首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Walker-Warburg syndrome (WWS) is an autosomal recessive developmental disorder characterized by congenital muscular dystrophy and complex brain and eye abnormalities. A similar combination of symptoms is presented by two other human diseases, muscle-eye-brain disease (MEB) and Fukuyama congenital muscular dystrophy (FCMD). Although the genes underlying FCMD (Fukutin) and MEB (POMGnT1) have been cloned, loci for WWS have remained elusive. The protein products of POMGnT1 and Fukutin have both been implicated in protein glycosylation. To unravel the genetic basis of WWS, we first performed a genomewide linkage analysis in 10 consanguineous families with WWS. The results indicated the existence of at least three WWS loci. Subsequently, we adopted a candidate-gene approach in combination with homozygosity mapping in 15 consanguineous families with WWS. Candidate genes were selected on the basis of the role of the FCMD and MEB genes. Since POMGnT1 encodes an O-mannoside N-acetylglucosaminyltransferase, we analyzed the possible implication of O-mannosyl glycan synthesis in WWS. Analysis of the locus for O-mannosyltransferase 1 (POMT1) revealed homozygosity in 5 of 15 families. Sequencing of the POMT1 gene revealed mutations in 6 of the 30 unrelated patients with WWS. Of the five mutations identified, two are nonsense mutations, two are frameshift mutations, and one is a missense mutation. Immunohistochemical analysis of muscle from patients with POMT1 mutations corroborated the O-mannosylation defect, as judged by the absence of glycosylation of alpha-dystroglycan. The implication of O-mannosylation in MEB and WWS suggests new lines of study in understanding the molecular basis of neuronal migration.  相似文献   

2.
A defect of protein O-mannosylation causes congenital muscular dystrophy with brain malformation and structural eye abnormalities, so-called Walker-Warburg syndrome. Protein O-mannosylation is catalyzed by protein O-mannosyltransferase 1 (POMT1) and its homologue, POMT2. Coexpression of POMT1 and POMT2 is required to show O-mannosylation activity. Here we have shown that POMT1 forms a complex with POMT2 and the complex possesses protein O-mannosyltransferase activity. Results indicate that POMT1 and POMT2 associate physically and functionally in vivo. Recently, three mutations were reported in the POMT1 gene of patients who showed milder phenotypes than typical Walker-Warburg syndrome. We coexpressed these mutant POMT1s with POMT2 and found that none of them had any activity. However, all POMT1 mutants, including previously identified POMT1 mutants, coprecipitated with POMT2. These results indicate that the mutant POMT1s could form heterocomplexes with POMT2 but that such complexes are insufficient for enzymatic activity.  相似文献   

3.
Walker-Warburg syndrome, caused by mutations in protein O-mannosyltransferase-1 (POMT1), is an autosomal recessive disorder characterized by severe brain malformation, muscular dystrophy, and structural eye abnormalities. As humans have a second POMT, POMT2, we cloned each Drosophila ortholog of the human POMT genes and carried out RNA interference (RNAi) knock-down to investigate the function of these proteins in vivo. Drosophila POMT2 (dPOMT2) RNAi mutant flies showed a "twisted abdomen phenotype," in which the abdomen is twisted 30-60 degrees , similar to the dPOMT1 mutant. Moreover, dPOMT2 interacted genetically with dPOMT1, suggesting that the dPOMTs function in collaboration with each other in vivo. We expressed dPOMTs in Sf21 cells and measured POMT activity. dPOMT2 transferred a mannose to the dystroglycan protein only when it was coexpressed with dPOMT1. Likewise, dPOMT1 showed POMT activity only when coexpressed with dPOMT2, and neither dPOMT showed any activity by itself. Each dPOMT RNAi fly totally reduced POMT activity, despite the specific reduction in the level of each dPOMT mRNA. The expression pattern of dPOMT2 mRNA was found to be similar to that of dPOMT1 mRNA using whole mount in situ hybridization. These results demonstrate that the two dPOMTs function as a protein O-mannosyltransferase in association with each other, in vitro and in vivo, to generate and maintain normal muscle development.  相似文献   

4.
5.
In vertebrates, mutations in Protein O-mannosyltransferase1 (POMT1) or POMT2 are associated with muscular dystrophy due to a requirement for O-linked mannose glycans on the Dystroglycan (Dg) protein. In this study we examine larval body wall muscles of Drosophila mutant for Dg, or RNA interference knockdown for Dg and find defects in muscle attachment, altered muscle contraction, and a change in muscle membrane resistance. To determine if POMTs are required for Dg function in Drosophila, we examine larvae mutant for genes encoding POMT1 or POMT2. Larvae mutant for either POMT, or doubly mutant for both, show muscle attachment and muscle contraction phenotypes identical to those associated with reduced Dg function, consistent with a requirement for O-linked mannose on Drosophila Dg. Together these data establish a central role for Dg in maintaining integrity in Drosophila larval muscles and demonstrate the importance of glycosylation to Dg function in Drosophila. This study opens the possibility of using Drosophila to investigate muscular dystrophy.  相似文献   

