首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 μM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [Ca2+ fluctuations. Bombesin-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+ entry and were attenuated by membrane hype rpolarization or by L-type Ca2+ channel blockers. These [Ca2+]i oscillations were apparently not associated with fluctuations in plasma membrane Ca2+ permeability as monitored by the Mn2+ quenching technique. 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and 4-chloro-m-cresol, which interfere with intracellular Ca2+ stores, respectively, by inhibiting Ca2+-ATPase of endoplasmic reticulum and by affecting Ca2+-induced Ca2+ release, disrupted bombesin-induced [Ca2+]i oscillations. 4-chloro-m-resol raised [Ca2+]i by mobilizing an intracellular Ca2+ pool, an effect not altered by ryanodine. Caffeine exerted complex actions on [Ca2+]i It raised [Ca2+]i by promoting Ca2+ entry while inhibiting bombesin-elicited [Ca2+]i oscillations. Our results suggest that in bombesin-elicited [Ca2+]i oscillations in HIT-T15 cells: (i) the oscillations originate primarily from intracellular Ca2+ stores; and (ii) the Ca2+ influx required for maintaining the oscillations is in part membrane potential-sensitive and not coordinated with [Ca2+]i oscillations. The interplay between intracellular Ca2+ stores and voltage-sensitive and voltage-insensitive extracellular Ca2+ entry determines the [Ca2+]i oscillations evoked by bombesin.  相似文献   

2.
We studied the relationship between changes in intracellular pH (pH i ), intracellular Ca2+([Ca2+] i ) and charybdotoxin sensitive (CTX) maxi-K+ channels occurring after modest `physiological' swelling in guinea pig jejunal villus enterocytes. Villus cell volume was assessed by electronic cell sizing, and pH i and [Ca2+] i by fluorescence spectroscopy with 2,7, biscarboxyethyl-5-6-carboxyfluorescein and Indo-1, respectively. In a slightly (0.93 × isotonic) hypotonic medium, villus cells swelled to the same size they would reach during d-glucose or l-alanine absorption; the subsequent Regulatory Volume Decrease (RVD) was prevented by CTX. After the large volume increase in a more hypotonic (0.80 × isotonic) medium, RVD was unaffected by CTX. After modest swelling associated with 0.93 × isotonic dilution, the pH i alkalinized but N-5-methyl-isobutyl amiloride (MIA) prevented this ΔpH i and the subsequent RVD. Even in the presence of MIA, alkalinization with added NH4Cl permitted complete RVD which could be inhibited by CTX. The rate of 86Rb efflux which also increased after this 0.93 × isotonic dilution was inhibited an equivalent amount by CTX, MIA or Na+-free medium. Modest swelling transiently increased [Ca2+] i and Ca2+-free medium or blocking alkalinization by MIA or Na+-free medium diminished this transient increase an equivalent amount. RVD after modest swelling was prevented in Ca2+-free medium but alkalinization still occurred. After large volume increases, alkalinization of cells increased [Ca2+] i and volume changes became sensitive to CTX. We conclude that both alkalinization of pH i and increased [Ca2+] i observed with `physiological' volume increase are essential for the activation of CTX-sensitive maxi-K+ channels required for RVD. Received: 30 March 1999/Revised: 6 July 1999  相似文献   

3.
Several aspects of Mg2+ homeostasis were investigated in cultured chicken heart cells using the fluorescent Mg2+ indicator, FURAPTRA. The concentration of cytosolic Mg2+ ([Mg2+]i) is 0.48 ± 0.03 mM (n = 31). To test whether a putative Na/Mg exchange mechanism controls [Mg2+]i below electrochemical equilibrium, we manipulated the Na+ gradient and assessed the effects on [Mg2+]i. When extracellular Na+ was removed, [Mg2+]i increased; this increase was not altered in Mg-free solutions, but was attenuated in Ca-free solutions. A similar increase in [Mg2+]i, which was dependent upon extracellular Ca2+, was observed when intracellular Na+ was raised by inhibiting the Na/K pump with ouabain. These results do not provide evidence for Na/Mg exchange in heart cells, but they suggest that Ca2+ can modulate [Mg2+]i. In addition, removing extracellular Na+ caused a decrease in intracellular pH (pHi), as measured by pH-sensitive microelectrodes, and this acidification was attenuated when Cat+ was also removed from the solution. These results suggest that Ca2+ and H+ interact intracellularly. Since changes in the Na+ gradient can also alter pHi, we questioned whether pH can modulate [Mg2+]i. pHi was manipulated by the NH4Cl prepulse method. NH4 +-evoked changes in pHi, as measured by the fluorescent indicator BCECF, were accompanied by opposite changes in [Mg2+]i; [Mg2+]i changed by –0.16 mM/unit pH. These NH4 +-evoked changes in [Mg2+]i were not caused by movements of Mg2+ or Ca2+ across the sarcolemma or by changes in cytosolic Ca2+. Additionally, pHi was manipulated by changing extracellular pH (pHo). When pHo was decreased from 7.4 to 6.3, pHi decreased by 0.64 units and [Mg2+]i increased by 0.12 mM; in contrast, when pHo was raised from 7.4 to 8.3, pHi increased by 0.6 units and [Mg2+]i did not change significantly. The results of our investigations suggest that Ca 2+ and H+ can modulate [Mg2+]i, probably by affecting cytosolic Mg2+ binding and/or subcellular Mg2+ transport and that such redistribution of intracellular Mg2+ may play an important role in Mg2+ homeostasis in cardiac cells.  相似文献   

