首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
We studied the effect of the acute administration of gliclazide at 160 mg on insulin release during hyperglycaemic clamps in 12 type 2 diabetes patients, age 50 +/- 9.0 years, diabetes duration 5.5 +/- 4.8 years, fasting blood glucose 9.6 +/- 2.1 mmol/L (means +/- SD). After a 210 min of hyperinsulinaemic euglycaemic clamp (blood glucose 4.6 +/- 0.14mmol/L), gliclazide or placebo (randomised, double-blind, cross-over) was administered; 60 minutes later, a hyperglycaemic clamp (4hr) at 8mmol/L was started. Plasma C-peptide levels increased significantly after the administration of gliclazide (increment 0.17 +/- 0.15 vs. 0.04 +/- 0.07 nmol/L, p = 0.024) before the clamp. After the start of the hyperglycaemic clamp, the areas under the curve (AUC) for insulin and C-peptide did not differ from 0-10 min (first phase) with gliclazide. However, second-phase insulin release (30-240 min) was markedly enhanced by gliclazide. AUC plasma insulin (30 to 240 min) was statistically significantly higher after gliclazide (12.3 +/- 13.9 vs. -0.56 +/- 9.4 nmol/L x 210 min, p = 0.022); similarly, AUC plasma C-peptide (30 to 240 min) was also higher: 128 +/- 62 vs. 63 +/- 50 nmol/L x 210 min, p = 0.002). In conclusion, in long-standing type 2 diabetes the acute administration of gliclazide significantly enhances second phase insulin release at a moderately elevated blood glucose level. In contrast to previous findings in mildly diabetic subjects, these 12 type 2 diabetes patients who had an inconsiderable first phase insulin release on the placebo day, only showed an insignificant increase in first phase with gliclazide.  相似文献   

2.
Plasma glucose, insulin, and C-peptide concentrations were determined in response to graded infusions of glucose, and insulin secretion rates were calculated over each sampling period. Measurements were also made of insulin clearance, resistance to insulin-mediated glucose, uptake, and the plasma glucose, insulin, and C-peptide concentrations at hourly intervals from 8:00 AM to 4:00 PM in response to breakfast and lunch. Plasma glucose, insulin, and C-peptide concentrations were significantly (P < 0.01) higher in obese women in response to the graded intravenous glucose infusion, associated with a 40% (P < 0.005) greater insulin secretory response. Degree of insulin resistance correlated positively (P < 0.05) with the increase in insulin secretion rate in both nonobese (r = 0.52) and obese (r = 0.58) groups and inversely (P < 0.05) with the decrease in insulin clearance in obese (r = -0.46) and nonobese (r = -0.39) individuals. Weight loss was associated with significantly lower plasma glucose, insulin, and C-peptide concentrations in response to graded glucose infusions and in day-long insulin concentrations. Neither insulin resistance nor the insulin secretory response changed after weight loss, whereas there was a significant increase in the rate of insulin clearance during the glucose infusion. It is concluded that 1) obesity is associated with a shift to the left in the glucose-stimulated insulin secretory dose-response curve as well as a decrease in insulin clearance and 2) changes in insulin secretion and insulin clearance in obese women are more a function of insulin resistance than obesity.  相似文献   

