首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced lines of Pima cotton ( Gossypium barbadense L.) bred for higher yield potential and heat resistance have higher stomata conductance and smaller leaf areas than those of obsolete lines. In controlled experiments, five commercial lines of Pima cotton having increasing lint yield and heat resistance showed a gradient of increasing stomatal conductance and decreasing leaf size. In field experiments, heat-sensitive, low yield Pima lines showed a lower stomatal conductance than high yielding, advanced lines. This indicates that selection for high yield potential and heat resistance has imposed a selection pressure for higher stomatal conductance and smaller leaf areas. The higher stomatal conductance and smaller leaf area in the advanced lines resulted in a lower leaf temperature in both controlled environments and in the field. The largest leaf temperature differences between obsolete and advanced lines were observed in the afternoon. These differences coincided with the largest differences in stomatal conductance and the highest air temperatures. Measurements of stomatal conductance and leaf temperature in field-grown progeny from a cross between the advanced line, Pima S-6. and the obsolete line, Pima 32, showed that genetically determined differences in stomatal conductance resulted in corresponding differences in leaf temperature. None of the altered physiological traits were selected for in the breeding program, indicating that selection for the desired agronomic traits imposed selection pressures on the altered physiological traits. The increases in stomatal conductance and decreases in leaf area could represent an integrated response to selection pressures on enhanced evaporative cooling, ensuing from selection for heat resistance.  相似文献   

2.
Pima S‐6 ( Gossypium barbadense L.) is a modern line with high stomatal conductance, while B368 is a primitive cotton with low conductance. The blue light sensitivity of adaxial guard cells, probed as the blue light‐dependent enhancement of the red light‐induced chlorophyll a fluorescence quenching, was investigated in these two cotton lines with contrasting stomatal conductance. Adaxial guard cells isolated from Pima S‐6 cotton plants had a significantly higher carotenoid content and a higher blue light sensitivity than those isolated from B368 plants. In a growth chamber‐grown F2 population of a cross between these two lines, adaxial stomatal conductances of individual plants segregated over a range exceeding the average conductances of the parents. Carotenoid content and the blue light sensitivity of adaxial guard cells also segregated. The concentrations of xanthophylls and β‐carotene in the adaxial guard cells were poorly correlated with the blue light response, except for zeaxanthin. The co‐segregation of stomatal conductance and blue light sensitivity suggested that the stomatal response to blue light may play a role in the regulation of stomatal conductance in the intact leaf. Zeaxanthin content and blue light sensitivity also co‐segregated, suggesting that both parameters are under genetic control. The co‐segregation of zeaxanthin content, blue light sensitivity and stomatal conductance provides further evidence for a role of zeaxanthin in the blue light photoreception of guard cells.  相似文献   

3.
Stomatal conductance in improved Pima cotton cultivars (Gossypium barbadense) has been previously shown to be positively associated with heat resistance and yield potential. In the present study we determined the mode of inheritance of stomatal conductance in crosses of six G. barbadense parents varying in origin, degree of agronomic development and stomatal conductance. Parents included a primitive tropical cotton (B368), two obsolete cultivars (St Vincent V135, Pima 32), one modern commercial line (Pima S-6) and two elite genotypes of the Pima germplasm (P70, P73). These lines showed distinct differences in stomatal conductance, under greenhouse and field conditions. The primitive B368 had the lowest conductance, and the elite lines the highest. Generation means analysis was used to quantify genetic effects in the crosses P70 × St Vincent V135, Pima S-6 × B368, Pima S-6 × Pima 32, P73 × Pima 32 and P73 × Pima S-6. Best-fit models of the inheritance of stomatal conductance varied in complexity from a simple additive-dominance model in the cross P70 × St. Vincent V135 to models displaying digenic epistatic interactions in the remaining crosses. Significant additive mean effects for stomatal conductance were detected in all crosses. Dominance mean effects were significant in the crosses P73 × Pima 32 and P73 × Pima S-6. Broadsense heritability estimates of stomatal conductance were relatively low (0.16–0.44) in all crosses except Pima S-6 × B368 (0.74). Results also show that the mode of inheritance of stomatal conductance is multigenic, and may have maternal as well as nuclear components. Recouping higher stomatal conductance levels from genetically wider crosses appears feasible and could proceed at a moderate rate. Fixing higher levels of stomatal conductance in populations from crosses of elite germplasm may be more difficult because of the presence of dominant mean effects and digenic epistatic interactions.  相似文献   