4.
Summary The dependence of cytoplasmic free [Ca] (Ca i ) on [Na] and pH was assessed in individual parietal cells of intact rabbit gastric glands by microfluorimetry of fura-2. Lowering extracellular [Na] (Na o ) to 20mm or below caused a biphasic Ca i increase which consisted of both release of intracellular Ca stores and Ca entry across the plasma membrane. The Ca increase was not blocked by antagonists of Ca-mobilizing receptors (atropine or cimetidine) and was independent of the replacement cation. Experiments in Ca-free media and in Na-depleted cells indicated that neither phase was due to reversal of Na/Ca exchange. The steep dependence of the Ca i increase on Na o suggested that the response was not due to lowering intracellular [Na] (Na i ). The effects of low Na o on Ca i were also completely independent of changes in intracellular pH (pH i ). Ca i was remarkably stable during changes of pH i of up to 2 pH units, indicating that H and Ca do not share a cytoplasmic buffer system. Such large pH excursions required determination of the pH dependence of fura-2. Because fura-2 was found to decrease its affinity for Ca as pH decreased below 6.7, corrections were applied to experiments in which large pH i changes were observed. In contrast to the relative insensitivity of Ca i to changes in pH i , decreasing extracellular pH (pH o ) to 6.0 or below was found to stimulate release of intracellular Ca stores. Increased Ca entry was not observed in this case. The ability of decreases in Na o and pH o to stimulate release of intracellular Ca stores suggest interactions between Na and H with extracellular receptors.  相似文献   

5.
Summary Homeostasis of intracellular calcium ([Ca++]i) and pH (pHi) is important in the cell's ability to respond to growth factors, to initiate differentiation and proliferation, and to maintain normal metabolic pathways. Because of the importance of these ions to cellular functions, we investigated the effects of changes of [Ca++]i and pHi on each other in primary cultures of rabbit corneal epithelial cells. Digitized fluorescence imaging was used to measure [Ca++]i with fura-2 and pHi with 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Resting pHi in these cells was 7.37±0.05 (n=20 cells) and resting [Ca++]i was 129±10 nM (n=35 cells) using a nominally bicarbonate-free Krebs Ringer HEPES buffer (KRHB), pH 7.4. On exposure to 20 mM NH4Cl, which rapidly alkalinized cells by 0.45 pH units, an increase in [Ca++]i to 215±14 nM occurred. Pretreatment of the cells with 100 μM verapamil or exposure to 1 mM ethylene bis-(oxyethylenenitrilo)-tetraacetic acid (EGTA) without extracellular calcium before addition of 20 mM NH4Cl did not abolish the calcium increase, suggesting that the source of the calcium transient was from intracellular calcium stores. On removal of NH4Cl or addition of 20 mM sodium lactate, there were minimal changes in calcium even though pHi decreased. Treatment of CE cells with the calcium ionophores, ionomycin and 4-bromo A23187, increased [Ca++]i, but produced a biphasic change in pHi. Initially, there was an acidification of the cytosol, and then an alkalinization of 0.10 to 0.11 pH units above initial values. When [Ca++]i was decreased by treating the cells with 5 mM EGTA and 20 μM ionomycin, pHi decreased by 0.35±0.02 units. We conclude that an increase in pHi leads to an increase in [Ca++]i in rabbit corneal epithelial cells; however, a decrease in pHi leads to minor changes in [Ca++]i. The ability of CE cells to maintain proper calcium homeostasis when pHi is decreased may represent an adaptive mechanism to maintain physiological calcium levels during periods of acidification, which occur during prolonged eye closure.  相似文献   

