首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The thrombin-binding DNA aptamer (TBA) 5′-d(GGTTGGTGTGGTTGG)-3′ forms a G-quadruplex that is necessary for binding to the coagulation factor thrombin. The stability of the G-quadruplex of TBA when bound to thrombin and potassium ion (K+) were investigated for the wild-type oligonucleotide and for mutants in which thymine residues were substituted by adenine. In the presence of thrombin, G-quadruplexes formed by oligonucleotides in which the fourth or thirteenth residues were changed (T4A and T13A, respectively) were more unstable than that of wild-type, whereas T3A, T7A, T9A and T12A were more stable. The opposite effect was observed in the presence of 100 mM K+: the G-quadruplexes formed by T4A and T13A were more stable and T3A, T7A, T9A and T12A were more unstable than that of wild-type. Isothermal titration calorimetry measurements indicated that the binding constant of the interaction between T3A, T7A, T9A and T12A mutants and thrombin at 25 °C were close to that of wild-type, whereas T13A was significantly lower and T4A did not appear to bind to thrombin. Therefore, the stabilization of the G-quadruplex structure of TBA by thrombin appears to be due to an interaction between certain thymine nucleobases rather than to the quadruplex structure. The present study demonstrates that thrombin stabilizes the G-quadruplex via the interaction with residues in the loops but not via direct stabilization of G-quartets.  相似文献   

2.
BackgroundThe thrombin binding aptamer (TBA) is endowed with both anticoagulant and antiproliferative activities. Its chemico-physical and/or biological properties can be tuned by the site-specific replacement of selected residues.MethodsFour oligodeoxynucleotides (ODNs) based on the TBA sequence (5′-GGTTGGTGTGGTTGG-3′) and containing 2′-deoxyuridine (U) or 5-bromo-2′-deoxyuridine (B) residues at positions 4 or 13 have been investigated by NMR and CD techniques. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay) have been tested and compared with two further ODNs containing 5-hydroxymethyl-2′-deoxyuridine (H) residues in the same positions, previously investigated.ResultsThe CD and NMR data suggest that all the investigated ODNs are able to form G-quadruplexes strictly resembling that of TBA. The introduction of B residues in positions 4 or 13 increases the melting temperature of the modified aptamers by 7 °C. The replacement of thymidines with U in the same positions results in an enhanced anticoagulant activity compared to TBA, also at low ODN concentration. Although all ODNs show antiproliferative properties, only TBA derivatives containing H in the positions 4 and 13 lose the anticoagulant activity and remarkably preserve the antiproliferative one.ConclusionsAll ODNs have shown antiproliferative activities against two cancer cell lines but only those with U and B are endowed with anticoagulant activities similar or improved compared to TBA.General significance:The appropriate site-specific replacement of the residues in the TT loops of TBA with commercially available thymine analogues is a useful strategy either to improve the anticoagulant activity or to preserve the antiproliferative properties by quenching the anticoagulant ones.  相似文献   

3.
To increase the efficiency of aptamers to their targets, a simple and novel method has been developed based on aptamer oligomerization. To this purpose, previously anti-human TNF-α aptamer named T1–T4 was trimerized through a trimethyl aconitate core for neutralization of in vitro and in vivo of TNF-α. At first, 54 mer T1–T4 aptamers with 5′-NH2 groups were covalently coupled to three ester residues in the trimethyl aconitate. In vitro activity of novel anti-TNF-α aptamer and its dissociation constant (Kd) was done using the L929 cell cytotoxicity assay. In vivo anti-TNF-α activity of new oligomerized aptamer was assessed in a mouse model of cutaneous Shwartzman. Anchoring of three T1–T4 aptamers to trimethyl aconitate substituent results in formation of the 162 mer fragment, which was well revealed by gel electrophoresis. In vitro study indicated that the trimerization of T1–T4 aptamer significantly improved its anti-TNF-α activity compared to non-modified aptamers (P < 0.0001) from 40% to 60%. The determination of Kd showed that trimerization could effectively enhance Kd of aptamer from 67 nM to 36 nM. In vivo study showed that trimer aptamer markedly reduced mean scar size from 15.2 ± 1.2 mm to 1.6 ± 0.1 mm (P < 0.0001), which prevent the formation of skin lesions. In vitro and in vivo studies indicate that trimerization of anti-TNF-α aptamer with a novel approach could improve the anti-TNF-α activity and therapeutic efficacy. According to our findings, a new anti-TNF-α aptamer described here could be considered an appropriate therapeutic agent in treating several inflammatory diseases.  相似文献   