4.
Abstract.  1. Changes in the frequency of Cry1Ac resistance genes and shifts in tolerance of cotton bollworm, Helicoverpa armigera , to the Cry1Ac toxin were assessed using bioassays of F1 and F2 offspring of isofemale lines from Anci County of Hebei Province (a multiple-crop system including corn, soybean, peanut, and Bt cotton) and Xiajin County of Shandong Province (an intensive Bt cotton planting area) in Northern China during 2002–2005.
2. A conservative analysis of the overall results indicated that there was a small increase in the frequency of major, non-recessive resistance genes over time.
3. The relative average development ratings [RADR – growth rate of a line on a Bt diet in proportion to the growth rate on a non-Bt (NBT) diet] of the bollworm larvae in F1 tests increased significantly from year to year, indicating a gradual trend towards higher tolerance to Cry1Ac in the field populations.
4. There were also significant positive correlations between RADR of the lines in the F1 generation and the RADR of their F2 offspring, indicating that the tolerance was genetically based.
5. Quantitative genetic simulation analysis showed that resistance of H . armigera to Bt cotton in Xiajin could evolve to a high level in 11–15 years if no effective resistance management measures are carried out.  相似文献   

5.
1. The geographical aspects in photosynthetic light response and stomatal conductance in the shoots of Pinus sylvestris were studied together with structural properties of shoots and needles. Seven stands within the natural distribution area of P. sylvestris in Europe were chosen. CO2 exchange, irradiance and stomatal conductance ( gs ) for water vapour were measured and the maximum photosynthetic rate ( Pm ) was determined from the CO2 exchange measurements.
2. There was a clear pattern in the average values of Pm along the latitudinal gradient. Highest values of Pm were found in the middle parts of the distribution area and they decreased towards both ends of the transect. The highest value was almost twice as high as the lowest one.
3. The between-site variation explained 70% of the total variation in the maximum photosynthetic rate. Pm was not clearly correlated with any single climatic variable or nitrogen concentration in the needles.
4. Pm was closely coupled with stomatal conductance ( r 2=0·74). The differences in Pm and gs between the sites is likely to reflect adaptation and acclimation to different climates.  相似文献   

6.
Abstract. Poplar shoots ( Populus euramericana L.) obtained from cuttings were exposed for 6 or 8 weeks to NH3 concentrations of 50 and 100 μgm−3 or filtered air in fumigation chambers. After this exposure the rates of NH3 uptake, transpiration, CO2 assimilation and respiration of leaves were measured using a leaf chamber. During the long-term exposure also modulated chlorophyll fluorescence measurements were carried out to obtain information about the photosynthetic performance of individual leaves. Both fluorescence and leaf chamber measurements showed a higher photosynthetic activity of leaves exposed to 100 μg NH3 m−3. These leaves showed also a larger leaf conductance and a larger uptake rate of NH3 than leaves exposed to 50 μg m−3 NH3 or filtered air. The long-term NH3 exposure did not induce an internal resistance against NH3 transport in the leaf, nor did it affect the leaf cuticle. So, not only at a short time exposure, but also at a long-term exposure NH3 uptake into leaves can be calculated from data on the boundary layer and stomatal resistance for H2O and ambient NH3-concentration. Furthermore, the NH3 exposure had no effect on the relation between CO2-assimilation and stomatal conductance, indicating that NH3 in concentrations up to 100 μg m−3 has no direct effect on stomatal behaviour; for example, by affecting the guard or contiguous cells of the stomata.  相似文献   

7.
Abstract. Twenty cultivars of spring wheat were examined for variation in abscisic acid (ABA) accumulation following partial dehydration of excised leaves. A 3-fold range of ABA concentration was obtained.
A cross between two cultivars which differed in drought-induced ABA accumulation was used to study the heritability of ABA accumulation and to develop lines differing in their capacity to accumulate ABA. Broad sense heritability was 0–32 between the F2 and F3 generations and 0–70 between the F3 and F4 generations. Apparent homozygosity for ABA accumulation was achieved in several selections at the F4. The possible significance for drought resistance of differences in capacity to accumulate ABA is discussed.  相似文献   

8.
An experiment was performed to elucidate interspecific differences in survival time of grass species subjected to an extreme climatic event. We exposed eight grass species to a simulated heat wave in the field ('free air' temperature increase at 11°C above ambient) combined with drought. We determined whether interspecific differences in survival time were related to the responses of the species to the imposed stress or could be explained by their ecophysiological or morphological characteristics in unstressed conditions. Surprisingly, there was no effect of specific leaf area, but species with a higher total leaf area survived longer. This may arise from a greater water reserve in the plant as a whole, which could delay the desiccation of the meristem, or from reduced evaporation due to a higher leaf area index. Species in which the decrease in light-saturated stomatal conductance ( g s ) and photosynthetic CO2 uptake rate ( A max ) was strongly related to the decrease in soil water availability (measured as soil relative water content and stress duration) survived longer than species in which g s and A max likewise declined but responded more to daily fluctuations in irradiance, temperature, and vapor pressure deficit during the heat wave. We, therefore, hypothesize that interspecific differences in stress survival time might be related to the extent to which stomata react to changes in soil water conditions relatively to changes in other environmental and physiological factors. The results suggest that resistance to extremes is governed by other mechanisms than resistance to moderate drought.  相似文献   