6.
Rises of intracellular Ca2+ ([Ca2+]i) are key signals for cell division, differentiation, and maturation. Similarly, they are likely to be important for the unique processes of meiosis and spermatogenesis, carried out exclusively by male germ cells. In addition, elevations of [Ca2+]i and intracellular pH (pHi) in mature sperm trigger at least two events obligatory for fertilization: capacitation and acrosome reaction. Evidence implicates the activity of Ca2+ channels modulated by pHi in the origin of these Ca2+ elevations, but their nature remains unexplored, in part because work in individual spermatozoa are hampered by formidable experimental difficulties. Recently, late spermatogenic cells have emerged as a model system for studying aspects relevant for sperm physiology, such as plasmalemmal ion fluxes. Here we describe the first study on the influence of controlled intracellular alkalinization on [Ca2+]i on identified spermatogenic cells from mouse adult testes. In BCECF [(2′,7′)-bis(carboxymethyl)- (5,6)-carboxyfluorescein]-AM-loaded spermatogenic cells, a brief (30–60 s) application of 25 mM NH4Cl increased pHi by ∼1.3 U from a resting pHi ∼6.65. A steady pHi plateau was maintained during NH4Cl application, with little or no rebound acidification. In fura-2-AM-loaded cells, alkalinization induced a biphasic response composed of an initial [Ca2+]i drop followed by a two- to threefold rise. Maneuvers that inhibit either Ca2+ influx or intracellular Ca2+ release demonstrated that the majority of the Ca2+ rise results from plasma membrane Ca2+ influx, although a small component likely to result from intracellular Ca2+ release was occasionally observed. Ca2+ transients potentiated with repeated NH4Cl applications, gradually obliterating the initial [Ca2+]i drop. The pH-sensitive Ca2+ permeation pathway allows the passage of other divalents (Sr2+, Ba2+, and Mn2+) and is blocked by inorganic Ca2+ channel blockers (Ni2+ and Cd2+), but not by the organic blocker nifedipine. The magnitude of these Ca2+ transients increased as maturation advanced, with the largest responses being recorded in testicular sperm. By extrapolation, these findings suggest that the pH-dependent Ca2+ influx pathway could play significant roles in mature sperm physiology. Its pharmacology and ion selectivity suggests that it corresponds to an ion channel different from the voltage-gated T-type Ca2+ channel also present in spermatogenic cells. We postulate that the Ca2+ permeation pathway regulated by pHi, if present in mature sperm, may be responsible for the dihydropyridine-insensitive Ca2+ influx required for initiating the acrosome reaction and perhaps other important sperm functions.  相似文献   

7.
The actions of intracellular pH (pH i ) on Ca2+dependent Cl? channels were studied in secretory epithelial cells derived from human colon carcinoma (T84) and in isolated rat parotid acinar cells. Channel currents were measured with the whole cell voltage clamp technique with pipette solutions of different pH. Ca2+dependent Cl? channels were activated by superfusing ionomycin to increase the intracellular calcium concentration ([Ca2+] i ) or by using pipette solutions with buffered Ca2+ levels. Large currents were activated in T84 and parotid cells by both methods with pH i levels of 7.3 or 8.3. Little or no Cl? channel current was activated with pH i at 6.4. We used on-cell patch clamp methods to investigate the actions of low pH i on single Cl? channel current amplitude in T84 cells. Lowering the pH i had little or no effect on the current amplitude of a 8 pS Cl? channel, but did reduce channel activity. These results suggest that cytosolic acidification may be able to modulate stimulus-secretion coupling in fluid-secreting epithelia by inhibiting the activation of Ca2+-activated Cl? channels.  相似文献   

8.
We investigated the cytosolic free Ca2+ concentration ([Ca2+]i) of leech Retzius neurons in situ while varying the extracellular and intracellular pH as well as the extracellular ionic strength. Changing these parameters had no significant effect on [Ca2+]i when the membrane potential of the cells was close to its resting value. However, when the cells were depolarized by raising the extracellular K+ concentration or by applying the glutamatergic agonist kainate, extracellular pH and ionic strength markedly affected [Ca2+]i, whereas intracellular pH changes appeared to have virtually no effect. An extracellular acidification decreased [Ca2+]i, while alkalinization or reduction of the ionic strength increased it. Correspondingly, [Ca2+]i also increased when the kainate-induced extracellular acidification was reduced by raising the pH-buffering capacity. At low extracellular pH, the membrane potential to which the cells must be depolarized to evoke a detectable [Ca2+]i increase was shifted to more positive values, and it moved to more negative values at high pH. We conclude that in leech Retzius neurons extracellular pH, but not intracellular pH, affects [Ca2+]i by modulating Ca2+ influx through voltage-dependent Ca2+ channels. The results suggest that this modulation is mediated primarily by shifts in the surface potential at the extracellular side of the plasma membrane. Received: 23 January 2001/Revised: 15 June 2001  相似文献   

