in the ventral prostate 3 days after castration. Testosterone administration to castrated adult rats prevented the decrease in DcR2 mRNA and protein levels in the ventral prostate. In contrast, DcR2 expression was modified, neither in the dorsolateral nor in the anterior prostate following castration. No changes were observed in DR4, DR5, DcR1, and TRAIL mRNA and protein levels in prostate after castration. (2) A specific decrease in DcR2 expression was observed in the ventral prostate after treatment of rats with the anti-androgen flutamide. Together, the present results suggest that testosterone specifically controls DcR2 expression in the adult rat ventral prostate. Androgen withdrawal, by reducing DcR2 expression, might leave the cells vulnerable to cell death signals generated by TRAIL via its functional receptors.  相似文献   

13.
14.
15.
Understanding androgen regulation of gene expression is critical for deciphering mechanisms responsible for the transition from androgen-responsive (AR) to androgen-independent (AI) prostate cancer (PCa). To identify genes differentially regulated by androgens in each prostate lobe, the rat castration model was used. Microarray analysis was performed to compare dorsolateral (DLP) and ventral prostate (VP) samples from sham-castrated, castrated, and testosterone-replenished castrated rats. Our data demonstrate that, after castration, the VP and the DLP differed in the number of genes with altered expression (1496 in VP vs. 256 in DLP) and the nature of pathways modulated. Gene signatures related to apoptosis and immune response specific to the ventral prostate were identified. Microarray and RT-PCR analyses demonstrated the androgen repression of IGF binding protein-3 and -5, CCAAT-enhancer binding protein-delta, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) genes, previously implicated in apoptosis. We show that PTEN protein was increased only in the luminal epithelial cells of the VP, suggesting that it may be a key mediator of VP apoptosis in the absence of androgens. The castration-induced immune/inflammatory gene cluster observed specifically in the VP included IL-15 and IL-18. Immunostaining of the VP, but not the DLP, showed an influx of T cells, macrophages, and mast cells, suggesting that these cells may be the source of the immune signature genes. Interestingly, IL-18 was localized mainly to the basal epithelial cells and the infiltrating macrophages in the regressing VP, whereas IL-15 was induced in the luminal epithelium. The VP castration model exhibits immune cell infiltration and loss of PTEN that is often observed in progressive PCa, thereby making this model useful for further delineation of androgen-regulated gene expression with relevance to PCa.  相似文献   

16.
17.
18.
We have developed a murine model that facilitates the structural and functional analysis in vivo of dendritic cell (DC)-mediated phagocytosis of prostate epithelial cells. Recombinant human Flt3 ligand (rhFL) expands the number of dendritic cells in lymphoid and non-lymphoid tissues of mice. We show that rhFL also induced the ingress of dendritic cells into murine prostate, which involutes via epithelial apoptosis after surgical castration. Intact or castrated C57BL/6 and syngeneic transgenic adenocarcinoma of mouse prostate (TRAMP) mice were treated with rhFL or PBS control. Prostate and spleen were then studied by flow cytometry and immunohistochemistry.The number of prostatic CD11c+ and CD11b+ dendritic cells increased significantly in rhFL-treated mice compared with PBS-treated control mice and this effect was greatly augmented by castration of the mice. The immunophenotype of rhFL-mobilized prostatic cells was consistent with that of Langerhans cells (MHC class II+, CD11c+,CD11b+, DEC-205+, CD8 alpha-).MHC class II+ and CD11c+ dendritic cells that were present in the prostate glands of rhFL-treated and castrated C57BL/6 mice were intimately associated with TUNEL+ inclusions, which suggests that Langerhans-type dendritic cells in prostate participated in the clearance of apoptotic cells. Expression of MHC class II, CD54, CD80 and CD86 by prostatic dendritic cells was not up-regulated after castration and freshly isolated rhFL-induced prostate cells were unable to prime allogeneicT cells unless they were activated by culture either on plastic or with recombinant soluble CD40 ligand. Our data suggest that rhFL-mobilized prostatic dendritic cells resemble the functionally immature dendritic cells, which reside in peripheral tissues and contribute to the maintenance of peripheral tolerance.  相似文献   

19.
Farnesyl diphosphate synthase (FPPS) has been identified as an androgen-response gene in the rat ventral prostate using a highly sensitive PCR-based cDNA subtraction technique. FPPS is an essential enzyme that catalyzes the synthesis of farnesyl diphosphate (FPP), which is required for cholesterol biosynthesis as well as protein prenylation. We have characterized the expression of FPPS in the rat prostate in response to androgen manipulation. Northern blot analysis showed that castration induced a 10-fold down-regulation of FPPS mRNA within 24 h in the ventral prostate and androgen replacement up-regulated FPPS mRNA rapidly in the regressed ventral prostate of a castrated rat. The expression of FPPS was also regulated by androgen in the lateral and dorsal prostate, indicating that FPPS is important to androgen action in all three lobes of the prostate. Western blot analysis showed that FPPS protein level was also regulated by androgen in the prostate. Northern blot analysis of tissue specificity indicated that FPPS was most abundantly expressed in the ventral prostate of a mature rat and was responsive to androgen manipulation in the prostate and seminal vesicles, but not in other tissues. In situ hybridization study showed that FPPS mRNA was localized to the prostatic epithelium. Interestingly, the expression of FPPS was elevated in Dunning rat prostate tumor cell lines. The above findings suggest that FPPS has the potential to play an important role in androgen action and prostate cancer progression.  相似文献   

20.
本文应用反义RNA探针原位杂交法,研究雄激素对大鼠腹侧前列腺(VP)上皮细胞角蛋白(CK)8 mRNA表达的影响。发现1.在任何VP组织切片中,CK 8探针专一、大量定位于VP腺上皮细胞中,CK 8 mRNA是前列腺上皮细胞特异而灵敏的标志。2.去睾大鼠VP CK 8 mRNA染色增强,提示CK 8mRNA有过度表达,注射雄激素又可抑制其过度表达。3.与已知受雄激素抑制性基因不同,即使大鼠VP完全萎缩之后达2个月之久,其存留腺上皮细胞CK 8 mRNA表达仍持续增高。4.前列腺发育早期,迅速增殖的幼稚腺上皮细胞高度表达CK 8 mRNA,以后随着体内雄激素水平升高,VP上皮CK 8 mRNA表达下降,分布转移。以上结果进一步支持前列腺CK 8基因是新的一类受雄激素抑制性基因的推测,同时表明前列腺CK 8基因的表达与前列腺干细胞的增殖分化有密切联系,CK 8 mRNA高度表达是前列腺干细胞一个重要特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号