3.
Preliminary data from our laboratory have shown that the decrease in plasma free carnitine levels normally found during prolonged exercise is blunted in type 1 diabetic man. This study was designed to test the hypothesis that this might be due to the sustained peripheral hyperinsulinemia seen during exercise in diabetics treated by subcutaneous insulin. Ten male subjects underwent 90 min of cycle ergometry at 60% of their maximal oxygen uptake capacity on two occasions, one with and the other without a constant 0.13 mU.kg-1.min-1 i.v. insulin infusion. Blood samples were taken at rest, during exercise, and after exercise for measurement of plasma glucose, insulin, C-peptide, free fatty acids, and carnitine. Plasma glucose dropped significantly (p less than 0.01) from basal during both infusions, but values at 30, 45, and 60 min of exercise were lower (p less than 0.05) during insulin infusion compared with the saline infusion. Exercise produced a significant (p less than 0.01) fall in plasma insulin in both infusions. However, from 30 to 90 min of exercise, the plateau insulin level was higher during the insulin infusion compared with the saline infusion (91.4 +/- 3.0 vs. 32.9 +/- 3.0 pmol/L; p less than 0.001). Plasma C-peptide decreased significantly (p less than 0.01) during exercise and recovery in both infusions, but values between infusions were not significantly different. Plasma free fatty acids increased significantly (p less than 0.01) at 90 min of exercise during the saline infusion, while during the insulin infusion this was noted during recovery only.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Oral application of 50 mg Etomoxir caused a significant rise (33.1%) of insulin-mediated glucose uptake. This was shown in a placebo-controlled, double-blind randomized study in 8 type 2 diabetic patients by using the euglycemic clamp technique. The mean metabolic clearance rate of glucose (MCR) was raised from 4.1 +/- 0.9 mg/(kg.min) to 5.4 +/- 1.2 mg/(kg.min) (x +/- SEM, P = 0.039). Plasma levels of free fatty acids (FFA), glucose counterregulatory hormones, lipids and C-peptide values during the clamps were not different after verum and placebo. We conclude that Etomoxir improves insulin sensitivity in type 2 diabetic patients.  相似文献   

5.
The effects of a single bout of exercise to exhaustion on pancreatic insulin secretion were determined in seven untrained men by use of a 3-h hyperglycemic clamp with plasma glucose maintained at 180 mg/100 ml. Clamps were performed either 12 h after an intermittent treadmill run at approximately 77% maximum O2 consumption or without prior exercise. Arterialized blood samples for glucose, insulin, and C-peptide determination were obtained from a heated hand vein. The peak insulin response during the early phase (0-10 min) of the postexercise clamp was higher (81 +/- 8 vs. 59 +/- 9 microU/ml; P less than 0.05) than in the nonexercise clamp. Incremental areas under the insulin (376 +/- 33 vs. 245 +/- 51 microU.ml-1.min) and C-peptide (17 +/- 2 vs. 12 +/- 1 ng.ml-1.min) curves were also greater (P less than 0.05) during the early phase of the postexercise clamp. No differences were observed in either insulin concentrations or whole body glucose disposal during the late phase (15-180 min). Area under the C-peptide curve was greater during the late phase of the postexercise clamp (650 +/- 53 vs. 536 +/- 76 ng.ml-1.min, P less than 0.05). The exercise bout induced muscle soreness and caused an elevation in plasma creatine kinase activity (142 +/- 32 vs. 305 +/- 31 IU/l; P less than 0.05) before the postexercise clamp. We conclude that in untrained men a bout of running to exhaustion increased pancreatic beta-cell insulin secretion during the early phase of the hyperglycemic clamp. Increased insulin secretion during the late phase of the clamp appeared to be compensated by increased insulin clearance.  相似文献   

6.
Orexin A (OXA) is found in the central nervous system (CNS) and in the gut. Peripheral administration of OXA to rats results in an inhibition of fasting motility. Plasma OXA increases during fasting and central administration of OXA increases food intake. The aim of the present study was to assess the pharmacokinetic profile of OXA and the effect of intravenously (i.v.) administered OXA on plasma concentrations of insulin and glucagon concentrations. Rats were given OXA i.v. (100 pmol kg(-1) min(-1)) for time periods of 0, 10, 20, 30 min and for 10, 20, 30 min after ceasing a 30-min infusion. After each time period, rats were then sacrificed and blood obtained. OXA was also administered at increasing doses (0, 100, 300 and 500 pmol kg(-1) min(-1)) for 30 min and blood was obtained. Plasma OXA, insulin and glucagon levels were measured using commercially available radioimmunoassay (RIA) kits. The plasma half-life of OXA was 27.1+/-9.5 min. Stepwise increasing infusion rates of OXA confirmed a linear concentration-time curve and thus first-order kinetics. Its volume of distribution indicated no binding to peripheral tissues. Plasma glucagon decreased during infusion of OXA, while insulin was unaffected. Plasma OXA was raised fourfold after food intake. Thus, OXA has a longer plasma half-life than many other peptides found in the gut. This needs to be taken into account when assessing effects of OXA on biological parameters after peripheral administration.  相似文献   