9.
The transformation of certain cells reduces the requirement of extracellular Ca2+ for growth. The SV-40 transformed human lung fibroblasts, WI-38 VA13, require less Ca2+ than normal WI-38 cells. Spreading area of normal cells decreases when cultured in 10 μM Ca2+ medium. Intracellular calcium concentration ([Ca2+]i), of the normal and transformed cells cultured in 10μM and 2 mM Ca2+ media was measured by the fluorescence microscope technique using fura-2 as a probe. The [Ca2+], is measured in the resting state and during mobilization by serum or bradykinin stimulation. The lowering of extracellular calcium concentration results in a decrease in the resting state [Ca2+],i of both normal and transformed cells. Although the total decrease in [Ca2+]i is the same for both cell, the rate of decrease is much faster in normal cells than in transformed cells. Low extracellular Ca2+ reduces the number of cells responsive to the serum or bradykinin stimulation and decreases the peak [Ca2+]i value in both cells. In addition, we investigated, using BCECF as a fluorecent probe, the intracellular pH (pHi) of normal and transformed cells maintained at low and normal Ca2+. The low Ca2+ condition makes pHi acidic in normal cells but not in transformed cells. The acidification of the normal cell is accompanied by a decrease in the spreading area of the cells. The decrease of the cell attacment, followed by the reduced spreading area, induced the acidic pHi. These results suggest that the reduced Ca2+ requirement of transformed cells for growth is related to the mechanism of pHi regulation rather than Ca2+ homeostasis and, possibly, to the anchorage-independent growth, which is a unique feature of transformed cells. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Regulatory relationship and gain control between cytosolic free Ca2+ concentration (Cai) and cytosolic pH (pHi) were evaluated by two different cell types, gastric parietal cells, and blood platelets. Studies were carried out in both single cells and populations of cells, using Ca2+-indicative probe fura-2 (1-(2-(5′-carboxyoxazol-2′-yl)-6-aminobenzofuran-5-oxy)-2-(2′-amino-5′-methylphenoxy) ethane-N,N,N′,N′-tetraacetic acid) and pH-indicative probe BCECF (2′,7′-bis(carboxyethyl) carboxyfluorescein). Stimulation of single and populational parietal cells and platelets with gastrin and thrombin, respectively, resulted in an increase in Cai. In both populational cell types, an initial change in pHi during agonist stimulation occurred almost simultaneously with the mobilization of Ca2+; an initial transient decrease in pHi was followed by a slower increase in pHi above the prestimulation level. When populational platelets were preloaded with the Ca2+ chelator BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′tetraacetic acid), the thrombin-induced initial large increase in Cai was apparently inhibited, whereas the pHi decrease induced by thrombin was not altered. This suggests that the initial Cai change is not a prerequisite for the pHi change. The effect of pHi on Cai was examined next. In both single and populational cell types, application of the K+-H+ ionophore nigericin, which induced a transient decrease in pHi, led to the release of Ca2+ from intracellular stores. In single parietal cells double-labeled with fura-2 and BCECF, a temporal decrease in pHi preceded the rise in Cai after stimulation with nigericin. A decrease in pHi, and an increase in Cai occurred at 1.5 and 4 s, respectively. In single parietal cells, replacement of medium Na+ with N-methyl- -glucamine (NMG+), which also induced a decrease in pHi, resulted in repetitive Ca2+ spike oscillations. The source of Ca2+ utilized for the Ca2+ oscillation that was induced by NMG+ originated from the agonist-sensitive pool. Thus, several maneuvers, which were capable of decreasing pHi, led to an increase in Cai. Cytosolic acidification may be a part of the trigger for Ca2+ mobilization from intracellular stores in both parietal cells and platelets.  相似文献   