9.
Abstract The genetic inheritance of resistance to cyhalothrin in housefly, Musca domstica (L) was investigated.
Reciprocal crosses between susceptible (S) and resistant (R) strains were used to determine the characteristics of resistance. Analysis of probit line from the F1 generation and F2 generation obtained by inbreeding the F1 hybrids indicated that cyhalothrin resistance was controlled by more than one factors and degree of resistance dominance to cyhalothrin was -0.10, indicating cyhalothrin resistance is conferred by incompletely recessive gene(s). The realized heritability of resistance to cyhalothrin cyhalothrin calculated from data collected routinely from laboratory selection was 0.12.  相似文献   

10.
Night-time stomatal opening in C3 plants may result in significant water loss when no carbon gain is possible. The objective of this study was to determine if endogenous patterns of night-time stomatal opening, as reflected in leaf conductance, in Vicia faba are affected by photosynthetic conditions the previous day. Reducing photosynthesis with low light or low CO2 resulted in reduced night-time stomatal opening the following night, irrespective of the effects on daytime stomatal conductance. Likewise, increasing photosynthesis with enriched CO2 levels resulted in increased night-time stomatal opening the following night. Reduced night-time stomatal opening was not the result of an inability to regulate stomatal aperture as leaves with reduced night-time stomatal opening were capable of greater night-time opening when exposed to low CO2. After acclimating plants to long or short days, it was found that night-time leaf conductance was greater in plants acclimated to short days, and associated with greater leaf starch and nitrate accumulation, both of which may affect night-time guard cell osmotic potential. Direct measurement of guard cell contents during endogenous night-time stomatal opening will help identify the mechanism of the effect of daytime photosynthesis on subsequent night-time stomatal regulation.  相似文献   

11.
To elucidate how excess light energy is dissipated during water deficit, net photosynthesis (PN), stomatal conductance (gs), intercellular CO2 concentration (ci) and Chl a fluorescence were investigated in control and drought-stressed tomato plants ( Lycopersicon esculentum ). Gross O2 evolution (Eo) and gross O2 uptake (Uo) were determined by a mass spectrometric 16O/18O2 isotope technique. Under drought stress PN, gs, ci and Uo decline. While photochemical fluorescence quenching decreases under water deficit, non-photochemical quenching rises. The maximal efficiency of PSII measured in the dark is not affected by drought; however, in the light, Eo decreases under water deficit. The ratio PN/Eo falls under stress while the ratio Uo/Eo increases. We conclude that tomato plants follow a double strategy to avoid photodamage under drought stress conditions: (1) a substantial portion of light energy is emitted as heat and PSII activity is downregulated. This results in a decrease in Eo as well as PN and Uo. Despite reduced charge separation at PSII, the decline of CO2 assimilation because of lowered stomatal conductance and metabolic changes results in the need of degrading excessive photosynthetic electrons. (2) Oxygen is used as an alternative electron acceptor in photorespiration or Mehler reaction and Uo rises relative to Eo.  相似文献   

12.
The effect of long-term water stress on photosynthetic carbon metabolism in Casuarina equisetifolia Forst. & Forst. was analysed by measuring CO2 assimilation, stomatal conductance, the quantum yield of photosystem II ( Φ PSII), enzyme activities, and the levels of photosynthetic intermediates and carbohydrates. CO2 assimilation decreased under water stress while the intercellular CO2 concentration ( C i) as estimated by gas exchange measurements remained high. However, the estimates of C i from measurements of Φ PSII suggest that the decrease in photosynthesis can be explained in terms of stomatal closure. Water stress decreased total stromal fructose-1,6-bisphosphatase activity and did not alter the activities and activation states of ribulose bisphosphate carboxylase oxygenase and NADP-dependent malate dehydrogenase (NADP-MDH). The concentration of photosynthetic metabolites, glucose, fructose and sucrose decreased, whereas starch concentrations increased under drought conditions.  相似文献   