7.
We have reported a paradoxical plasma atrial natriuretic factor (ANF) decline following prolonged high salt intake that was attributed to an increased tissue uptake of circulating ANF, leading to its augmented distribution volume (Vas) and metabolic clearance rate (MCR) as compared with control rats on a standard diet. To explore this phenomenon further, we evaluated possible chronic salt-loading-induced changes in ANF clearance (C-ANF) receptors, which appear to play a major role in ANF removal from the circulation. We studied changes in plasma [125I]ANF(1-28) and its pharmacokinetics after preoccupation of C-ANF receptors by its specific ligand, C-ANF(4-23), in high-salt-treated rats and their controls. Following C-ANF(4-23) administration, we detected significantly higher circulating [125I]ANF levels throughout the study period (8 min) in high-salt-fed rats compared with the controls (280-470% vs 100-215% increase of basal values, P less than 0.05). C-ANF(4-23) infusion caused a significantly greater decrease of the metabolic clearance rate and distribution volume of [125I]ANF in high-salt-fed rats than in control animals (74 +/- 6% vs 41 +/- 6% and 75 +/- 4% vs 50 +/- 5% of basal values, respectively; P less than 0.05). These data suggest that a prolonged high salt diet may increase the availability of C-ANF receptors and, through this mechanism, may negatively modulate plasma ANF concentrations. C-ANF receptors may thus fulfill a regulatory function on circulating ANF during prolonged salt loading in rats.  相似文献   

8.
In healthy subjects, basal endogenous glucose production is partly regulated by paracrine intrahepatic factors. It is currently unknown whether paracrine intrahepatic factors also influence the increased basal endogenous glucose production in patients with type 2 diabetes mellitus. Administration of indomethacin to patients with type 2 diabetes mellitus stimulates endogenous glucose production and inhibits insulin secretion. Our aim was to evaluate whether this stimulatory effect on glucose production is solely attributable to inhibition of insulin secretion. In order to do this, we administered indomethacin to 5 patients with type 2 diabetes during continuous infusion of somatostatin to block endogenous insulin and glucagon secretion and infusion of basal concentrations of insulin and glucagon in a placebo-controlled study. Endogenous glucose production was measured 3 hours after the start of the somatostatin, insulin and glucagon infusion, for 4 hours after administration of placebo/indomethacin, by primed, continuous infusion of [6,6-(2)H(2)] glucose. At the time of administration of placebo or indomethacin, there were no significant differences in plasma glucose concentrations and endogenous glucose production rates between the two experiments (16.4 +/- 2.09 mmol/l vs. 16.6 +/- 1.34 mmol/l and 17.7 +/- 1.05 micromol/kg/min and 17.0 +/- 1.06 micromol/kg/min), control vs. indomethacin). Plasma glucose concentration did not change significantly in the four hours after indomethacin or placebo administration. Endogenous glucose production in both experiments was similar after both placebo and indomethacin. Mean plasma C-peptide concentrations were all below the detection limit of the assay, reflecting adequate suppression of endogenous insulin secretion by somatostatin. There were no differences in plasma concentrations of insulin (76 +/- 5 vs. 74 +/- 4 pmol/l) and glucagon (69 +/- 8 vs. 71 +/- 6 ng/l) between the studies with levels remaining unchanged in both experiments. Plasma concentrations of cortisol, epinephrine, and norepinephrine were similar in the two studies and did not change significantly. We conclude that indomethacin stimulates endogenous glucose production in patients with type 2 diabetes mellitus by inhibition of insulin secretion.  相似文献   