11.
Summary The effect of lowering intracellular pH on the membrane potential (E m ) of rat thymic lymphocytes was studied using the potential-sensitive dyebis-oxonol. Cells were acid loaded by addition of the electroneutral K+/H+ exchanging ionophore nigericin. Acidification to pH 6.3 in Na+-free solution resulted in a biphasic change inE m : an early transient hyperpolarization followed by a sustained depolarization. These changes were associated with a rise in cytosolic free Ca2+ ([Ca2+] i ). The hyperpolarization was eliminated when the change in [Ca2+] i was prevented using BAPTA, an intracellular Ca2+ chelator. Moreover, a similar hyperpolarization was elicited by elevation of [Ca2+] i at physiological pH i using ionomycin, suggesting involvement of Ca2+-activated K+ channels. In contrast, the depolarization phase could not be mimicked by raising [Ca2+] i with ionomycin. However, intracellular BAPTA effectively inhibited the acidificationinduced depolarization. Inhibition was also obtained by extracellular addition of EGTA or dithiothreitol, even when the external free Ca2+ concentration remained unaltered. These observations suggested a possible role of contaminating trace metals. Cytosolic acidification is envisaged to induce intracellular accumulation of one or more trace metals, which induces the observed changes inE m . Accordingly, similar changes inE m can be induced without acidification by the addition of small amounts of Cu2+ to the medium. The ionic basis of theE m changes induced by acidification and the significance of these observations are discussed.  相似文献   

12.
Previous studies in chick embryo cardiac myocytes have shown that the inhibition of Na+/K+-ATPase with ouabain induces cell shrinkage in an isosmotic environment (290 mOsm). The same inhibition produces an enhanced RVD (regulatory volume decrease) in hyposmotic conditions (100 mOsm). It is also known that submitting chick embryo cardiomyocytes to a hyperosmotic solution induces shrinkage and a concurrent intracellular alkalization. The objective of this study was to evaluate the involvement of intracellular pH (pHi), intracellular Ca2+ ([Ca2+]i) and Na+/K+-ATPase inhibition during hyposmotic swelling. Changes in intracellular pH and Ca2+ were monitored using BCECF and fura-2, respectively. The addition of ouabain (100 M) under both isosmotic and hyposmotic stimuli resulted in a large increase in [Ca2+]i (200%). A decrease in pHi (from 7.3 ± 0.09 to 6.4 ± 0.08, n = 6; p < 0.05) was only observed when ouabain was applied during hyposmotic swelling. This acidification was prevented by the removal of extracellular Ca2+. Inhibition of Na+/H2+ exchange with amiloride (1 mM) had no effect on the ouabain-induced acidification. Preventing the mitochondrial accumulation of Ca2+ using CCCP (10 M) resulted in a blockade of the progressive acidification normally induced by ouabain. The inhibition of mitochondrial membrane K+/H+ exchange with DCCD (1 mM) also completely prevented the acidification. Our results suggest that intracellular acidification upon cell swelling is mediated by an initial Ca2+ influx via Na+/Ca2+ exchange, which under hyposmotic conditions activates the K+ and Ca2+ mitochondrial exchange systems (K+/H+ and Ca2+/H+).Deceased  相似文献   

13.
TASK-2 (KCNK5 or K2P5.1) is a background K+ channel that is opened by extracellular alkalinization and plays a role in renal bicarbonate reabsorption and central chemoreception. Here, we demonstrate that in addition to its regulation by extracellular protons (pHo) TASK-2 is gated open by intracellular alkalinization. The following pieces of evidence suggest that the gating process controlled by intracellular pH (pHi) is independent from that under the command of pHo. It was not possible to overcome closure by extracellular acidification by means of intracellular alkalinization. The mutant TASK-2-R224A that lacks sensitivity to pHo had normal pHi-dependent gating. Increasing extracellular K+ concentration acid shifts pHo activity curve of TASK-2 yet did not affect pHi gating of TASK-2. pHo modulation of TASK-2 is voltage-dependent, whereas pHi gating was not altered by membrane potential. These results suggest that pHo, which controls a selectivity filter external gate, and pHi act at different gating processes to open and close TASK-2 channels. We speculate that pHi regulates an inner gate. We demonstrate that neutralization of a lysine residue (Lys245) located at the C-terminal end of transmembrane domain 4 by mutation to alanine abolishes gating by pHi. We postulate that this lysine acts as an intracellular pH sensor as its mutation to histidine acid-shifts the pHi-dependence curve of TASK-2 as expected from its lower pKa. We conclude that intracellular pH, together with pHo, is a critical determinant of TASK-2 activity and therefore of its physiological function.  相似文献   

