首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Calpains constitute a superfamily of Ca2+-dependent cysteine proteases, indispensable for various cellular processes. Among the 15 mammalian calpains, calpain 8/nCL-2 and calpain 9/nCL-4 are predominantly expressed in the gastrointestinal tract and are restricted to the gastric surface mucus (pit) cells in the stomach. Possible functions reported for calpain 8 are in vesicle trafficking between ER and Golgi, and calpain 9 are implicated in suppressing tumorigenesis. These highlight that calpains 8 and 9 are regulated differently from each other and from conventional calpains and, thus, have potentially important, specific functions in the gastrointestinal tract. However, there is no direct evidence implicating calpain 8 or 9 in human disease, and their properties and physiological functions are currently unknown. To address their physiological roles, we analyzed mice with mutations in the genes for these calpains, Capn8 and Capn9. Capn8−/− and Capn9−/− mice were fertile, and their gastric mucosae appeared normal. However, both mice were susceptible to gastric mucosal injury induced by ethanol administration. Moreover, the Capn8−/− stomach showed significant decreases in both calpains 9 and 8, and the same was true for Capn9−/−. Consistent with this finding, in the wild-type stomach, calpains 8 and 9 formed a complex we termed “G-calpain,” in which both were essential for activity. This is the first example of a “hybrid” calpain complex. To address the physiological relevance of the calpain 8 proteolytic activity, we generated calpain 8:C105S “knock-in” (Capn8CS/CS) mice, which expressed a proteolytically inactive, but structurally intact, calpain 8. Although, unlike the Capn8−/− stomach, that of the Capn8CS/CS mice expressed a stable and active calpain 9, the mice were susceptible to ethanol-induced gastric injury. These results provide the first evidence that both of the gastrointestinal-tract-specific calpains are essential for gastric mucosal defense, and they point to G-calpain as a potential target for gastropathies caused by external stresses.  相似文献   

2.
Calpains constitute a family of intracellular Ca(2+)-regulated cysteine proteases that are indispensable in the regulation of a wide variety of cellular functions. The improper activation of calpain causes lethality or various disorders, such as muscular dystrophies and tumor formation. nCL-2/calpain 8 is predominantly expressed in the stomach, where it appears to be involved in membrane trafficking in the gastric surface mucus cells (pit cells). Although the primary structure of nCL-2 is quite similar to that of the ubiquitous m-calpain large subunit, the enzymatic properties of nCL-2 have never been reported. Here, to characterize nCL-2, the recombinant protein was prepared using an Escherichia coli expression system and purified to homogeneity. nCL-2 was stably produced as a soluble and active enzyme without the conventional calpain regulatory subunit (30K). Purified nCL-2 showed Ca(2+)-dependent activity, with half-maximal activity at about 0.3 mM Ca(2+), similar to that of m-calpain, whereas its optimal pH and temperature were comparatively low. Immunoprecipitation analysis revealed that nCL-2 exists in both monomeric and homo-oligomeric forms, but not as a heterodimer with 30K or 30K-2, and that the oligomerization occurs through domains other than the 5EF-hand domain IV, most probably through domain III, suggesting a novel regulatory system for nCL-2.  相似文献   

3.
Calpain is a Ca2+-regulated cytosolic protease. Mammals have 14 calpain genes, half of which are predominantly expressed in specific organ(s); the rest are expressed ubiquitously. A defect in calpains causes lethality/pathogenicity, indicating their physiological indispensability. nCL-2/calpain-8a was identified as a stomach-specific calpain, whose physiological functions are unclear. To elucidate these, we characterized nCL-2 in detail. Unexpectedly, nCL-2 was localized strictly to the surface mucus cells in the gastric epithelium and the mucus-secreting goblet cells in the duodenum. Yeast two-hybrid screening identified several nCL-2-interacting molecules. Of these, the beta-subunit of coatomer complex (beta-COP) occurs in the stomach pit cells and is proteolyzed by nCL-2 in vitro. Furthermore, beta-COP and nCL-2 co-expressed in COS7 cells co-localized in the Golgi, and Ca2+-ionophore stimulation caused the proteolysis of beta-COP near the linker region, resulting in the dissociation of beta-COP from the Golgi. These results strongly suggest novel functions for nCL-2 that involve the membrane trafficking of mucus cells via interactions with coat protein.  相似文献   