4.
A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15–0.50 kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by Tm versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation.  相似文献   

5.
The thrombin binding aptamer (TBA) possesses promising antiproliferative properties. However, its development as an anticancer agent is drastically impaired by its concomitant anticoagulant activity. Therefore, suitable chemical modifications in the TBA sequence would be required in order to preserve its antiproliferative over anticoagulant activity. In this paper, we report structural investigations, based on circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR), and biological evaluation of four pairs of enantiomeric heterochiral TBA analogues. The four TBA derivatives of the d-series are composed by d-residues except for one l-thymidine in the small TT loops, while their four enantiomers are composed by l-residues except for one d-thymidine in the same TT loop region. Apart from the left-handedness for the l-series TBA derivatives, CD and NMR measurements have shown that all TBA analogues are able to adopt the antiparallel, monomolecular, ‘chair-like’ G-quadruplex structure characteristic of the natural D-TBA. However, although all eight TBA derivatives are endowed with remarkable cytotoxic activities against colon and lung cancer cell lines, only TBA derivatives of the l-series show no anticoagulant activity and are considerably resistant in biological environments.  相似文献   

6.
The thrombin-binding aptamer d(GGTTGGTGTGGTTGG) (TBA) is an efficient tool for the inhibition of thrombin function. We have studied conformations and thermodynamic stability of a number of modified TBA oligonucleotides containing thiophosphoryl substitution at different internucleotide sites. Using circular dichroism such modifications were found not to disrupt the antiparallel intramolecular quadruplex specific for TBA. Nevertheless, the presence of a single thiophosphoryl bond between two G-quartet planes led to a significant decrease in the quadruplex thermostability. On the contrary, modifications in each of the loop regions either stabilized an aptamer structure or did not reduce its stability. According to the thrombin time test, the aptamer with thio-modifications in both TT loops (LL11) exhibits the same antithrombin efficiency as the original TBA. This aptamer shows better stability against DNA nuclease compared to that of TBA. We conclude that such thio-modification patterns are very promising for the design of anticoagulation agents.  相似文献   

7.
G-quadruplexes (G4) have been found increasing potential in applications, such as molecular therapeutics, diagnostics and sensing. Both Thioflavin T (ThT) and N-Methyl mesoporphyrin IX (NMM) become fluorescent in the presence of most G4, but thrombin-binding aptamer (TBA) has been reported as the only exception of the known G4-forming oligonucleotides when ThT is used as a high-throughput assay to identify G4 formation. Here, we investigate the interactions between ThT/NMM and TBA through fluorescence spectroscopy, circular dichroism and molecular docking simulation experiments in the absence or presence of cations. The results display that a large ThT fluorescence enhancement can be observed only when ThT bind to the parallel TBA quadruplex, which is induced to form by ThT in the absence of cations. On the other hand, great promotion in NMM fluorescence can be obtained only in the presence of anti-parallel TBA quadruplex, which is induced to fold by K+ or thrombin. The highly selective recognition of TBA quadruplex with different topologies by the two probes may be useful to investigate the interactions between conformation-specific G4 and the associated proteins, and could also be applied in label-free fluorescent sensing of other biomolecules.  相似文献   