14.
Summary Intracellular calcium [Ca2+] i measurements in cell suspension of gastrointestinal myocytes have suggested a single [Ca2+] i transient followed by a steady-state increase as the characteristic [Ca2+] i response of these cells. In the present study, we used digital video imaging techniques in freshly dispersed myocytes from the rabbit colon, to characterize the spatiotemporal pattern of the [Ca2+] i signal in single cells. The distribution of [Ca2+] i in resting and stimulated cells was nonhomogeneous, with gradients of high [Ca2+] i present in the subplasmalemmal space and in one cell pole. [Ca2+] i gradients within these regions were not constant but showed temporal changes in the form of [Ca2+] i oscillations and spatial changes in the form of [Ca2+] i waves. [Ca2+] i oscillations in unstimulated cells (n = 60) were independent of extracellular [Ca2+] and had a mean frequency of 12.6 +1.1 oscillations per min. The baseline [Ca2+], was 171 ± 13 nm and the mean oscillation amplitude was 194 ± 12 nm. Generation of [Ca2+] i waves was also independent of influx of extracellular Ca2+. [Ca2+] i waves originated in one cell pole and were visualized as propagation mostly along the subplasmalemmal space or occasionally throughout the cytoplasm. The mean velocity was 23 +3 m per sec (n = 6). Increases of [Ca2+] i induced by different agonists were encoded into changes of baseline [Ca2+] i and the amplitude of oscillations, but not into their frequency. The observed spatiotemporal pattern of [Ca2+] i regulation may be the underlying mechanism for slow wave generation and propagation in this tissue. These findings are consistent with a [Ca2+] i regulation whereby cell regulators modulate the spatiotemporal pattern of intracellularly generated [Ca2+] i oscillations.The authors thank Debbie Anderson for excellent technical assistance with the electron microscopy and Dr. M. Regoli for providing the NK-1 agonist [Sar9,Met(O2)11]-SP. This work was supported by National Institutes of Health Grants DK 40919 and DK 40675 and Veterans Administration Grant SMI.  相似文献   

15.
The influence of cytosolic pH (pHi) in controlling K+-channel activity and its interaction with cytosolic-free Ca2+ concentration ([Ca2+]i) was examined in stomatal guard cells ofVicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes and K+-channel currents were recorded under voltage clamp while pHi or [Ca2+]i was monitored concurrently by fluorescence ratio photometry using the fluorescent dyes 2,7-bis (2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and Fura-2. In 10 mM external K+ concentration, current through inward-rectifying K+ channels (IK,in) was evoked on stepping the membrane from a holding potential of –100 mV to voltages from –120 to –250 mV. Challenge with 0.3-30 mM Na+-butyrate and Na+-acetate outside imposed acid loads, lowering pHi from a mean resting value of 7.64 ± 0.03 (n = 25) to values from 7.5 to 6.7. The effect on pHi was independent of the weak acid used, and indicated a H+-buffering capacity which rose from 90 mM H+/pH unit near 7.5 to 160 mM H+/pH unit near pHi 7.0. With acid-going pHi, (IK,in) was promoted in scalar fashion, the current increasing in magnitude with the acid load, but without significant effect on the current relaxation kinetics at voltages negative of –150 mV or the voltage-dependence for channel gating. Washout of the weak acid was followed by transient rise in pHi lasting 3–5 min and was accompanied by a reduction in (IK,in) before recovery of the initial resting pHi and current amplitude. The pHi-sensitivity of the current was consistent with a single, titratable site for H+ binding with a pKa near 6.3. Acid pHi loads also affected current through the outward-rectifying K+ channels (IK,out) in a manner antiparallel to (IK,in) The effect on IK, out was also scalar, but showed an apparent pKa of 7.4 and was best accommodated by a cooperative binding of two H+. Parallel measurements showed that Na+-butyrate loads were generally without significant effect on [Ca2+]i, except when pHi was reduced to 7.0 and below. Extreme acid loads evoked reversible increases in [Ca2+]i in roughly half the cells measured, although the effect was generally delayed with respect to the time course of pHi changes and K+-channel responses. The action on [Ca2+]i coincided with a greater variability in (IK,in) stimulation evident at pHi values around 7.0 and below, and with negative displacements in the voltage-dependence of (IK,in) gating. These results distinguish the actions of pHi and [Ca2+]i in modulating (IK,in) they delimit the effect of pHi to changes in current amplitude without influence on the voltage-dependence of channel gating; and they support a role for pHi as a second messenger capable of acting in parallel with, but independent of [Ca2+]i in controlling the K+ channels.Abbreviations BCECF 2,7-bis (2-carboxyethyl)-5(6)-carboxy fluorescein - [Ca2+]i cytosolic free Ca2+ concentration - gK ensemble (steady-state) K+-channel conductance - IK,out, IK,in outward-, inward-rectifying K+ channel (current) - IN current-voltage (relation) - Mes 2-(N-morpholinolethanesulfonic acid - pHi cytosolic pH - V membrane potential  相似文献   