4.
T N Dear  A M?ller  T Boehm 《Genomics》1999,59(2):243-247
Calpains are a superfamily of related proteins, some of which have been shown to function as calcium-dependent cysteine proteases. In mammals, eight different calpains have been identified. We report the identification of a new mammalian calpain gene, CAPN11. The predicted protein possesses the features typical of calpains including potential protease and calcium-binding domains. The CAPN11 mRNA exhibits a highly restricted tissue distribution with highest levels present in testis. Radiation hybrid mapping localized the gene to human chromosome 6, within a region mapped to p12. Phylogenetic analysis suggests that, in mammals, the predicted CAPN11 protein is most closely related to CAPN1 and CAPN2. However, of the calpain sequences available, the predicted CAPN11 sequence exhibits greatest homology to the chicken micro/m calpain. Thus CAPN11 may be the human orthologue of micro/m calpain. The discovery of this new calpain emphasizes the complexity of the calpain family, with members being distinguished on the basis of protease activity, calcium dependence, and tissue expression.  相似文献   

5.
Four genes for the calpain family locate on four distinct human chromosomes   总被引:5,自引:0,他引:5  
Calcium dependent proteases (calpains, CAPNs, E.C.3.4.22.17) constitute a family of proteins which share a homologous cysteine-protease domain (large subunits, L1, L2, and L3) and an E-F hand Ca2(+)-binding domain (L1, L2, L3, and small subunit, S). We have mapped the genes for four calpain proteins (L1, L2, L3, and S) on four distinct human chromosomes by a combination of spot-blot hybridization to flow-sorted chromosomes and Southern hybridization of DNAs from a human x mouse hybrid cell panel. The genes for calpain L1 (CAPN1, large subunit of calpain I), L2 (CAPN2, large subunit of calpain II), L3 (CAPN3, a protein related to the large subunits), and S (CAPN4, a small subunit common to calpains I and II) were assigned to human chromosomes 11, 1, 15, and 19, respectively.  相似文献   

6.
Calmodulin is a calcium-binding EF-hand protein that is an activator of many enzymes as well as ion pumps and channels. Due to its multiple targets and its central role in the cell, understanding the evolutionary history of calmodulin genes should provide insights into the origin of genetic complexity in eukaryotes. We have previously isolated and characterized a calmodulin gene from the early-diverging chordate Branchiostoma lanceolatum (CaM1). In this paper, we report the existence of a second calmodulin gene (CaM2) as well as two CaM-like genomic fragments (CaML-2, CaML-3) in B. lanceolatum and a CaM2 and three CaM-like genes (CaML-1, CaML-2, CaML-3) in B. floridae. The CaM-like genes were isolated using low-stringency PCR. Surprisingly, the nucleotide sequences of the B. lanceolatum CaM1 and CaM2 cDNAs differ by 19.3%. Moreover, the CaM2 protein differs at two positions from the amino acid sequence of CaM1; the latter is identical to calmodulins in Drosophila melanogaster, the mollusc Aplysia californica, and the tunicate Halocynthia roretzi. The two B. lanceolatum CaM-like genes are more closely related to the CaM2 than to the CaM1 gene. This relationship is supported by the phylogenetic analyses and the identical exon/intron organization of these three genes, a relationship unique among animal CaM sequences. These data demonstrate the existence of a CaM multigene family in the cephalochordate Branchiostoma, which may have evolved independently from the multigene family in vertebrates. Received: 2 November 1999 / Accepted: 25 April 2000  相似文献   

7.
8.
The physiological functions and substrates of the calcium-dependent protease calpain remain only partly understood. The mu- and m-calpains consist of a mu- or m-80-kDa large subunit (genes Capn1 and Capn2), and a common 28-kDa small subunit (Capn4). To assess the role of calpain in migration, we used fibroblasts obtained from Capn4(-/-) mouse embryos. The cells lacked calpain activity on casein zymography and did not generate the characteristic calpain-generated spectrin breakdown product that is observed in wild-type cells. Capn4(-/-) cells had decreased migration rates and abnormal organization of the actin cytoskeleton with a loss of central stress fibers. Interestingly, these cells extended numerous thin projections and displayed delayed retraction of membrane protrusions and filopodia. The number of focal adhesions was decreased in Capn4(-/-) cells, but the cells had prominent vinculin-containing focal complexes at the cell periphery. The levels of the focal adhesion proteins, alpha-actinin, focal adhesion kinase (FAK), spectrin, talin, and vinculin, were the same in Capn4(+/+) and Capn4(-/-) cells. FAK, alpha-actinin, and vinculin were not cleaved in either cell type plated on fibronectin. However, proteolysis of the focal complex component, talin, was detected in the wild-type cells but not in the Capn4(-/-) cells, suggesting that calpain cleavage of talin is important during cell migration. Moreover, talin cleavage was again observed when calpain activity was partially restored in Capn4(-/-) embryonic fibroblasts by stable transfection with a vector expressing the rat 28-kDa calpain small subunit. The results demonstrate unequivocally that calpain is a critical regulator of cell migration and of the organization of the actin cytoskeleton and focal adhesions.  相似文献   