13.
We developed and applied an ecosystem-scale model that calculated leaf CO2 assimilation, stomatal conductance, chloroplast CO2 concentration and the carbon isotope composition of carbohydrate formed during photosynthesis separately for sunlit and shaded leaves within multiple canopy layers. The ecosystem photosynthesis model was validated by comparison to leaf-level gas exchange measurements and estimates of ecosystem-scale photosynthesis from eddy covariance measurements made in a coastal Douglas-fir forest on Vancouver Island. A good agreement was also observed between modelled and measured δ 13C values of ecosystem-respired CO2 ( δ R). The modelled δ R values showed strong responses to variation in photosynthetic photon flux density (PPFD), air temperature, vapour pressure deficit (VPD) and available soil moisture in a manner consistent with leaf-level studies of photosynthetic 13C discrimination. Sensitivity tests were conducted to evaluate the effect of (1) changes in the lag between the time of CO2 fixation and the conversion of organic matter back to CO2; (2) shifts in the proportion of autotrophic and heterotrophic respiration; (3) isotope fractionation during respiration; and (4) environmentally induced changes in mesophyll conductance, on modelled δ R values. Our results indicated that δ R is a good proxy for canopy-level C c/ C a and 13C discrimination during photosynthetic gas exchange, and therefore has several applications in ecosystem physiology.  相似文献   

14.
Abstract: Two populations of the psocid, Liposcelis bostrychophila Badonnel, were exposed to two CO2-enriched atmospheres (35% CO2 + 21% O2, and 55% CO2 + 21% O2, balance N2) for 30 generations. Controls were reared in normal atmospheres. The reserves of triacylglycerol and polysaccharides were evaluated in adults of the two experimental and the control populations in generations F15 and F30. The utilization rate of triacylglycerol and polysaccharides in the CO2-enriched atmospheres were also determined in generation F30. The results indicated that the reserves of triacylglycerol and polysaccharides increased significantly during selection for CO2 resistance; the higher the resistance level, the greater the reserves. Exposure of these populations to controlled atmosphere was associated with a steady utilization of the reserves. By contrast, the unselected population responded to controlled atmospheres by accelerated utilization of triacylglycerol and polysaccharides. Comparison of the utilization rates during CO2 exposure showed that triacylglycerol is the main energy source, and polysaccharides contribute to metabolic energy supply only to a small extent.  相似文献   

15.
Abstract. The apparatus described here is a fully portable, steady-state gas exchange system for simultaneous measurements of the CO2 exchange and transpiration of single, attached leaves. The leaf cuvette provides temperature, humidity, and CO2-concentration control. The system is suitable for either surveys or detailed studies of photosynthetic and stomatal responses to environmental variables. Representative data demonstrate the response time characteristics of the system and constitute the first field evidence of stomatal behaviour consistent with a recent hypothesis concerning the optimum pattern of stomatal conductance for the maximization of water-use-efficiency.  相似文献   

16.
Global climatic change scenarios predict a significant increase in future tropospheric ozone (O3) concentrations. The present investigation was done to assess the effects of elevated O3 (70 and 100 ppb) on electron transport, carbon fixation, stomatal conductance and pigment concentrations in two tropical soybean ( Glycine max L.) varieties, PK 472 and Bragg. Plants were exposed to O3 for 4 h·day−1 from 10:00 to 14:00 from germination to maturity. Photosynthesis of both varieties were adversely affected, but the reduction was higher in PK 472 than Bragg. A comparison of chlorophyll a fluorescence kinetics with carbon fixation suggested greater sensitivity of dark reactions than light reactions of photosynthesis to O3 stress. The O3-induced uncoupling between photosynthesis and stomatal conductance in PK 472 suggests the reduction in photosynthesis may be attributed to a factor other than reduced stomatal conductance. An increase in internal CO2 concentration in both O3-treated soybean varieties compared suggests that the reduction in photosynthesis was due to damage to the photosynthetic apparatus, leading to accumulation of internal CO2 and stomatal closure. The adverse impact of O3 stress increased at higher O3 concentrations in both soybean varieties leading to large reductions in photosynthesis. This study suggests that O3-induced reductions in photosynthesis in tropical and temperate varieties are similar.  相似文献   

17.
Variation in stomatal development and physiology of mature leaves from Alnus glutinosa plants grown under reference (current ambient, 360 μmol mol−1 CO2) and double ambient (720 μmol mol−1 CO2) carbon dioxide (CO2) mole fractions is assessed in terms of relative plant growth, stomatal characters (i.e. stomatal index and density) and leaf photosynthetic characters. This is the first study to consider the effects of elevated CO2 concentration on the distribution of stomata and epidermal cells across the whole leaf and to try to ascertain the cause of intraleaf variation. In general, a doubling of the atmospheric CO2 concentration enhanced plant growth and significantly increased stomatal index. However, there was no significant change in relative stomatal density. Under elevated CO2 concentration there was a significant decrease in stomatal conductance and an increase in assimilation rate. However, no significant differences were found for the maximum rate of carboxylation ( V cmax) and the light saturated rate of electron transport ( J max) between the control and elevated CO2 treatment.  相似文献   

