首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the distribution and initial characterization of glucose/mannose-specific isolectins of 4- and 7-d-old pea (Pisum sativum L.) seedlings grown with or without nitrate supply. Particular attention was payed to root lectin, which probably functions as a determinant of host-plant specificity during the infection of pea roots by Rhizobium leguminosarum bv. viciae. A pair of seedling cotyledons yielded 545±49 g of affinity-purified lectin, approx. 25% more lectin than did dry seeds. Shoots and roots of 4-d-old seedlings contained 100-fold less lectin than cotyledons, whereas only traces of lectin could be found in shoots and roots from 7-d-old seedlings. Polypeptides with a subunit structure similar to the precursor of the pea seed lectin could be demonstrated in cotyledons, shoots and roots. Chromatofocusing and isoelectric focusing showed that seed and non-seed isolectin differ in composition. An isolectin with an isoelectric point at pH 7.2 appeared to be a typical pea seed isolectin, whereas an isolectin focusing at pH 6.1 was the major non-seed lectin. The latter isolectin was also found in root cell-wall extracts, detached root hairs and root-surface washings. All non-seed isolectins were cross-reactive with rabbit antiserum raised against the seed isolectin with an isolectric point at pH 6.1. A protein similar to this acidic glucose/mannose-specific seed isolectin possibly represents the major lectin to be encountered by Rhizobium leguminosarum bv. viciae in the pea rhizosphere and at the root surface. Growth of pea seedlings in a nitrate-rich medium neither affected the distribution of isolectins nor their hemagglutination activity; however, the yield of affinity-purified root lectin was significantly reduced whereas shoot lectin yield slightly increased. Agglutination-inhibition tests demonstrated an overall similar sugar-binding specificity for pea seed and non-seed lectin. However root lectin from seedlings grown with or without nitrate supplement, and shoot lectin from nitrate-supplied seedlings showed a slightly different spectrum of sugar binding. The absorption spectra obtained by circular dichroism of seed and root lectin in the presence of a hapten also differed. These data indicate that nutritional conditions may affect the sugar-binding activity of non-seed isolectin, and that despite their similarities, seed and non-seed isolectins have different properties that may reflect tissue-specialization.Abbreviations IEF isoelectric focusing - MW molecular weight - pI isoelectric point - Psl1, Psl2 and Psl3 pea isolectins - SDSPAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis The authors wish to thank Professors L. Kanarek and M. van Poucke for helpful discussions.  相似文献   

2.
Two lectins were purified by affinity chromatography from mature peanut (Arachis hypogaea L.) nodules, and compared with the previously characterised seed lectin of this plant. One of the nodule lectins was similar to the seed lectin in its molecular weight and amino-acid composition and ability to bind derivatives of galactose. However, unlike the seed lectin, this nodule lectin appeared to be a glycoprotein and the two lectins were only partially identical in their reaction with antibodies prepared against the seed lectin. The other nodule lectin also appeared to be a glycoprotein but bound mannose/glucose-like sugar derivatives, and differed from the seed lectin in molecular weight, antigenic properties and amino-acid composition.Abbreviations Gal galactose - Gle glucose - GNL galactose-binding nodule lectin - Fru fructose - MNL mannosebinding nodule lectin - M r rerative molecular mass - PBS phosphate-buffered saline - PSL peanut seed lectin - SDS sodium dodecyl sulphate - Sorb sorbitol  相似文献   

3.
Abstract The roots of pea (Pisum sativum L. ev. Feltham First) seedlings contained haemagglutinating activity and a protein which reacted with antibodies directed against pea seed lectin. This protein was shown to be present on the surface of root hairs and in the root cortical cells by immunofluorescence. Lectin (haemagglutinin) was purified from pea seedling roots by both immunoaffinity chromatography and affinity chromatography on Sephadex G-100. The pea root lectin was similar to the seed lectin when analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and was antigenically identical: however, the isoelectric focussing band patterns of the proteins differed. The sugar specificity of the root lectin differed from that of the seed lectin, and the haemagglutinating activity of the root lectin was less than the seed lectin. These results are discussed with reference to the hypothesis that lectins mediate in the symbiotic association of legume and Rhizobium through their carbohydrate-binding properties.  相似文献   