9.
Calpain-3 (CAPN3), a 94-kDa member of the calpain protease family, is abundant in skeletal muscle. Mutations in the CAPN3 gene cause limb girdle muscular dystrophy type 2A, indicating that CAPN3 plays important roles in muscle physiology. CAPN3 has several unique features. A crystallographic study revealed that its C-terminal penta–EF-hand domains form a homodimer, suggesting that CAPN3 functions as a homodimeric protease. To analyze complex formation of CAPN3 in a more convenient manner, we performed blue native polyacrylamide gel electrophoresis and found that the observed molecular weight of native CAPN3, as well as recombinant CAPN3, was larger than 240 kDa. Further analysis by cross-linking and sequential immunoprecipitation revealed that CAPN3 in fact forms a homotrimer. Trimer formation was abolished by the deletion of the PEF domain, but not the CAPN3-specific insertion sequences NS, IS1, and IS2. The PEF domain alone formed a homodimer, as reported, but addition of the adjacent CBSW domain to its N-terminus reinforced the trimer-forming property. Collectively, these results suggest that CAPN3 forms a homotrimer in which the PEF domain's dimer-forming ability is influenced by other domains.  相似文献   

10.
11.
A 94 kDa large subunit thiol-protease, as identified by anti-calpain antibodies, has been isolated from skeletal muscle junctional sarcoplasmic reticulum (SR). This protease cleaves specifically the skeletal muscle ryanodine receptor (RyR)/Ca2+ release channel at one site resulting in the 375 kDa and 150 kDa fragments. The 94 kDa thiol-protease degrades neither other SR proteins nor the ryanodine receptor of cardiac nor brain membranes. The partially purified 94 kDa protease, like the SR associated protease, had an optimal pH of about 7.0, was absolutely dependent on the presence of thiol reducing reagents, and was completely inhibited by HgCl2, leupeptin and the specific calpain I inhibitor. However, while the SR membrane-associated protease requires Ca2+ at a submicromolar concentration, the isolated thiol-protease has lost the Ca2+ requirement. The 94 kDa thiol-protease had no effect on ryanodine binding but modified the channel activity of RyR reconstituted into planar lipid bilayer: in a time-dependent manner, the channel activity decreases and within several minutes the channel is converted into a subconducting state. The protease-modified channel activity is still Ca2+-dependent and ryanodine sensitive. This 94 kDa thiol-protease cross react with anti-calpain antibodies thus, may represent the novel large subunit of the skeletal muscle specific calpain p94. Received: 10 December 1996/Revised: 11 August 1997  相似文献   

12.
Human apolipoprotein(a), a risk factor for heart disease, has over 80% sequence identity to plasminogen. Plasminogen contains five distinct kringle domains plus a catalytic protease subunit. Human apo(a) consists of multiple copies (the number varies in individuals) of a domain resembling kringle 4, a single copy of a domain resembling kringle 5, and a protease-like domain. The recently cloned hedgehog version of apolipoprotein(a), which contains 31 nearly identical copies of plasminogen kringle 3 and lacks a protease domain, has prompted us to investigate the evolutionary history of the apolipoprotein (a) gene in mammals. Our analysis supports the nonfunctionality of the human apolipoprotein(a) protease domain, and a single (or multiple) duplication of plasminogen gene before mammal radiation, which originated apolipoprotein(a) in mammals. Received: 26 February 1996 / Accepted: 6 August 1996  相似文献   

13.
牦牛CAPN1基因的克隆与序列分析   总被引:1,自引:0,他引:1  
CAPN1是影响肌肉嫩度的数量性状位点 (QTL)的候选基因。根据GenBank发表的普通牛CAPN1基因序列设计特异性引物,以天祝白牦牛cDNA为模板,分段进行PCR扩增,克隆,测序。应用生物软件BioEdit对各测序结果进行序列拼接共获得牦牛CAPN1 cDNA 片段2267bp,其中包含一个2151bp的完整的开放阅读框(ORF),以及3’和5’末端非编码区的部分序列(77bp和166bp) 。分析表明:牦牛CAPN1基因编码区全长2151bp,共编码716个氨基酸。与已报道的牛,猪,人小鼠的序列进行比较,核苷酸同源性分别为99.3%,93.9%,90.0% ,85.5% 。预测氨基酸的同源性分别为99.4%,96.1%,94.6%,89.0%,并且对牦牛CAPN1四个结构域分别进行NCBI BLAST发现四个结构域在以上四个物种中都显示出很好的保守性,最为保守的在结构域Ⅳ(>96%)。牦牛与牛产生的 14个核苷酸突变中,有3个产生了氨基酸突变,均发生在结构域Ⅲ。构建分子系统进化树表明:聚类结果与传统分类学相符。  相似文献   