6.
7.
8.
Muscle-eye-brain disease (MEB) and Walker Warburg Syndrome (WWS) belong to a spectrum of autosomal recessive diseases characterized by ocular dysgenesis, neuronal migration defects, and congenital muscular dystrophy. Until now, the pathophysiology of MEB/WWS has been attributed to alteration in dystroglycan post-translational modification. Here, we provide evidence that mutations in a gene coding for a major basement membrane protein, collagen IV alpha 1 (COL4A1), are a novel cause of MEB/WWS. Using a combination of histological, molecular, and biochemical approaches, we show that heterozygous Col4a1 mutant mice have ocular dysgenesis, neuronal localization defects, and myopathy characteristic of MEB/WWS. Importantly, we identified putative heterozygous mutations in COL4A1 in two MEB/WWS patients. Both mutations occur within conserved amino acids of the triple-helix-forming domain of the protein, and at least one mutation interferes with secretion of the mutant proteins, resulting instead in intracellular accumulation. Expression and posttranslational modification of dystroglycan is unaltered in Col4a1 mutant mice indicating that COL4A1 mutations represent a distinct pathogenic mechanism underlying MEB/WWS. These findings implicate a novel gene and a novel mechanism in the etiology of MEB/WWS and expand the clinical spectrum of COL4A1-associated disorders.  相似文献   

9.
10.
Zhang P  Hu H 《Glycobiology》2012,22(2):235-247
Genetic defects in like-glycosyltransferase (LARGE) cause congenital muscular dystrophy with central nervous system manifestations. The underlying molecular pathomechanism is the hypoglycosylation of α-dystroglycan (α-DG), which is evidenced by diminished immunoreactivity to IIH6C4 and VIA4-1, antibodies that recognize carbohydrate epitopes. Previous studies indicate that LARGE participates in the formation of a phosphoryl glycan branch on O-linked mannose or it modifies complex N- and mucin O-glycans. In this study, we overexpressed LARGE in neural stem cells deficient in protein O-mannosyltransferase 2 (POMT2), an enzyme required for O-mannosyl glycosylation. The results showed that overexpressing LARGE did not lead to hyperglycosylation of α-DG in POMT2 knockout (KO) cells but did generate IIH6C4 and VIA4-1 immunoreactivity and laminin-binding activity. Additionally, overexpressing LARGE in cells deficient in both POMT2 and α-DG generated laminin-binding IIH6C4 immunoreactivity. These results indicate that LARGE expression resulted in the glycosylation of proteins other than α-DG in the absence of O-mannosyl glycosylation. The IIH6C4 immunoreactivity generated in double-KO cells was largely removed by treatment either with peptide N-glycosidase F or with cold aqueous hydrofluoric acid, suggesting that LARGE expression caused phosphoryl glycosylation of N-glycans. However, the glycosylation of α-DG by LARGE is dependent on POMT2, indicating that LARGE expression only modifies O-linked mannosyl glycans of α-DG. Thus, LARGE expression mediates the phosphoryl glycosylation of not only O-mannosyl glycans including those on α-DG but also N-glycans on proteins other than α-DG.  相似文献   

11.
We isolated murine and human cDNAs for SDF2L1 (stromal cell-derived factor 2-like1) and characterized the genomic structures. Northern blot analysis of the gene expression in various tissues revealed that both murine Sdf2l1 and human SDF2L1 genes are expressed ubiquitously, with particularly high expression in the testis. The SDF2L1 protein has an endoplasmic reticulum (ER)-retention-like motif, HDEL, at the carboxy (C)-terminus. Interestingly, SDF2L1 protein also shows significant similarity to the central hydrophilic part of protein O-mannosyltransferase (Pmt) proteins of Saccharomyces cerevisiae, the human homologues of Pmt (POMT1 and POMT2) and Drosophila melanogaster rotated abdomen (rt) protein. In a murine hepatocellular carcinoma cell line, Sdf2l1 was strongly induced by tunicamycin and a calcium ionophore, A23187, and weakly induced by heat stress but was not induced by cycloheximide. In conclusion, SDF2L1 protein is a new member of Pmt/rt protein family and Sdf2l1 is a new ER stress-inducible gene.  相似文献   