8.
Many antiproliferative G-quadruplexes (G4s) arise from the folding of GT-rich strands. Among these, the Thrombin Binding Aptamer (TBA), as a rare example, adopts a monomolecular well-defined G4 structure. Nevertheless, the potential anticancer properties of TBA are severely hampered by its anticoagulant action and, consequently, no related studies have appeared so far in the literature. We wish to report here that suitable chemical modifications in the TBA sequence can preserve its antiproliferative over anticoagulant activity. Particularly, we replaced one residue of the TT or TGT loops with a dibenzyl linker to develop seven new quadruplex-forming TBA based sequences (TBA-bs), which were studied for their structural (CD, CD melting, 1D NMR) and biological (fibrinogen, PT and MTT assays) properties. The three-dimensional structures of the TBA-bs modified at T13 (TBA-bs13) or T12 (TBA-bs12), the former endowed with selective antiproliferative activity, and the latter acting as potently as TBA in both coagulation and MTT assays, were further studied by 2D NMR restrained molecular mechanics. The comparative structural analyses indicated that neither the stability, nor the topology of the G4s, but the different localization of the two benzene rings of the linker was responsible for the loss of the antithrombin activity for TBA-bs13.  相似文献   

9.
We report herein full details of the preparation of 4′-thiouridine, -cytidine, -adenosine and -guanosine phosphoramidites based on our synthetic protocol via the Pummerer reaction. Fully modified 4′-thioRNAs containing four kinds of 4′-thioribonucleoside units were prepared according to the standard RNA synthesis. The Tm values and thermodynamic parameters of a series of duplexes were determined by UV melting and differential scanning calorimetry (DSC) measurements. The resulting overall order of thermal stabilities for the duplexes was 4′-thioRNA:4′-thioRNA >> 4′-thioRNA:RNA > RNA:RNA > RNA:DNA > 4′-thioRNA:DNA. In addition, it was shown that the dominant factor in the stability of the duplexes consisting of 4′-thioRNA was enthalpic in character. The CD spectra of not only 4′-thioRNA:RNA and 4′-thioRNA:4′-thioRNA but also 4′-thioRNA:DNA were all similar to those of duplexes in the A-conformation. The stability of 4′-thioRNA in human serum was 600 times greater than that of natural RNA. Neither the RNA:RNA nor the 4′-thioRNA:4′-thioRNA duplexes were digested under the same conditions. The first example of a post-modification of an RNA aptamer by 4′-thioribonucleoside units was demonstrated. Full modification of the aptamer thioRNA3 resulted in complete loss of binding activity. In contrast, modifications at positions other than the binding site were tolerated without loss of binding activity. The post-modified RNA aptamer thioRNA5 was thermally stabilized and resistant toward nuclease digestion. The results presented in this paper will, it is hoped, contribute to the development of 4′-thioRNA as a new generation of artificial RNA.  相似文献   

10.
The G-quadruplex architecture is a peculiar structure adopted by guanine-rich oligonucleotidic sequences, and, in particular, by several aptamers, including the thrombin-binding aptamer (TBA) that has the highest inhibitory activity against human α-thrombin. A crucial role in determining structure, stability and biological properties of G-quadruplexes is played by ions. In the case of TBA, K(+) ions cause an enhancement of the aptamer clotting inhibitory activity. A detailed picture of the interactions of TBA with the protein and with the ions is still lacking, despite the importance of this aptamer in biomedical field for detection and inhibition of α-thrombin. Here, we fill this gap by presenting a high-resolution crystallographic structural characterization of the thrombin-TBA complex formed in the presence of Na(+) or K(+) and a circular dichroism study of the structural stability of the aptamer both free and complexed with α-thrombin, in the presence of the two ionic species. The results indicate that the different effects exerted by Na(+) and K(+) on the inhibitory activity of TBA are related to a subtle perturbation of a few key interactions at the protein-aptamer interface. The present data, in combination with those previously obtained on the complex between α-thrombin and a modified aptamer, may allow the design of new TBA variants with a pharmacological performance enhancement.  相似文献   