9.
Impaired insulin action in primary hyperaldosteronism   总被引:2,自引:0,他引:2  
The presence of insulin resistance is frequently found in essential hypertension. There are, however, only sparse data with respect to the potential presence of insulin resistance in patients with secondary hypertension. We have therefore undertaken a study to reveal the potential occurrence of insulin resistance in primary hyperaldosteronism (PH). The hyperinsulinemic euglycemic clamp technique together with the evaluation of insulin receptor characteristics were used to study insulin resistance in 12 patients with PH. The measured parameters were compared to normal values in control subjects. We have found a significantly lower glucose disposal rate (M, micromol/kg/min) (18.7+/-6 vs. 29.3+/-4), decreased tissue insulin sensitivity index (M/I, micromol/kg/min per mU/l x100) (23.7+/-9.8 vs. 37.5+/-11.6) and also lower metabolic clearance rate of glucose (MCRg, ml/kg/min) (3.8+/-1.5 vs. 7.0+/-1.1) in patients with primary hyperaldosteronism. The insulin receptor characteristics on erythrocytes did not differ in primary hyperaldosteronism as compared to control healthy subjects. We thus conclude that insulin resistance is also present in secondary forms of hypertension (primary hyperaldosteronism) which indicates the heterogeneity of impaired insulin action in patients with arterial hypertension.  相似文献   

10.
Since the C-peptide/insulin ratio is reduced after oral glucose ingestion, the incretin hormone gastric inhibitory polypeptide (GIP) has been assumed to decrease hepatic insulin extraction. It was the aim of the present study to evaluate the effects of GIP on insulin extraction. Seventy-eight healthy subjects (27 male, 51 female, 43+/-11 years) were subjected to (a). an oral glucose tolerance test and (b). an intravenous injection of 20 pmol GIP/kg body weight, with capillary and venous blood samples collected over 30 min for insulin, C-peptide and GIP (specific immunoassays). Following GIP administration, plasma concentrations of total and intact GIP reached to peak levels of 80+/-7 and 54+/-5 pmol/l, respectively (p<0.0001). The rise in insulin after oral glucose and after intravenous GIP administration significantly exceeded the rise in C-peptide (p<0.0001). Estimating insulin extraction from the total integrated insulin and C-peptide concentrations (AUCs), only the oral glucose load (p<0.0001), but not the intravenous GIP administration (p=0.18) significantly reduced insulin clearance. Therefore, insulin clearance is reduced after an oral glucose load. This effect does not appear to be mediated by GIP.  相似文献   

11.
Previous measurement of insulin in human muscle has shown that interstitial muscle insulin and glucose concentrations are approximately 30-50% lower than in plasma during hyperinsulinemia in normal subjects. The aims of this study were to measure interstitial muscle insulin and glucose in patients with type 2 diabetes to evaluate whether transcapillary transport is part of the peripheral insulin resistance. Ten patients with type 2 diabetes and ten healthy controls matched for sex, age, and body mass index were investigated. Plasma and interstitial insulin, glucose, and lactate (measured by intramuscular in situ-calibrated microdialysis) in the medial quadriceps femoris muscle were analyzed during a hyperinsulinemic euglycemic clamp. Blood flow in the contralateral calf was measured by vein plethysmography. At steady-state clamping, at 60-120 min, the interstitial insulin concentration was significantly lower than arterial insulin in both groups (409 +/- 86 vs. 1,071 +/- 99 pmol/l, P < 0.05, in controls and 584 +/- 165 vs. 1, 253 +/- 82 pmol/l, P < 0.05, in diabetic subjects, respectively). Interstitial insulin concentrations did not differ significantly between diabetic subjects and controls. Leg blood flow was significantly higher in controls (8.1 +/- 1.2 vs. 4.4 +/- 0.7 ml. 100 g(-1).min(-1) in diabetics, P < 0.05). Calculated glucose uptake was less in diabetic patients compared with controls (7.0 +/- 1.2 vs. 10.8 +/- 1.2 micromol. 100 g(-1).min(-1), P < 0.05, respectively). Arterial and interstitial lactate concentrations were both higher in the control group (1.7 +/- 0.1 vs. 1.2 +/- 0.1, P < 0. 01, and 1.8 +/- 0.1 vs. 1.2 +/- 0.2 mmol/l, P < 0.05, in controls and diabetics, respectively). We conclude that, during hyperinsulinemia, muscle interstitial insulin and glucose concentrations did not differ between patients with type 2 diabetes and healthy controls despite a significantly lower leg blood flow in diabetic subjects. It is suggested that decreased glucose uptake in type 2 diabetes is caused by insulin resistance at the cellular level rather than by a deficient access of insulin and glucose surrounding the muscle cell.  相似文献   