14.
Calpains, the Ca2+-dependent intracellular proteinases, are involved in the regulation of distinct cellular pathways including signal transduction and processing, cytoskeleton dynamics, and muscle homeostasis. To investigate the evolutionary origin of diverse calpain subfamilies, a phylogenetic study was carried out. The topology of the calpain phylogenetic tree has shown that some of the gene duplications occurred before the divergence of the protostome and deuterostome lineages. Other gene doublings, leading to vertebrate-specific calpain forms, took place during early chordate evolution and coincided with genome duplications as disclosed by the localization of calpain genes to paralogous chromosome regions in the human genome. On the basis of the phylogenetic tree, the time of gene duplications, and the localization of calpain genes, we propose a model of tandem and chromosome duplications for the evolution of vertebrate-specific calpain forms. The data presented here are consistent with scenarios proposed for the evolution of other multigene families. Received: 17 November 1998 / Accepted: 30 April 1999  相似文献   

15.
Cells from metazoan organisms are eliminated in a variety of physiological and pathophysiological processes by apoptosis. In this report, we describe the cloning and characterization of molecules from the marine sponges Geodia cydonium and Suberites domuncula, whose domains show a high similarity to those that are found in molecules of the vertebrate Bcl-2 superfamily and of the death receptors. The Bcl-2 proteins contain up to four Bcl-2 homology regions (BH). Two Bcl-2-related molecules have been identified from sponges that are provided with two of those regions, BH1 and BH2, and are termed Bcl-2 homology proteins (BHP). The G. cydonium molecule, BHP1_GC, has a putative size of 28,164, while the related sequence from S. domuncula, BHP1_SD, has a M r of 24,187. Phylogenetic analyses of the entire two sponge BHPs revealed a high similarity to members of the mammalian Bcl-2 superfamilies and to the Caenorhabditis elegans Ced-9. When the two domains, BH1 and BH2, are analyzed separately, again the highest similarity was found to the members of the Bcl-2 superfamily, but a clearly lower relationship to the C. elegans BH1 and BH2 domains in Ced-9. In unrooted phylogenetic trees the sponge BH1 and BH2 are grouped among the mammalian sequences and are only distantly related to the C. elegans BH domains. The analysis of the gene structure of the G. cydonium BHP showed that the single intron present is located within the BH2 domain at the same position as in C. elegans and rat Bcl-xL. In addition, a sponge molecule comprising two death domains has been characterized from G. cydonium. The two death domains of the potential proapoptotic molecule GC_DD2, M r 24,970, share a high similarity with the Fas-FADD/MORT1 domains. A death domain-containing molecule has not been identified in the C. elegans genome. The phylogenetic analysis revealed that the sponge domain originated from an ankyrin building block from which the mammalian Fas-FADD/MORT1 evolved. It is suggested that the apoptotic pathways that involve members of the Bcl-2 superfamily and of the death receptors are already present in the lowest metazoan phylum, the Porifera. Received: 27 July 1999 / Accepted: 28 December 1999  相似文献   

16.
Recent molecular biological approaches indicate that calpain, also named CANP for calcium-activated neutral protease and originally characterized as an intracellular cytoplasmatic nonlysosomal cysteine protease that requires calcium ions for activity, constitutes a large superfamily consisting of ubiquitous and tissue specific homologues, which are widely distributed in cells of various organisms from human to fungus. Due to the increasing number of substrates along with the involvement of calpain isoenzymes in mammalian diseases, especially in malignancies, members of the calpain superfamily seem to be important biomodulators in physiological as well as pathological cell function. Here we report the characterisation of a new calpain, named CAPN 8 with a different C-terminal domain, implicating a putative new regulatory mechanism. Northern blot analysis revealed an ubiquitous expression with different RNA levels in all tissues examined. Highest levels were found in brain, kidney, and digestive tract, suggesting a specific regulatory function of CAPN 8 in these tissues.  相似文献   