4.
Hairy roots in tobacco and oil seed rape transgenic on lectin gene were obtained with the use of a wild strain of Agrobacterium rhizogenes 15834 transformed with pCAMBIA1305.1 plasmid containing the full-size lectin gene (psl) from the Pisum sativum. Influence of expression of lectin gene on colonization of transgenic roots with symbiont of pea (Rhizobium leguminosarum) was investigated. The number of adhered bacteria onto the roots transformed with lectin gene was 14-fold and 37-fold higher in comparison with the control; this confirms the interaction of R. leguminosarum with pea lectin at the surface of the transformed roots of tobacco and oil seed rape. The developed experimental approach, based on the simulation of recognition processes and early symbiotic interactions with lectins of pea plants, may, in perspective, be used for obtaining stable associations of economically valuable, nonsymbiotrophic plant species with rhizobia.  相似文献   

5.
The complete amino acid sequences of the -subunits of pea (Pisum sativum L.) seed and root lectin, the C-terminal amino acids of the -subunits of pea seed lectin, and most of the sequence of the -subunit of pea root lectin were determined. In contrast to earlier reports it was shown that the -subunits of both seed isolectins end at Asn-181. The 1 subunits end at Gln-241 (major fraction) or Lys-240 (minor fraction), whereas the 2 subunits end at Ser-239, Ser-238, Ser-237 or Thr-236. psl cDNA clones from seed are identical to psl cDNA clones from root, and root PSL is identical to seed PSL2, ending at Ser-239, Ser-238 or Ser-237. It seems that the presence of Lys-240 is the sole determinant of the charge difference between pea isolectins. PSL1 can be converted into PSL2 by carboxypeptidase P from Penicillium janthinellum. These results confirm that PSL from roots is encoded by the same gene as PSL from seeds. Thus, it seems that, next to an Asn-X specific protease responsible for the processing at positions 181/182 and 187/188, a carboxypeptidase is responsible for the conversion of PSL1 into PSL2, which is probably the final processing product.  相似文献   

6.
The expression of a lectin gene in pea (Pisum sativum L.) roots has been investigated using the copy DNA of a pea seed lectin as a probe. An mRNA which has the same size as the seed mRNA but which is about 4000 times less abundant has been detected in 21-d-old roots. The probe detected lectin expression as early as 4 d after sowing, with the highest level being reached at 10 d, i.e. just before nodulation. In later stages (16-d- and 21-d-old roots), expression was substantially decreased. The correlation between infection by Rhizobium leguminosarum and lectin expression in pea roots has been investigated by comparing root lectin mRNA levels in inoculated plants and in plants grown under conditions preventing nodulation. Neither growth in a nitrate concentration which inhibited nodulation nor growth in the absence of Rhizobium appreciably affected lectin expression in roots.Abbreviation cDNA copy DNA - poly(A)+RNA polyadenylated RNA  相似文献   

7.
We describe the isolation, cloning and expression of a 2.8 kb promoter fragment of the Blec4 gene from pea (Pisum sativum cv. Alaska) and demonstrate that it is capable of directing the expression of the -glucuronidase coding region to the developing epidermal tissue of vegetative and floral shoot apices of transgenic alfalfa (Medicago sativa cv. RegenSY). The Blec4 promoter represents a useful tool with which to target the expression of foreign genes to the epidermal layer of actively growing shoots. The activity of the Blec4 promoter in the epidermis of the shoot apex makes it particularly suitable for genetically engineering defense against insects and diseases that attack the growing shoot apex.  相似文献   