12.
Walker-Warburg syndrome, a progressive muscular dystrophy, is a severe disease with various kinds of symptoms such as muscle weakness and occasional seizures. The genes of protein O-mannosyltransferases 1 and 2 (POMT1 and POMT2), fukutin, and fukutin-related protein are responsible for this syndrome. In our previous study, we cloned Drosophila orthologs of human POMT1 and POMT2 and identified their activity. However, the mechanism of onset of this syndrome is not well understood. Furthermore, little is known about the behavioral properties of the Drosophila POMT1 and POMT2 mutants, which are called rotated abdomen (rt) and twisted (tw), respectively. First, we performed various kinds of behavioral tests and described in detail the muscle structures by using these mutants. The mutant flies exhibited abnormalities in heavy exercises such as climbing or flight but not in light movements such as locomotion. Defective motor function in mutants appeared immediately after eclosion and was exaggerated with aging. Along with motor function, muscle ultrastructure in the tw mutant was altered, as seen in human patients. We demonstrated that expression of RNA interference (RNAi) for the rt gene and the tw mutant was almost completely lethal and semi-lethal, respectively. Flies expressing RNAi had reduced lifespans. These findings clearly demonstrate that Drosophila POMT mutants are models for human muscular dystrophy. We then observed a high density of myoblasts with an enhanced degree of apoptosis in the tw mutant, which completely lost enzymatic activity. In this paper, we propose a novel mechanism for the development of muscular dystrophy: POMT mutation causes high myoblast density and position derangement, which result in apoptosis, muscle disorganization, and muscle cell defects.  相似文献   

13.
Whole-exome sequencing (WES), which analyzes the coding sequence of most annotated genes in the human genome, is an ideal approach to studying fully penetrant autosomal-recessive diseases, and it has been very powerful in identifying disease-causing mutations even when enrollment of affected individuals is limited by reduced survival. In this study, we combined WES with homozygosity analysis of consanguineous pedigrees, which are informative even when a single affected individual is available, to identify genetic mutations responsible for Walker-Warburg syndrome (WWS), a genetically heterogeneous autosomal-recessive disorder that severely affects the development of the brain, eyes, and muscle. Mutations in seven genes are known to cause WWS and explain 50%-60% of cases, but multiple additional genes are expected to be mutated because unexplained cases show suggestive linkage to diverse loci. Using WES in consanguineous WWS-affected families, we found multiple deleterious mutations in GTDC2 (also known as AGO61). GTDC2's predicted role as an uncharacterized glycosyltransferase is consistent with the function of other genes that are known to be mutated in WWS and that are involved in the glycosylation of the transmembrane receptor dystroglycan. Therefore, to explore the role of GTDC2 loss of function during development, we used morpholino-mediated knockdown of its zebrafish ortholog, gtdc2. We found that gtdc2 knockdown in zebrafish replicates all WWS features (hydrocephalus, ocular defects, and muscular dystrophy), strongly suggesting that GTDC2 mutations cause WWS.  相似文献   

14.
Muscle-eye-brain (MEB) disease is a congenital muscular dystrophy (CMD) phenotype characterized by hypotonia at birth, brain structural abnormalities and ocular malformations. To date, few MEB cases have been reported in China where clinical recognition and genetic confirmatory testing on a research basis are recent developments. Here, we report the clinical and molecular genetics of three MEB disease patients. The patients had different degrees of muscle, eye and brain symptoms, ranging from congenital hypotonia, early-onset severe myopia and mental retardation to mild weakness, independent walking and language problems. This confirmed the expanding phenotypic spectrum of MEB disease with varying degrees of hypotonia, myopia and cognitive impairment. Brain magnetic resonance imaging showed cerebellar cysts, hypoplasia and characteristic brainstem flattening and kinking. Four candidate genes (POMGnT1, FKRP, FKTN and POMT2) were screened, and six POMGnT1 mutations (four novel) were identified, including five missense and one splice site mutation. Pathogenicity of the two novel variants in one patient was confirmed by POMGnT1 enzyme activity assay, protein expression and subcellular localization of mutant POMGnT1 in HeLa cells. Transfected cells harboring this patient’s L440R mutant POMGnT1 showed POMGnT1 mislocalization to both the Golgi apparatus and endoplasmic reticulum. We have provided clinical, histological, enzymatic and genetic evidence of POMGnT1 involvement in three unrelated MEB disease patients in China. The identification of novel POMGnT1 mutations and an expanded phenotypic spectrum contributes to an improved understanding of POMGnT1 structure–function relationships, CMD pathophysiology and genotype–phenotype correlations, while underscoring the need to consider POMGnT1 in Chinese MEB disease patients.  相似文献   