11.
A new modified acyclic nucleoside, namely N(1)-(3-hydroxy-2-hydroxymethyl-2-methylpropyl)-thymidine, was synthesized and transformed into a building block useful for oligonucleotide (ON) automated synthesis. A series of modified thrombin binding aptamers (TBAs) in which the new acyclic nucleoside replaces, one at the time, the thymidine residues were then synthesized and characterized by UV, CD, MS, and (1)H NMR. The biological activity of the resulting TBAs was tested by Prothrombin Time assay (PT assay) and by purified fibrinogen clotting assay. From a structural point of view, nearly all the new TBA analogues show a similar behavior as the unmodified counterpart, being able to fold into a bimolecular or monomolecular quadruplex structure depending on the nature of monovalent cations (sodium or potassium) coordinated in the quadruplex core. From the comparison of structural and biological data, some important structure-activity relationships emerged, particularly when the modification involved the TT loops. In agreement with previous studies we found that the folding ability of TBA analogues is more affected by modifications involving positions 4 and 13, rather than positions 3 and 12. On the other hand, the highest anti-thrombin activities were detected for aptamers containing the modification at T13 or T12 positions, thus indicating that the effects produced by the introduction of the acyclic nucleoside on the biological activity are not tightly connected with structure stabilities. It is noteworthy that the modification at T7 produces an ON being more stable and active than the natural TBA.  相似文献   

12.
The formation of a single G-quadruplex structure adopted by a promising 25 nt G-rich vascular endothelial growth factor aptamer in a K+ rich environment was facilitated by locked nucleic acid modifications. An unprecedented all parallel-stranded monomeric G-quadruplex with three G-quartet planes exhibits several unique structural features. Five consecutive guanine residues are all involved in G-quartet formation and occupy positions in adjacent DNA strands, which are bridged with a no-residue propeller-type loop. A two-residue D-shaped loop facilitates inclusion of an isolated guanine residue into the vacant spot within the G-quartet. The remaining two G-rich tracts of three residues each adopt parallel orientation and are linked with edgewise and propeller loops. Both 5′ with 3 nt and 3′ with 4 nt overhangs display well-defined conformations, with latter adopting a basket handle topology. Locked residues contribute to thermal stabilization of the adopted structure and formation of structurally pre-organized intermediates that facilitate folding into a single G-quadruplex. Understanding the impact of chemical modifications on folding, thermal stability and structural polymorphism of G-quadruplexes provides means for the improvement of vascular endothelial growth factor aptamers and advances our insights into driving nucleic acid structure by locking or unlocking the conformation of sugar moieties of nucleotides in general.  相似文献   

13.
We developed a method for aptamer identification without in vitro selection. We have previously obtained several aptamers, which may fold into the G-quadruplex (G4) structure, against target proteins; therefore, we hypothesized that the G4 structure would be an excellent scaffold for aptamers to recognize the target protein. Moreover, the G4-forming sequence contained in the promoter region of insulin can reportedly bind to insulin. We thus expected that G4 DNAs, which are contained in promoter regions, could act as DNA aptamers against their gene products. We designated this aptamer identification method as “G4 promoter-derived aptamer selection (G4PAS).” Using G4PAS, we identified vascular endothelial growth factor (VEGF)165, platelet-derived growth factor-AA (PDGF)-AA, and RB1 DNA aptamers. Surface plasmon resonance (SPR) analysis revealed that the dissociation constant (K d) values of VEGF165, PDGF-AA, and RB1 DNA aptamers were 1.7 × 10−7 M, 6.3 × 10−9 M, and 4.4 × 10−7 M, respectively. G4PAS is a simple and rapid method of aptamer identification because it involves only binding analysis of G4 DNAs to the target protein. In the human genome, over 40% of promoters contain one or more potential G4 DNAs. G4PAS could therefore be applied to identify aptamers against target proteins that contain G4 DNAs on their promoters.  相似文献   