8.
The lectin on the surface of 4- and 5-dold pea roots was located by the use of indirect immunofluorescence. Specific antibodies raised in rabbits against pea seed isolectin 2, which crossreact with root lectins, were used as primary immunoglobulins and were visualized with fluorescein- or tetramethylrhodamine-isothiocyanate-labeled goat antirabbit immunoglobulin G. Lectin was observed on the tips of newly formed, growing root hairs and on epidermal cells located just below the young hairs. On both types of cells, lectin was concentrated in dense small patches rather than uniformly distributed. Lectin-positive young hairs were grouped opposite the (proto)xylematic poles. Older but still-elongating root hairs presented only traces of lectin or none at all. A similar pattern of distribution was found in different pea cultivars, as well as in a supernodulating and a non-nodulating pea mutant. Growth in a nitrate concentration which inhibits nodulation did not affect lectin distribution on the surface of pea roots of this age. We tested whether or not the root zones where lectin was observed were susceptible to infection by Rhizobium leguminosarum. When low inoculum doses (consisting of less than 106 bacteria·ml-1) were placed next to lectin-positive epidermal cells and on newly formed root hairs, nodules on the primary roots were formed in 73% and 90% of the plants, respectively. Only a few plants showed primary root nodulation when the inoculum was placed on the root zone where lectin was scarce or absent. These results show that lectin is present at those sites on the pea root that are susceptible to infection by the bacterial symbiont.Abbreviations FITC fluorescein isothiocyanate - TRIC tetramethylrhodamine isothiocyanate  相似文献   

9.
Two lectins were isolated from Robinia pseudoacacia (black locust) seeds using affinity chromatography on fetuin-agarose, and ion exchange chromatography on a Neobar CS column. The first lectin, R. pseudoacacia seed agglutinin I, referred to as RPsAI, is a homotetramer of four 34 kDa subunits whereas the second lectin, referred to as RPsAII, is composed of four 29 kDa polypeptides. cDNA clones encoding the polypeptides of RPsAI and RPsAII were isolated and their sequences were determined. Both polypeptides are translated from mRNAs of ca. 1.2 kb encoding a precursor carrying a signal peptide. Alignment of the deduced amino acid sequences of the different clones indicates that the 34 and 29 kDa seed lectin polypeptides show 95% sequence identity. In spite of this striking homology, the 29 kDa polypeptide has only one putative glycosylation site whereas the 34 kDa subunit has four of these sites. Carbohydrate analysis revealed that the 34 kDa possesses three carbohydrate chains whereas the 29 kDa polypeptide is only partially glycosylated at one site. A comparison of the deduced amino acid sequences of the two seed and three bark lectin polypeptides demonstrated unambiguously that they are encoded by different genes. This implies that five different genes are involved in the control of the expression of the lectins in black locust.Abbreviations LECRPAs cDNA clone encoding Robinia pseudoacacia seed lectin - LoLI Lathyrus ochrus isolectin I - PsA Pisum sativum agglutinin - RPbAI Robinia pseudoacacia bark agglutinin I - RPbAII Robinia pseudoacacia bark agglutinin II - RPsAI Robinia pseudoacacia seed agglutinin I - RPsAII Robinia pseudoacacia seed agglutinin II  相似文献   