12.
Insulin increases plasma nonesterified fatty acid (NEFA) clearance in humans, but whether this is independent of change in plasma NEFA appearance is currently unknown. Nine nondiabetic men (age: 28+/-3 yr, body mass index: 27.2+/-1.7 kg/m2) underwent euglycemic clamps to maintain low (LINS) vs. high (HINS) physiological insulin levels for 6 h. An intravenous infusion of heparin+Intralipid (HI) was performed during 4 of the 6 h of the clamps (in the last 4 h at LINS and in the first 4 h at HINS), whereas saline infusion (SAL) was administered in the remaining 2 h to modulate plasma NEFA levels independently of plasma insulin levels. Four experimental conditions were obtained in each individual: LINS with saline (LINS/SAL) and with HI infusion (LINS/HI) and HINS with saline (HINS/SAL) and with HI infusion (HINS/HI). Plasma palmitate appearance during HINS/SAL was lower than during the three other experimental conditions (P<0.05). In contrast, plasma linoleate appearance, as expected, was increased by HI independently of insulin level (P<0.02). Plasma palmitate clearance during HINS/SAL was higher than LINS/SAL and LINS/HI (P<0.008), and this increase was blunted during HINS/HI. We observed a linear decrease in plasma palmitate clearance with increasing plasma NEFA appearance independent of insulin levels. Plasma NEFA levels increased exponentially with increase in plasma NEFA appearance. We conclude that insulin stimulates plasma NEFA clearance by reducing the endogenous appearance rate of NEFA. The relationship between plasma NEFA level and appearance rate is nonlinear.  相似文献   

13.
The effects of an intravenous infusion of porcine GIP on beta-cell secretion in patients with untreated type 2 diabetes mellitus have been studied. The subjects were studied on two separate days. After a 10 h overnight fast and a further 120 min basal period they were given an intravenous infusion of porcine GIP (2 pmol.kg-1.min-1) or control solution in random order from 120-140 min. Frequent plasma glucose, insulin, C-peptide and GIP measurements were made throughout and the study was continued until 200 min. Plasma glucose levels were similar throughout both tests. During the GIP infusion there was an early significant rise in insulin concentration from 0.058 +/- 0.006 nmol/l to 0.106 +/- 0.007 nmol/l (P less than 0.01) within 6 min of commencing the GIP infusion and insulin levels reached a peak of 0.131 +/- 0.011 nmol/l at 10 min (P less than 0.01). Insulin levels remained significantly elevated during the rest of the GIP infusion (P less than 0.01-0.001) and returned to basal values 20 min post infusion. No change in basal insulin values was seen during the control infusion. C-peptide levels were similarly raised during the GIP infusion and the increase was significant just 4 min after commencing the GIP infusion (P less than 0.05). GIP levels increased from 16 +/- 3 pmol/l prior to the infusion to a peak of 286 +/- 24 pmol/l 20 min later. At 4 min when a significant beta-cell response was observed GIP levels were well within the physiological range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Uptake of radioactively labelled insulin by the mammary gland of the rat increased 12-fold in lactation compared with non-lactating controls. This uptake was decreased by the presence of unlabelled insulin, indicating that it occurred via insulin receptors. The plasma half-life of insulin is decreased in lactation from 9.4 min to 4.8 min, and the metabolic clearance rate for insulin increased from 7.26 to 13.03 ml/kg body wt. per min. The basal insulin and glucose concentrations in the plasma were decreased in lactation. Infusion of insulin at a dose which led to a small physiological rise in plasma insulin concentration increased lipogenic rates in the mammary gland by 100% without causing marked hypoglycaemia. It is concluded that the lactating mammary gland is a highly insulin-sensitive tissue and that the lower plasma insulin during lactation occurs primarily as a result of this sensitivity increasing extraction of glucose by the gland and thus producing a decrease in the plasma glucose concentration. It is suggested that a secondary result of the fall in plasma insulin concentration is the preferential direction of substrates (glucose and non-esterified fatty acids) towards the lactating mammary gland and away from adipose tissue and the liver.  相似文献   