14.
The solution structure of a new modified thrombin binding aptamer (TBA) containing a 5′–5′ inversion of polarity site, namely d(3′GGT5′-5′TGGTGTGGTTGG3′), is reported. NMR and CD spectroscopy, as well as molecular dynamic and mechanic calculations, have been used to characterize the 3D structure. The modified oligonucleotide is characterized by a chair-like structure consisting of two G-tetrads connected by three edge-wise TT, TGT and TT loops. d(3′GGT5′-5′TGGTGTGGTTGG3′) is characterized by an unusual folding, being three strands parallel to each other and only one strand oriented in opposite manner. This led to an anti-anti-anti-syn and syn-syn-syn-anti arrangement of the Gs in the two tetrads. The thermal stability of the modified oligonucleotide is 4°C higher than the corresponding unmodified TBA. d(3′GGT5′-5′TGGTGTGGTTGG3′) continues to display an anticoagulant activity, even if decreased with respect to the TBA.  相似文献   

15.
The evolution of (β/α)8 barrel proteins is currently thought to have involved the fusion of two (β/α)4 half-barrels, thereby conferring stability on the protein structure. After the formation of a whole (β/α)8 barrel, this structure could evolve and diverge to form fully active enzymes. Interestingly, we show here that isolated (β/α)4 half-barrels derived from the N- and C-terminal domains of the β-glucosidase Sfβgly (Sfβgly-N: residues 1 to 265; Sfβgly-C: residues 266 to 509) undergo an activation process, which renders them catalytically active. The rate constants of the activation process were calculated to be 0.029 and 0.032 h-1 for Sfβgly-N and Sfβgly-C, respectively. Moreover, the Sfβgly-N and Sfβgly-C activation processes were simultaneous with modifications in their initial structure, which reduced the exposure of their tryptophan residues. Importantly, this activation was also coincident with an increase in the sizes of Sfβgly-N and Sfβgly-C particles. These novel observations suggest that the change in catalytic activity associated with the transition from a half to whole (β/α)8 barrel might also have driven such an evolutionary process.  相似文献   

16.
Guanine-rich nucleic acids can form G-quadruplexes that are important in gene regulation, biosensor design and nano-structure construction. In this article, we report on the development of a nanopore encapsulating single-molecule method for exploring how cations regulate the folding and unfolding of the G-quadruplex formed by the thrombin-binding aptamer (TBA, GGTTGGTGTGGTTGG). The signature blocks in the nanopore revealed that the G-quadruplex formation is cation-selective. The selectivity sequence is K+ > NH4+ ~ Ba2+ > Cs+ ~ Na+ > Li+, and G-quadruplex was not detected in Mg2+ and Ca2+. Ba2+ can form a long-lived G-quadruplex with TBA. However, the capability is affected by the cation–DNA interaction. The cation-selective formation of the G-quadruplex is correlated with the G-quadruplex volume, which varies with cation species. The high formation capability of the K+-induced G-quadruplex is contributed largely by the slow unfolding reaction. Although the Na+- and Li+-quadruplexes feature similar equilibrium properties, they undergo radically different pathways. The Na+-quadruplex folds and unfolds most rapidly, while the Li+-quadruplex performs both reactions at the slowest rates. Understanding these ion-regulated properties of oligonucleotides is beneficial for constructing fine-tuned biosensors and nano-structures. The methodology in this work can be used for studying other quadruplexes and protein–aptamer interactions.  相似文献   

17.
NMR solution structure of a parallel LNA quadruplex   总被引:3,自引:2,他引:1  
The solution structure of a locked nucleic acid (LNA) quadruplex, formed by the oligomer d(TGGGT), containing only conformationally restricted LNA residues is reported. NMR and CD spectroscopy, as well as molecular dynamics and mechanic calculations, has been used to characterize the complex. The molecule adopts a parallel stranded conformation with a 4-fold rotational symmetry, showing a right-handed helicity and the guanine residues in an almost planar conformation with three well-defined G-tetrads. The thermal stability of Q-LNA has been found to be comparable with that of [r(UGGGU)]4, while a Tm increment of 20°C with respect to the corresponding DNA quadruplex structure [d(TGGGT)]4 has been observed. The structural features of the LNA quadruplex reported here may open new perspectives for the biological application of LNAs as novel versatile tools to design aptamer or catalyst oligonucleotides.  相似文献   