10.
In several studies plant lectins have shown promise as transgenic resistance factors against various insect pests. We have here shown that pea seed lectin is a potential candidate for use against pollen beetle, a serious pest of Brassica oilseeds. In feeding assays where pollen beetle larvae were fed oilseed rape anthers soaked in a 1% solution of pea lectin there was a reduction in survival of 84% compared to larvae on control treatment and the weight of surviving larvae was reduced by 79%. When a 10% solution of pea lectin was used all larvae were dead after 4 days of testing. To further evaluate the potential use of pea lectin, transgenic plants of oilseed rape (Brassica napus cv. Westar) were produced in which the pea lectin gene under control of the pollen-specific promoter Sta44-4 was introduced. In 11 out of 20 tested plants of the T0-generation there was a significant reduction in larval weight, which ranged up to 46% compared to the control. A small but significant reduction in larval survival rate was also observed. In the T2-generation significant weight reductions, with a maximum of 32%, were obtained in 10 out of 33 comparisons between transgenic plants and their controls. Pea lectin concentrations in anthers of transgenic T2-plants ranged up to 1.5% of total soluble protein. There was a negative correlation between lectin concentration and larval growth. Plants from test groups with significant differences in larval weights had a significantly higher mean pea lectin concentration, 0.64% compared to 0.15% for plants from test groups without effect on larval weight. These results support the conclusion that pea lectin is a promising resistance factor for use in Brassica oilseeds against pollen beetles.  相似文献   

11.
12.
Total protein patterns were studied in the course of development of pea somatic embryos using simple protocol of direct regeneration from shoot apical meristems on auxin supplemented medium. Protein content and total protein spectra (SDS-PAGE) of somatic embryos in particular developmental stages were analysed in Pisum sativum, P. arvense, P. elatius and P. jomardi. Expression of seed storage proteins in somatic embryos was compared with their accumulation in zygotic embryos of selected developmental stages. Pea vegetative tissues, namely leaf and root, were used as a negative control not expressing typical seed storage proteins. The biosynthesis and accumulation of seed storage proteins was observed during somatic embryo development (since globular stage), despite of the fact that no special maturation treatment was applied. Major storage proteins typical for pea seed (globulins legumin, vicilin, convicilin and their subunits) were detected in somatic embryos. In general, the biosynthesis of storage proteins in somatic embryos was lower as compared to mature dry seed. However, in some cases the cotyledonary somatic embryos exhibited comparatively high expression of vicilin, convicilin and pea seed lectin, which was even higher than those in immature but morphologically fully developed zygotic embryos. Desiccation treatments did not affect the protein content of somatic embryos. The transfer of desiccated somatic embryos on hormone-free germination medium led to progressive storage protein degradation. The expression of true seed storage proteins may serve as an explicit marker of somatic embryogenesis pathway of regeneration as well as a measure of maturation degree of somatic embryos in pea.  相似文献   

13.
Frutalin is an α-d-galactose-binding lectin expressed in breadfruit seeds. Its isolation from plant is time-consuming and results in a heterogeneous mixture of different lectin isoforms. In order to improve and facilitate the availability of the breadfruit lectin, we cloned an optimised codifying frutalin mature sequence into the pPICZαA expression vector. This expression vector, designed for protein expression in the methylotrophic yeast Pichia pastoris, contains the Saccharomyces α-factor preprosequence to direct recombinant proteins into the secretory pathway. Soluble recombinant frutalin was detected in the culture supernatants and recognised by native frutalin antibody. Approximately 18–20 mg of recombinant lectin per litre medium was obtained from a typical small scale methanol-induced culture purified by size-exclusion chromatography. SDS–PAGE and Edman degradation analysis revealed that frutalin was expressed as a single chain protein since the four amino-acid linker peptide “T-S-S-N”, which connects α and β chains, was not cleaved. In addition, incomplete processing of the signal sequence resulted in recombinant frutalin with one Glu-Ala N-terminal repeat derived from the α-factor prosequence. Endoglycosidase treatment and SDS–PAGE analysis revealed that the recombinant frutalin was partly N-glycosylated. Further characterisation of the recombinant lectin revealed that it specifically binds to the monosaccharide Me-α-galactose presenting, nevertheless, lesser affinity than the native frutalin. Recombinant frutalin eluted from a size-exclusion chromatography column with a molecular mass of about 62–64 kDa, suggesting a tetrameric structure, however it did not agglutinate rabbit erythrocytes as native frutalin does. This work shows that the galactose-binding jacalin-related lectins four amino-acid linker peptide “T-S-S-N” does not undergo any proteolytic cleavage in the yeast P. pastoris and also that linker cleavage might not be essential for lectin sugar specificity.  相似文献   