15.
Protein O-mannosyltransferase 1 (POMT1) and its homolog, POMT2, are responsible for the catalysis of the first step in O-mannosyl glycan synthesis. Mutations in their genes are associated with a type of congenital muscular dystrophy called Walker-Warburg syndrome. Arg64, Glu78 and Arg138 in the N-terminus region of ScPmt1p, a POMT homolog in Saccharomyces cerevisiae, are important for transferase activity. Arg138 is also essential for complex formation with ScPmt2p. Here we examined the effects of replacing the corresponding residues in human POMT1 and POMT2 with Ala on complex formation and enzymatic activity. The human POMT1 mutants lost almost all transferase activity while the POMT2 mutants retained enzymatic activity. Neither mutant lost its ability to form complexes with the native counter component. These results indicate that ScPmtps and human POMTs have different mechanisms of complex formation. They also suggest that human POMT1 and POMT2 have discrete functions since the effect of amino acid substitutions on enzymatic activity are different.  相似文献   

16.
The dystrophin glycoprotein complex (DGC) is an assembly of proteins spanning the sarcolemma of skeletal muscle cells. Defects in the DGC appear to play critical roles in several muscular dystrophies due to disruption of basement membrane organization. O -mannosyl oligosaccharides on alpha-dystroglycan, a major extracellular component of the DGC, are essential for normal binding of alpha-dystroglycan to ligands (such as laminin) in the extracellular matrix and subsequent signal transmission to actin in the cytoskeleton of the muscle cell. Muscle-Eye-Brain disease (MEB) and Walker-Warburg Syndrome (WWS) have mutations in genes encoding glycosyltransferases needed for O -mannosyl oligosaccharide synthesis. Myodystrophic myd mice and humans with Fukuyama Congenital Muscular Dystrophy (FCMD), congenital muscular dystrophy due to defective fukutin-related protein (FKRP) and MDC1D have mutations in putative glycosyltransferases. These human congenital muscular dystrophies and the myd mouse are associated with defective glycosylation of alpha-dystroglycan. It is expected other congenital muscular dystrophies will prove to have mutations in genes involved in glycosylation.  相似文献   

17.
Cobblestone lissencephaly is a peculiar brain malformation with characteristic radiological anomalies. It is defined as cortical dysplasia that results when neuroglial overmigration into the arachnoid space forms an extracortical layer that produces agyria and/or a “cobblestone” brain surface and ventricular enlargement. Cobblestone lissencephaly is pathognomonic of a continuum of autosomal-recessive diseases characterized by cerebral, ocular, and muscular deficits. These include Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama muscular dystrophy. Mutations in POMT1, POMT2, POMGNT1, LARGE, FKTN, and FKRP identified these diseases as alpha-dystroglycanopathies. Our exhaustive screening of these six genes, in a cohort of 90 fetal cases, led to the identification of a mutation in only 53% of the families, suggesting that other genes might also be involved. We therefore decided to perform a genome-wide study in two multiplex families. This allowed us to identify two additional genes: TMEM5 and ISPD. Because TMEM has a glycosyltransferase domain and ISPD has an isoprenoid synthase domain characteristic of nucleotide diP-sugar transferases, these two proteins are thought to be involved in the glycosylation of dystroglycan. Further screening of 40 families with cobblestone lissencephaly identified nonsense and frameshift mutations in another four unrelated cases for each gene, increasing the mutational rate to 64% in our cohort. All these cases displayed a severe phenotype of cobblestone lissencephaly A. TMEM5 mutations were frequently associated with gonadal dysgenesis and neural tube defects, and ISPD mutations were frequently associated with brain vascular anomalies.  相似文献   

18.
19.
Muscular dystrophy‐dystroglycanopathy (MDDG) is a genetically and clinically heterogeneous group of muscular disorders, characterized by congenital muscular dystrophy or later‐onset limb‐girdle muscular dystrophy accompanied by brain and ocular abnormalities, resulting from aberrant alpha‐dystroglycan glycosylation. Exome sequencing and Sanger sequencing were performed on a six‐generation consanguineous Han Chinese family, members of which had autosomal recessive MDDG. Compound heterozygous mutations, c.1338+1G>A (p.H415Kfs*3) and c.1457G>C (p.W486S, rs746849558), in the protein O‐mannosyltransferase 1 gene (POMT1), were identified as the genetic cause. Patients that exhibited milder MDDG manifested as later‐onset progressive proximal pelvic, shoulder girdle and limb muscle weakness, joint contractures, mental retardation and elevated creatine kinase, without structural brain or ocular abnormalities, were further genetically diagnosed as MDDGC1. The POMT1 gene splice‐site mutation (c.1338+1G>A) which leads to exon 13 skipping and results in a truncated protein may contribute to a severe phenotype, while the allelic missense mutation (p.W486S) may reduce MDDG severity. These findings may expand phenotype and mutation spectrum of the POMT1 gene. Clinical diagnosis supplemented with molecular screening may result in more accurate diagnoses of, prognoses for, and improved genetic counselling for this disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号