16.
To investigate Ca2+ uptake by Ca2+-depleted bovine chromaffin cells we depleted these cells of Ca2+ by incubating them in Ca2+-free buffer, then measured changes in cytoplasmic Ca2+ concentration ([Ca2+ 1)45Ca2+ uptake, and Mn2+ uptake in response to added Ca2+ or MN2+. In depleted cells, the increase in [Ca2+]i after Ca2+ addition, and the Mn2+ and45Ca2+ uptakes were higher than in control cells, and were inhibited by verapamil. The size of the intracellular Ca2+ pools in depleted cells increased after Ca2+ addition. The times for [Ca2+]i rise and Mn2+ entry to reach plateau levels were much shorter than the time for refilling of intracellular Ca2+ stores. In Ca2+-depleted cells and cells which had been loaded with BAPTA,45Ca2+ uptake was much higher than in control cells. These results suggest that extracellular Ca2+ enters the cytoplasm first before refilling the intracellular stores. The rate of Mn2+ influx depended on the level of filling of the Ca2+ stores, suggesting that some signalling takes place between the intracellular stores and Ca2+ entry pathways through the plasma membrane.Abbreviations used BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid - BAPTA/AM acetoxymethyl ester of BAPTA - [Ca2+]i cytosolic Ca2+ concentration - IP3 inositol 1,4,5-trisphosphate - tBHQ 2,5-di-(t-butyl)-1,4-benzohydroquinone This work was included in a thesis submitted by A.-L. Sui to the Department of Biochemistry, National Yang-Ming Medical College, in partial fulfillment of the requirements for the degree of Doctor of Philosophy  相似文献   

17.
TMEM16F, a dual-function phospholipid scramblase and ion channel, is important in blood coagulation, skeleton development, HIV infection, and cell fusion. Despite advances in understanding its structure and activation mechanism, how TMEM16F is regulated by intracellular factors remains largely elusive. Here we report that TMEM16F lipid scrambling and ion channel activities are strongly influenced by intracellular pH (pHi). We found that low pHi attenuates, whereas high pHi potentiates, TMEM16F channel and scramblase activation under physiological concentrations of intracellular Ca2+ ([Ca2+]i). We further demonstrate that TMEM16F pHi sensitivity depends on [Ca2+]i and exhibits a bell-shaped relationship with [Ca2+]i: TMEM16F channel activation becomes increasingly pHi sensitive from resting [Ca2+]i to micromolar [Ca2+]i, but when [Ca2+]i increases beyond 15 µM, pHi sensitivity gradually diminishes. The mutation of a Ca2+-binding residue that markedly reduces TMEM16F Ca2+ sensitivity (E667Q) maintains the bell-shaped relationship between pHi sensitivity and Ca2+ but causes a dramatic shift of the peak [Ca2+]i from 15 µM to 3 mM. Our biophysical characterizations thus pinpoint that the pHi regulatory effects on TMEM16F stem from the competition between Ca2+ and protons for the primary Ca2+-binding residues in the pore. Within the physiological [Ca2+]i range, the protonation state of the primary Ca2+-binding sites influences Ca2+ binding and regulates TMEM16F activation. Our findings thus uncover a regulatory mechanism of TMEM16F by pHi and shine light on our understanding of the pathophysiological roles of TMEM16F in diseases with dysregulated pHi, including cancer.  相似文献   

18.
Reetz  G.  Wiesinger  H.  Reiser  G. 《Neurochemical research》1997,22(5):621-628
Oscillations of cytosolic Ca2+ activity ([Ca2+]i) induced by stimulation with ATP in rat astrocytes in primary cultures were analysed. Astrocytes, prepared from the brains of newborn rats, loaded with the fluorescent Ca2+ indicator fura-2/AM, were continuously stimulated with ATP (10 M). ATP caused a large initial [Ca2+ peak, followed by regular [Ca2+]i oscillations (frequencies 1–5/min). Astrocytes were identified by glial fibrillary acidic protein staining of cells after [Ca2+]i recording. The oscillations were reversibly blocked by the P2 purinoceptor antagonist suramin (30 M). Influx of extracellular Ca2+ and mobilization of Ca2+ from intracellular stores both contributed to the oscillations. The effects of hypertonic and hypotonic superfusion medium on ATP-induced [Ca2+]i oscillations were examined. Hypertonic medium (430 mOsm) reversibly suppressed the ATP-induced oscillations. Hypotonic medium (250 mOsm), in spite of having heterogeneous effects, most frequently induced a rise in [Ca2+]i, or reversibly increased the frequency of the oscillations. Thus, a change in cell volume might be closely connected with [Ca2+]i oscillations in astrocytes indicating that [Ca2+]i oscillations in glial cells play an important role in regulatory volume regulation in the brain.  相似文献   