14.
The lectin from the garden pea (Pisum sativum L.) has been localized at the ultrastructural level by the unlabeled peroxidase-antiperoxidase procedure of L.A. Sternberger et al. (1970, J. Histochem. Cytochem 18, 315–333) in 24 h imbibed seeds. Upon examination by light microscopy and transmission electron microscopy, the lectin was only found in the protein bodies of cotyledons and embryo axis. Cell walls as well as membraneous fractions were completely devoid of lectin. These results are discussed in relation to the possible physiological function of seed lectins.Abbreviations PBS phosphate-buffered saline - TBS Tris-buffered saline - PAP-complex horseradish peroxidase-antihorseradish peroxidase soluble complex - NGS normal goat serum - TBS* Tris-buffered saline containing 0.5 M NaCl, pH 7.6  相似文献   

15.
Summary Soluble proteins of pea seed were investigated by quantitative immunological methods. Vicilin, legumin, pea seed lectin (PEA), 26 albumins and a globulin (B1) were detected and observed during seed development, germination and under different extraction and fractionation procedures. Vicilin and legumin were found to be immunologically distinctly different. Legumin was found to be comprised of two similar proteins, Legumin species I and II. Vicilin, but no legumin, was detected in the embryonic axis.Three albumins, B1 and PEA were found to be synthesized after the onset of legumin synthesis.Among the pea lines investigated, one line exhibited distinct differences with respect to the albumins and PEA.Some observations indicate that PEA might interact with other seed proteins of pea.  相似文献   

16.
Many plant genetic engineering applications require spatial expression of genes which in turn depends upon the availability of specific promoters. In cereals, genetic modification of flowering and grain setting to influence yield and grain quality is of significant interest. PsEND1 is a pea promoter that displays expression in the epidermis, connective tissue, endothecium and middle layers during different stages of anther development. No homeologous sequence of this promoter or its coding sequence has been found in cereals. This present work aimed at the characterization of the pea PsEND1 promoter driving the expression of the gusA gene in transgenic wheat. Nine transgenic lines were produced by particle bombardment and analyzed for the expression of the gusA gene throughout development by histochemical GUS staining and by RT-PCR in vegetative and reproductive tissues and organs. Expression of the gusA gene was first detected during pollen development, in microspores at binucleate stage. Activity of the gusA gene was also found in mature pollen, after anthesis. Following pollen grain germination, expression of the gusA gene was seen from an early stage of pollen tube formation until advanced stages, approaching the ovary. No further expression of the gusA gene was detected after fertilization, nor during seed development. The results reported here show that the PsEND1 promoter is functional in wheat and its patterns of expression may be of interest for the application of genetic modification in wheat breeding.  相似文献   

17.
Two abscisic acid (ABA)-responsive seed proteins, ABR17 and ABR18 (ABA-responsive 17000-Mr and 18000-Mr, respectively), previously found to be induced in cultured embryos of pea (Pisum sativum L.) are major components synthesised during normal seed desiccation. The ABR17 and ABR18 proteins showed different patterns of accumulation. The ABR18 protein was abundant in the testa during early seed development but in desiccating seed it was synthesised in the embryo, indicating spacial as well as temporal regulation of expression. The ABR18 protein was undetectable soon after germination but reappeared after adding ABA. The ABR17 protein was not detected in the testa but appeared in the embryo just prior to maximum fresh weight. The ABR17 protein continued to be synthesised during germination and was also present in non-stressed leaves. A high level of endogenous ABA or added ABA increased levels of translatable ABR17 mRNA. The ABR17 and ABR18 proteins were further characterised so as to help determine their structure and function. Neither protein appeared to contain a signal peptide but both proteins appeared to be glycosylated. The proteins had similar amino-acid compositions and limited Nterminal analysis showed 56% sequence identity. Neither protein had any significant N-terminal sequence homology to any of the late embryogenesis-abundant (LEA) proteins or dehydrins. Both proteins, however, show striking homology with a pea disease-resistance-response protein and the major birch pollen allergen, indicating that the ABR17 and ABR18 proteins may be members of a distinct group of stress-induced proteins.Abbreviations ABA (±) cis,trans-abscisic acid - ABR17 Mr-17200 ABA-responsive protein - ABR18 Mr-18 100 ABA-responsive protein - FW fresh weight - IgG immunoglobulin G - LEA late embryogenesis-abundant - Mr apparent molecularmass - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid This work was supported by the Agricultural and Food Research Council via grants-in-aid to Long Ashton Research Station.  相似文献   