18.
Marek's disease (MD) is a lymphoproliferative disease caused by a member of the herpesvirus family, and the best understood genetic resistance to MD involves the chicken major histocompatibility complex (MHC) B -complex. Preliminary observations have suggested that MHC-like Rfp-Y genes might also influence the incidence of MD. This study describes the differentiation and definition of unique Rfp-Y genes in inbred lines 63 and 72, lines that possess identical B -complex genes, but that are resistant or susceptible to MD, respectively. To assess if Rfp-Y genes affect susceptibility to MD, 265 63× 72 F2 chickens were challenged with the JM strain of MD virus at 1 week of age and were evaluated for MD lesions at up to 10 weeks of age. Genotyping of the F2 chickens for Rfp-Y haplotypes was performed by restriction fragment length polymorphism analysis of genomic DNA using Taq I and a B-FIV probe. Analysis of variance and interval mapping procedures were used to determine association between the Rfp-Y haplotypes and the phenotypic MD values of the F2 chickens. The cosegregation analysis of 265 F2 chickens indicated that there was no association between Rfp-Y haplotypes and MD susceptibility. Furthermore, the fact that the Rfp-Y haplotypes fit the 1:2:1 segregation ratio and the Rfp-Y allele frequencies did not differ significantly from 0·5 in the full population or in selected subpopulations (of either 40 MD-resistant or 39 MD-susceptible chickens) also indicated that Rfp-Y haplotypes do not significantly influence MD susceptibility. We conclude that Rfp-Y haplotypes do not play a major role in determining the genetic susceptibility to MD in 63× 72 F2 White Leghorn chickens.  相似文献   

19.
Yield of Pima cotton (Gossypium barbadense L.) has tripled over the last 40 years with the development of new cultivars. Six genetic lines representing successive stages in the breeding process (one primitive noncultivated accession, four cultivars with release dates from 1949 to 1983, and one unreleased breeding line) were grown in a greenhouse, and their gas exchange properties were compared. Among the cultivated types, genetic advances were closely associated with increasing single-leaf photosynthetic rate (A) and stomatal conductance (gs), especially in the morning. The A and gs of the primitive line approached those of the cultivated types early in the morning, but were much lower for the rest of the day. In both morning and afternoon, A was correlated with gs across genotypes but was not correlated with leaf thickness, concentrations of chlorophyll or starch, or intercellular CO2 concentration (ci). In the oldest cultivar, the relationship of A to ci did not change between morning and afternoon. In the two most recent lines, the slopes of the A:ci curves at limiting ci exceeded that of the oldest cultivar by 25 to 50% in the morning, but the differences were much smaller in the afternoon. The maximum A of the newer lines at high ci exceeded that of the oldest cultivar only in the morning. Breeding for increasing yield has enhanced the photosynthetic capacity and stomatal conductance of Pima cotton and altered the diurnal regulation of photosynthesis.  相似文献   

20.
Population differentiation in an annual legume: genetic architecture   总被引:10,自引:0,他引:10  
Abstract. The presence or absence of epistasis, or gene interaction, is explicitly assumed in many evolutionary models. Although many empirical studies have documented a role of epistasis in population divergence under laboratory conditions, there have been very few attempts at quantifying epistasis in the native environment where natural selection is expected to act. In addition, we have little understanding of the frequency with which epistasis contributes to the evolution of natural populations. In this study we used a quantitative genetic design to quantify the contribution of epistasis to population divergence for fitness components of a native annual legume, Chamaecrista fasciculata . The design incorporated the contrast of performance of F2 and F3 segregating progeny of 18 interpopulation crosses with the F1 and their parents. Crosses were conducted between populations from 100 m to 2000 km apart. All generations were grown for two seasons in the natural environment of one of the parents. The F1 often outperformed the parents. This F1 heterosis reveals population structure and suggests that drift is a major contributor to population differentiation. The F2 generation demonstrated that combining genes from different populations can sometimes have unexpected positive effects. However, the F3 performance indicated that combining genes from different populations decreased vigor beyond that due to the expected loss of heterozygosity. Combined with previous data, our results suggest that both selection and drift contribute to population differentiation that is based on epistatic genetic divergence. Because only the F3 consistently expressed hybrid breakdown, we conclude that the epistasis documented in our study reflects interactions among linked loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号