15.
Aim of the present study was to evaluate whether the inhibitory effect of somatostatin on pancreatic B-cell secretion is normal in nondiabetic obese subjects. For this purpose plasma C-peptide concentrations were measured in 10 nondiabetic obese subjects and 10 nonobese healthy controls during a 4-h hyperglycemic (11 mmol/l) glucose clamp. Somatostatin was infused (2.5 nmol/min) during the third hour of the study period in order to inhibit glucose-stimulated B-cell secretion. Fasting C-peptide averaged 0.46 +/- 0.04 nmol/l (mean +/- SEM) in nonobese subjects, and 0.85 +/- 0.08 nmol/l in obese patients (P less than 0.001). In the period 0-120 min the area under the plasma C-peptide curve was significantly higher in obese than in nonobese subjects (292 +/- 23 vs. 230 +/- 17 nmol/l x 120 min, P less than 0.05), however, in the last 20 min of the glucose infusion period without somatostatin (100-120 min) plasma C-peptide was not significantly different in the two groups (2.94 +/- 0.32 nmol/l in nonobese subjects and 3.21 +/- 0.19 nmol/l in obese patients, p = NS). During somatostatin infusion while maintaining hyperglycemia, plasma C-peptide decreased in both groups, and in the period 160-180 min it averaged 0.89 +/- 0.12 nmol/l in control subjects and 0.93 +/- 0.08 nmol/l in obese patients (P = NS), with a percent reduction similar in the two groups (70 +/- 2% in controls and 71 +/- 2% in obese patients). After discontinuing somatostatin infusion, plasma C-peptide increased to concentrations which were higher in obese than in nonobese subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Exogenous glucagon-like peptide 1(GLP-1) bioactivity is preserved in type 2 diabetic patients, resulting the peptide administration in a near-normalization of plasma glucose mainly through its insulinotropic effect. GLP-1 also reduces meal-related insulin requirement in type 1 diabetic patients, suggesting an impairment of the entero-insular axis in both diabetic conditions. To investigate this metabolic dysfunction, we evaluated endogenous GLP-1 concentrations, both at fasting and in response to nutrient ingestion, in 16 type 1 diabetic patients (age = 40.5 +/- 14yr, HbA1C = 7.8 +/- 1.5%), 14 type 2 diabetics (age = 56.5 +/- 13yr, HbA1C = 8.1 +/- 1.8%), and 10 matched controls. In postabsorptive state, a mixed breakfast (230 KCal) was administered to all subjects and blood samples were collected for plasma glucose, insulin, C-peptide and GLP-1 determination during the following 3 hours. In normal subjects, the test meal induced a significant increase of GLP-1 (30', 60': p < 0.01), returning the peptide values towards basal concentrations. In type 2 diabetic patients, fasting plasma GLP-1 was similar to controls (102.1 +/- 1.9 vs. 97.3 +/- 4.01 pg/ml), but nutrient ingestion failed to increase plasma peptide levels, which even decreased during the test (p < 0.01). Similarly, no increase in postprandial GLP-1 occurred in type 1 diabetics, in spite of maintained basal peptide secretion (106.5 +/- 1.5 pg/ml). With respect to controls, the test meal induced in both diabetic groups a significant increase in plasma glucagon levels at 60' (p < 0.01). In conclusion, either in condition of insulin resistance or insulin deficiency chronic hyperglycemia, which is a common feature of both metabolic disorders, could induce a progressive desensitization of intestinal L-cells with consequent peptide failure response to specific stimulation.  相似文献   