17.
X. Li  P. Xu  C. Zhang  C. Sun  X. Li  X. Han  M. Li  R. Qiao 《Animal genetics》2019,50(2):162-165
Pig umbilical hernia (UH) affects pig welfare and brings considerable economic loss to the pig industry. To date, the molecular mechanisms underlying pig UH are still poorly understood. To identify potential loci for susceptibility to this disease, we performed a genome‐wide association study in an Erhualian × Shaziling F2 intercross population. A total of 45 animals were genotyped using Illumina Porcine SNP60 BeadChips. We observed a SNP (rs80993347) located in the calpain‐9 (CAPN9) gene on Sus scrofa chromosome 14 that was significantly associated with UH (= 1.97 × 10?10). Then, we identified a synonymous mutation rs321865883 (g.20164T>C) in exon 10 of the CAPN9 gene that distinguished two affected individuals (CC) from their normal full‐sibs (TC). Finally, quantitative polymerase chain reaction was explored to investigate the mRNA expression profile of the CAPN9 gene in 12 tissues in Yorkshire pigs at different developmental stages (3, 90 and 180 days). CAPN9 showed high expression levels in the gastrointestinal tract at these three growth stages. The results of this study indicate that the CAPN9 gene might be implicated in UH. Further studies are required to establish a role of CAPN9 in pig UH.  相似文献   

18.
The human protein NEFA binds calcium, contains a leucine zipper repeat that does not form a homodimer, and is proposed (along with the homologous Nuc protein) to have a common evolutionary history with an EF-hand ancestor. We have isolated and characterized the N-terminal domain of NEFA that contains a signal sequence inferred from both endoproteinase Asp-N (Asp-N) and tryptic digests. Analysis of this N-terminal sequence shows significant similarity to the conserved multiple domains of the mitochondrial carrier family (MCF) proteins. The leader sequence of Nuc is, however, most similar to the signal sequences of membrane and/or secreted proteins (e.g., mouse insulin-like growth factor receptor). We suggest that the divergent NEFA and Nuc N-terminal sequences may have independent origins and that the common high hydrophobicity governs their targeting to the ER. These results provide insights into signal sequence evolution and the multiple origins of protein targeting. Received: 20 February 1997 / Accepted: 28 July 1997  相似文献   

19.
The rat strain Otsuka Long-Evans Tokushima Fatty (OLETF) is an animal model for type 2 diabetes mellitus. Nidd8/of has been identified as one of 14 quantitative trait loci (QTLs) involved in the diabetes by a whole genome search in 160 F2 progenies obtained by mating the OLETF and F344 rats. Comparative mapping between human and rat indicated that the Nidd8/of genomic region, near D9rat21 on rat chromosome 9, contains the calpain10 (Capn10) gene, which is putative type 2 diabetes-susceptibility gene in humans. In this study, we found no difference in Capn10 mRNA expression in the heart, liver, skeletal muscle and pancreas between OLETF and F344 rats at 5 and 10 weeks of age. However, we found a single nucleotide polymorphism (SNP) (A/A genotype in OLETF and G/G genotype in F344 and LETO rats) at the base 583 downstream from the translation start site in the rat Capn10 cDNA sequence. This SNP was deduced to substitute serine (OLETF) for glycine (F344 and LETO) at the 195 amino acid residue within the protease domain of rat Capn10. Because serine is generally not interchangeable with glycine in respect of the protein structure and function, it was deduced that the A/A genotype in OLETF is not a 'safe' mutation. This non-conservative amino acid substitution might be associated with susceptibility to type 2 diabetes in OLETF rats.  相似文献   

20.
The evolutionary relationships among arthropod hemocyanins and insect hexamerins were investigated. A multiple sequence alignment of 12 hemocyanin and 31 hexamerin subunits was constructed and used for studying sequence conservation and protein phylogeny. Although hexamerins and hemocyanins belong to a highly divergent protein superfamily and only 18 amino acid positions are identical in all the sequences, the core structures of the three protein domains are well conserved. Under the assumption of maximum parsimony, a phylogenetic tree was obtained that matches perfectly the assumed phylogeny of the insect orders. An interesting common clade of the hymenopteran and coleopteran hexamerins was observed. In most insect orders, several paralogous hexamerin subclasses were identified that diversified after the splitting of the major insect orders. The dipteran arylphorin/LSP-1-like hexamerins were subject to closer examination, demonstrating hexamerin gene amplification and gene loss in the brachyceran Diptera. The hexamerin receptors, which belong to the hexamerin/hemocyanin superfamily, diverged early in insect evolution, before the radiation of the winged insects. After the elimination of some rapidly or slowly evolving sequences, a linearized phylogenetic tree of the hexamerins was constructed under the assumption of a molecular clock. The inferred time scale of hexamerin evolution, which dates back to the Carboniferous, agrees with the available paleontological data and reveals some previously unknown divergence times among and within the insect orders. Received: 4 August 1997 / Accepted: 29 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号