19.
The removal of extracellular HCO3 together with a decrease in pCO2, in order to maintain a normal extracellular pH, caused a sustained increase of intracellular pH in rat pancreatic islets. This increase was more marked in glucose-deprived than in glucose-stimulated islets, and was associated with a facilitation of 45Ca efflux from the glucose-deprived islets. Such a facilitation was slightly reduced in the absence of extracellular Ca2+ and abolished at low extracellular Na+ concentration. It failed to occur in glucose-stimulated islets, whether in the presence or absence of extracellular Ca2+. The removal of HCO3 and decrease in the pCO2 also reduced the magnitude of both the secondary rise in 45Ca efflux and stimulation of insulin release normally evoked by an increase in glucose concentration. These findings suggest that changes in intracellular pH affect both the outflow of Ca2+ from islet cells as mediated by Na+-Ca2+ countertransport and the inflow of Ca2+ by gated Ca2+ channels. The experimental data are also compatible with the view that islet cells are equipped with an active process of bicarbonate-chloride exchange involved in the regulation of intracellular pH.  相似文献   

20.
Summary Intracellular pH (pH i ) and intracellular Ca2+ ([Ca2+] i ) were determined inChironomus salivary gland cells under various conditions of induced uncoupling. pH i was measured with aThomas-type microelectrode, changes in [Ca2+] i and their spatial distribution inside the cell were determined with the aid of intracellularly injected aequorin and an image intensifier-TV system, and cell-to-cell coupling was measured electrically. Treatments with NaCN (5mm), DNP (1.2mm), or ionophore A23187 (2m) caused fall in junctional conductance (uncoupling) that was correlated with [Ca2+] i elevation, as was shown before (Rose & Loewenstein, 1976,J. Membrane Biol. 28:87) but not with changes in pH i : during the uncoupling induced by CN, the pH i (normally 7.5) decreased at most by 0.2 units; during the uncoupling induced by the ionophore, pH i fell by 0.13 or rose by 0.3; and in any one of these three agents' uncouplings, the onset of uncoupling and recovery of coupling were out of phase with the changes in pH i . Intracellular injection of Ca-citrate or Ca-EGTA solutions buffered to pH 7.2 or 7.5 produced uncoupling with little or no pH i change when their free [Ca2+] i was >10–5 m. On the other hand, such a solution at pH 4, buffered to [Ca2+]<10–6 m, lowered pH i to 6.8 but produced no uncoupling. Thus, a decrease in pH i is not necessary for uncoupling in any of these conditions. In fact, uncoupling ensued also during increase in pH i : exposure to NH4HCO3 or withdrawal of propionate following exposure to a propionate-containing medium caused pH i to rise to 8.74, accompanied by [Ca2+] i elevation and uncoupling at pH i >7.8.Cell acidification itself can cause elevation of [Ca2+] i : injection (iontophoresis) of H+ invariably caused [Ca2+] i elevation and uncoupling. These effects were produced also by an application of H+-transporting ionophore Nigericin at extracellular pH 6.5 which caused pH i to fall to 6.8. Exposure to 100% CO2 produced a fall in pH i , associated in 10 out of 25 cases with [Ca2+] i elevation and, invariably, with uncoupling. The absence of a demonstrable [Ca2+] i elevation in a proportion of these trials is attributable to depression in Ca2+-measuring sensitivity; inin vivo tests, detection sensitivity for [Ca2+] i by aequorin was found to be depressed by the CO2 treatment. Upon CO2 washout, pH i and coupling recovered, but onset of recoupling set in at pH i as low as 6.32–6.88, generally lower than at the pH i at which uncoupling had set in. Exposure to 5% CO2 lowered pH i on the average by 0.3 and depressed coupling (in initially poorly coupled cells). After CO2-washout, pH i and coupling recovered. During the recovery phase [Ca2+] i was elevated, an elevation associated with renewed uncoupling or decrease in rate of recoupling. The results are discussed in connection with possible regulatory mechanisms of junctional permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号