17.
Eleven Type 2 (non-insulin-dependent) diabetic patients, islet cell autoantibodies negative, nonobese with secondary failure to oral hypoglycemic agents (OHA) [glyburide (7.5 mg/day) and phenformin (75 mg/day)] and HbA1c 10.2 +/- 0.6% were studied. Insulin receptors on circulating monocytes, glucose utilization at supraphysiological insulin concentrations, and plasma C-peptide after i.v. glucagon were evaluated before and after 2 months of combined therapy with OHA and insulin (Ultratard HM Novo). A significant improvement was demonstrated in HbA1c and glycemia after two months of treatment. Glucose MCR was increased after two months of treatment whilst basal C-peptide was decreased as well as receptor binding to monocytes. After three years of combined therapy, body weight, glycemia and HbA1c did not increase. After three years the C-peptide basal values were significantly increased with respect to values found after 2 months of therapy. These results demonstrate that insulin treatment may restore insulin sensitivity in NIDDM patients resistant to OHA treatment and that after three years there is no exhaustion of B-cell function.  相似文献   

18.
Insulin resistance is a key pathogenic factor of type 2 diabetes (T2DM); in contrast, in type 1 diabetes (T1DM) it is considered a secondary alteration. Increased intramyocellular lipid (IMCL) content accumulation and reduced plasma adiponectin were suggested to be pathogenic events of insulin resistance in T2DM. This study was designed to assess whether IMCL content and plasma adiponectin were also associated with the severity of insulin resistance in T1DM. We studied 18 patients with T1DM, 7 older and overweight/obese patients with T2DM, and 15 nondiabetic, insulin-resistant offspring of T2DM parents (OFF) and 15 healthy individuals (NOR) as appropriate control groups matched for anthropometric features with T1DM patients by means of the euglycemic hyperinsulinemic clamp combined with the infusion of [6,6-2H2]glucose and 1H magnetic resonance spectroscopy of the calf muscles. T1DM and T2DM patients showed reduced insulin-stimulated glucose metabolic clearance rate (MCR: 5.1 +/- 0.6 and 3.2 +/- 0.8 ml x kg(-1) min(-1)) similar to OFF (5.3 +/- 0.4 ml x kg(-1) x min(-1)) compared with NOR (8.5 +/- 0.5 ml x kg(-1) min(-1), P < 0.001). Soleus IMCL content was increased in T1DM (112 +/- 15 AU), T2DM (108 +/- 10 AU) and OFF (82 +/- 13 AU) compared with NOR (52 +/- 7 AU, P < 0.05) and the result was inversely proportional to the MCR (R2 = 0.27, P < 0.001); an association between IMCL content and Hb A1c was found only in T1DM (R2 = 0.57, P < 0.001). Fasting plasma adiponectin was reduced in T2DM (7 +/- 1 microg/ml, P = 0.01) and OFF (11 +/- 1 microg/ml, P = 0.03) but not in T1DM (25 +/- 6 microg/ml), whose plasma level was increased with respect to both OFF (P = 0.03) and NOR (16 +/- 2 microg/ml, P = 0.05). In conclusion, in T1DM, T2DM, and OFF, IMCL content was associated with insulin resistance, demonstrating that IMCL accretion is a marker of insulin resistance common to both primary genetically determined and secondary metabolic (chronic hyperglycemia) alterations. The increased adiponectin levels in insulin-resistant patients with T1DM, in contrast to the reduced levels found in patients with T2DM and in OFF, demonstrated that the relationship of adiponectin to insulin resistance in humans is still unclear.  相似文献   