18.
Oleosins, which are structural proteins on the surface of intracellular oil bodies, have been found in the sporophytic seeds of angiosperms. Here, we report an oleosin from the female gametophyte of gymnosperm Pinus ponderosa Laws, seed and another oleosin from the male gametophyte of Brassica napus L. With the pine seed gametophyte, we identified two putative oleosins of 15 and 10 kDa, which are similar to the oleosins in angiosperm seeds in terms of their presence in the oil bodies in massive quantity. The complete sequence of the cDNA encoding the gametophytic 15-kDa oleosin was obtained, and it has a predicted amino-acid sequence similar to those of oleosins in angiosperm sporophytic seeds. A Brassica napus pollen cDNA sequence, which was reported earlier, would encode an amino-acid sequence somewhat similar to those of seed oleosins. We tested if the dissimilarity signifies a substantially different oleosin in the Brassica male gametophyte or an analytic error. By direct sequencing of a polymerase chain reaction (PCR)-amplified fragment of genomic DNA, we obtained evidence showing that this reported dissimilarity is likely to have arisen from a sequencing error. Our predicted sequence of the Brassica pollen oleosin has all the structural characteristics of seed oleosins. A phylogenic tree of 20 oleosins, including those from sporophytic and gametophytic tissues of angiosperm and gymnosperm, was constructed based on their amino-acid sequences. We discuss the evolution of oleosins, and conclude that oleosins are ancient proteins with multiple lineages whose root cannot be determined at this time.Abbreviations PCR polymerase chain reaction - TAG triacylglycerols This work was supported by USDA grant 91-01439 (AHCH). We thank Dr. Mike Lassner of Calgene, Inc., (Davis, Calif., USA) for providing us with the unpublished jojoba oleosin amino acid sequence.  相似文献   

19.
Summary Maturing pea cotyledons accumulate large quantities of storage proteins at a specific time in seed development. To examine the sequences responsible for this regulated expression, a series of deletion mutants of the legA major seed storage protein gene were made and transferred to tobacco using the Bin19 disarmed Agrobacterium vector system. A promoter sequence of 97 bp including the CAAT and TATA boxes was insufficient for expression. Expression was first detected in a construct with 549 bp of upstream flanking sequence which contained the the leg box element, a 28 bp conserved sequence found in the legumintype genes of several legume species. Constructs containing-833 and-1203 bp of promoter sequence significantly increased levels of expression. All expressing constructs preserved seed specificity and temporal regulation. The results indicate that promoter sequences between positions-97 and-549 bp are responsible for promoter activity, seed specificity, and temporal regulation of the pea legA gene. Sequences between positions-549 and-1203 bp appear to function as enhancer-like elements, to increase expression.  相似文献   

20.
The lectin-binding protein (lectin binder) from the garden pea (Pisum sativum) was studied. It is a glycoprotein composed of four subunits of about 50 000 Da. Its amino-acid composition and molecular mass differ from those of lectin and of storage proteins. The interaction between lectin and lectin binder is demonstrated and quantified by several different methods and is shown to be specifically sugar-dependent. A biological function of lectin binders and lectins is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号