18.
Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase E9, the uracil-DNA glycosylase D4 and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase co-factor whose function is essential for processive DNA synthesis. Genetic and biochemical data have established that residues located in the N-terminus of A20 are critical for binding to D4. However, no information regarding the residues of D4 involved in A20 binding is yet available. We expressed and purified the complex formed by D4 and the first 50 amino acids of A20 (D4/A201–50). We showed that whereas D4 forms homodimers in solution when expressed alone, D4/A201–50 clearly behaves as a heterodimer. The crystal structure of D4/A201–50 solved at 1.85 Å resolution reveals that the D4/A20 interface (including residues 167 to 180 and 191 to 206 of D4) partially overlaps the previously described D4/D4 dimer interface. A201–50 binding to D4 is mediated by an α-helical domain with important leucine residues located at the very N-terminal end of A20 and a second stretch of residues containing Trp43 involved in stacking interactions with Arg167 and Pro173 of D4. Point mutations of the latter residues disturb D4/A201–50 formation and reduce significantly thermal stability of the complex. Interestingly, small molecule docking with anti-poxvirus inhibitors selected to interfere with D4/A20 binding could reproduce several key features of the D4/A201–50 interaction. Finally, we propose a model of D4/A201–50 in complex with DNA and discuss a number of mutants described in the literature, which affect DNA synthesis. Overall, our data give new insights into the assembly of the poxvirus DNA polymerase cofactor and may be useful for the design and rational improvement of antivirals targeting the D4/A20 interface.  相似文献   

19.

Background

Although the thrombin binding aptamer (TBA) is endowed with both anticoagulant and antiproliferative properties, it is possible to reduce the first and enhance the second one by suitable chemical modifications.

Methods

Two oligonucleotides (TBA353 and TBA535) based on the TBA sequence (GGTTGGTGTGGTTGG) and containing inversion of polarity sites have been investigated by CD, UV and electrophoretic techniques for their ability to form G-quadruplex structures. Furthermore, their anticoagulant (PT assay), antiproliferative (MTT assay) and anti-motility (wound healing assay) properties against Calu-6 cells have been tested and compared with TBA.

Results

CD, UV and electrophoresis data indicate that both ODNs are able to form G-quadruplex structures. Particularly, results suggest that TBA535 adopts a G-quadruplex structure characterized by a loop arrangement different from that of TBA. Both TBA analogues drop the anticoagulant activity. However, TBA535 is endowed with a significant antiproliferative activity against lung cancer Calu-6 cells. Importantly, both TBA and TBA535 possess a remarkable anti-motility property against the same cell line.

Conclusions

Both TBA analogues TBA353 and TBA535 are able to form G-quadruplex structures with no anticoagulant activity. However only TBA535 is endowed with noteworthy antiproliferative and anti-motility properties against lung cancer Calu-6 cells.

General significance

The switching from the anticoagulant to antiproliferative property can be obtained also in TBA derivatives not adopting the “chair-like” G-quadruplex structure typical of TBA. Furthermore, results have highlighted an unprecedented anti-cell-motility property of TBA and TBA535 reinforcing the potential of these ODNs as anticancer drugs.  相似文献   

20.
Unlike DNA duplexes that release water upon interaction with protein, the binding of DNA G-quadruplex of the thrombin-binding aptamer (TBA) to thrombin takes up water. Here, to reveal the mechanism of water uptake, we designed four mutants of TBA (ΔT3, ΔT7, ΔT9, ΔT12), in which thymine residues (T3, T7, T9 and T12) were deleted from the loop regions of TBA G-quadruplex. For the mutants the thermodynamics and the osmolyte effects on the interactions with thrombin were investigated. The mutants ΔT3, ΔT9 and ΔT12 decreased the binding constants of the G-quadruplex to thrombin. Furthermore, an osmotic stress analysis indicated that the number of water molecules binding to the complex decreased in the mutants ΔT3 and ΔT9. The decrease in the binding affinity was related to loss of binding of the loop nucleotides to water molecules. Therefore, the interaction between loops of the G-quadruplex and water molecules contributed to the binding energy of G-quadruplex to protein. Our study suggests that water binding is essential for the binding of G-quadruplex to protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号