19.
BACKGROUND: The tumor necrosis factor alpha (TNF-alpha) might play a central role in insulin resistance, a frequent correlate of obesity likely contributing to some obesity-associated complications. Adult growth hormone (GH) deficiency syndrome (GHDA) shares with obesity excessive fat mass, hyperlipidemia, increased cardiovascular risk, and insulin resistance. On the other hand, GH has been shown to induce transient deterioration of glucose metabolism and insulin resistance when administered in normal humans and in GHDA patients. No information is presently available on the relationship between serum TNF-alpha levels and insulin sensitivity in GHDA. METHODS: We compared the serum TNF-alpha levels found in 10 GHDA patients before and after a 6-month recombinant human GH therapy (Genotropin), in an insulin resistance prone population of 16 obese (OB) patients and in 38 normal-weight healthy blood donors (controls). The insulin sensitivity was assessed by a euglycemic-hyperinsulinemic glucose clamp in all the GHDA patients and in 10 OB and in 6 control subjects. RESULTS: The serum TNF-alpha levels were not significantly different in OB patients (42.2 +/- 12.81 pg/ml), in GHDA patients at baseline (71.3 +/- 23.97 pg/ml), and in controls (55.3 +/- 14.28 pg/ml). A slight decrease of TNF-alpha values was noted in GHDA patients after 6 months of recombinant human GH treatment (44.5 +/- 20.19 pg/ml; NS vs. baseline). The insulin sensitivity (M) was significantly reduced in OB patients (2.4 +/- 0.30 mg/kg/min) as compared with control subjects (7.5 +/- 0.39 mg/kg/min) and in GHDA patients both at baseline (6.6 +/- 0.6 mg/kg/min) and after recombinant human GH therapy (5.6 +/- 0.7 mg/kg/min). The insulin sensitivity in the GHDA patients, similar to that of controls at baseline, worsened after recombinant human GH treatment (p < 0.05 vs. baseline; p = 0.05 vs. controls). Linear regression analysis showed no correlation between TNF-alpha and M values (see text) in all patient groups. CONCLUSIONS: These data indicate that circulating concentrations of TNF-alpha do not reflect the degree of insulin resistance in obesity and GHDA. They, however, do not exclude that TNF-alpha may induce insulin resistance at tissue level.  相似文献   

20.
BACKGROUND/AIMS: The term memory effect refers to the phenomenon that B cell stimuli retain some of their insulinotropic effects after they have been removed. Memory effects exist for glucose and sulfonylureas. It is not known whether there is a B-cell memory for incretin hormones such as GLP-1. SUBJECTS/METHODS: Eight healthy young volunteers were studied on four occasions in the fasting state. In one experiment, placebo was administered (a). in three more experiments (random order), synthetic GLP-1 (7 - 36 amide) at 1.2 pmol/kg/min was administered over a period of three hours. At 0 min, a bolus of glucose was injected intravenously (0.33 g/kg body weight). GLP-1 was infused from (b). - 60 to 120 min, (c). - 210 to - 30 min, or (d). - 300 to - 120 min. Glucose (glucose oxidase), insulin, C-peptide, GLP-1, and glucagon (immunoassays) were determined. Statistical analysis was carried out by ANOVA and appropriate post hoc tests. RESULTS: GLP-1 plasma levels during the infusion periods were elevated to 89 +/- 9, 85 +/- 13, and 89 +/- 6 pmol/l (p < 0.0001 vs. placebo, 10 +/- 1 pmol/l). Glucose was eliminated faster (p < 0.0001), with an enhanced negative rebound (p = 0.014), and insulin and C-peptide increments were greater after intravenous glucose administration (p < 0.0001) if GLP-1 was administered during the injection of the glucose bolus, but not if GLP-1 had been administered until 120 or 30 min before the glucose load. There was a trend towards higher insulin concentrations (p = 0.056) five minutes after glucose with GLP-1 administered until - 30 min before the glucose load. Glucagon was suppressed by exogenous glucose, but increased significantly (p = 0.013) during the induction of reactive hypoglycemia after glucose injection during GLP-1 administration. CONCLUSION: 1). No memory effect appears to exist for insulinotropic actions of GLP-1, in line with clinical data. 2). Reactive hypoglycemia causes a prompt rise in glucagon despite pharmacological circulating concentrations of GLP-1. 3). Similar studies should be performed in Type 2-diabetic patients, because exposure to GLP-1 might recruit dormant pancreatic B cells to become glucose-competent, and this might contribute to the overall antidiabetogenic effect of GLP-1 in such patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号