首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although sociality is common in bats, few studies have investigated individual social behaviour in free-ranging colonies. This study quantifies social interactions among wild female Bechstein's bats (Myotis bechsteinii) belonging to one maternity colony. Our main goal was to analyse allogrooming and nose rubbing, which are both regularly displayed by adult females. Based on data of individually marked bats with known degrees of pairwise relatedness, we suggest that allogrooming has both a social and a hygienic function. Females groomed colony mates mainly on parts of the body that are difficult to reach by a bat itself. Thus, allogrooming may function to remove ectoparasites from inaccessible body parts. Allogrooming was rare compared to self-grooming (on average 0.7% vs 37.7% of a female's total observation time), and there was no significant correlation between the rate at which a bat groomed itself and the frequency with which it was groomed by conspecifics. Therefore, we assume that allogrooming also has a social purpose in addition to its assumed hygienic function. We suggest that allogrooming could strengthen social bonds among colony members that live together for many years. Mothers and adult daughters groomed each other preferentially. Thus, allogrooming may reflect special mother–daughter bonds. Nose rubbing occurred mainly within minutes (median: 80 s) after the arrival of a female in a night roost, and there was no correlation with relatedness. Therefore, it probably allows recognition of colony mates and may also be a greeting behaviour. Communicated by M.E. dos Santos  相似文献   

2.
We present a microgeographic analysis of mitochondrial DNA (mtDNA) in Bechstein's bats using three sources of control region sequence variability, including a novel mtDNA microsatellite, to assess individual relatedness both within and among 10 maternity colonies. Comparison of marker variability among 268 adult females revealed little genetic variability within each colony. However, most colonies were clearly distinguished by colony-specific mitochondrial haplotypes (total n = 28). Low intracolony variability and strong haplotype segregation among colonies, was reflected by an extraordinary high FST of 0.68, indicating a very low intercolony dispersal rate of approximately one female in five generations. Haplotype distribution among 18 solitary males showed that males frequently disperse between colony locations, indicating the absence of dispersal barriers. Bechstein's bat maternity colonies are thus closed groups that comprise 20-40 females probably belonging to only one or, at most, two matrilines. The genetic population structure of Bechstein's bats is in agreement with the hypothesis that females seek familiar and, at least, partially related cooperation partners for raising their young. Alternatively strong philopatry might reflect the importance of profound roost or habitat knowledge for successful reproduction in female Bechstein's bats.  相似文献   

3.
Information transfer among group members is believed to play an important part in the evolution of coloniality in both birds and bats. Although information transfer has received much scientific interest, field studies using experiments to test the underlying hypotheses are rare. We used a field experiment to test if communally breeding female Bechstein's bats (Myotis bechsteinii) exchange information regarding novel roosts. We supplied a wild colony, comprising 17 adult females of known relatedness, with pairs of suitable and unsuitable roosts and monitored the arrival of individuals marked with transponders (PIT-tags) over 2 years. As expected with information transfer, significantly more naive females were recruited towards suitable than towards unsuitable roosts. We conclude that information transfer about roosts has two functions: (i) it generates communal knowledge of a large set of roosts; and (ii) it aids avoidance of colony fission during roost switching. Both functions seem important in Bechstein's bats, in which colonies depend on many day roosts and where colony members live together for many years.  相似文献   

4.
Each animal population has its own acoustic signature which facilitates identification, communication and reproduction. The sonar signals of bats can convey social information, such as species identity and contextual information. The goal of this study was to determine whether bats adjust their echolocation call structures to mutually recognize and communicate when they encounter the bats from different colonies. We used the intermediate leaf-nosed bats (Hipposideros larvatus) as a case study to investigate the variations of echolocation calls when bats from one colony were introduced singly into the home cage of a new colony or two bats from different colonies were cohabitated together for one month. Our experiments showed that the single bat individual altered its peak frequency of echolocation calls to approach the call of new colony members and two bats from different colonies adjusted their call frequencies toward each other to a similar frequency after being chronically cohabitated. These results indicate that the ‘compromise’ in echolocation calls might be used to ensure effective mutual communication among bats.  相似文献   

5.
Elephants, dolphins, as well as some carnivores and primates maintain social links despite their frequent splitting and merging in groups of variable composition, a phenomenon known as fission-fusion. Information on the dynamics of social links and interactions among individuals is of high importance to the understanding of the evolution of animal sociality, including that of humans. However, detailed long-term data on such dynamics in wild mammals with fully known demography and kin structures are scarce. Applying a weighted network analysis on 20,500 individual roosting observations over 5 years, we show that in two wild Bechstein's bat colonies with high fission-fusion dynamics, individuals of different age, size, reproductive status and relatedness maintain long-term social relationships. In the larger colony, we detected two stable subunits, each comprising bats from several family lineages. Links between these subunits were mainly maintained by older bats and persisted over all years. Moreover, we show that the full details of the social structure become apparent only when large datasets are used. The stable multi-level social structures in Bechstein's bat colonies resemble that of elephants, dolphins and some primates. Our findings thus may shed new light on the link between social complexity and social cognition in mammals.  相似文献   

6.
The ‘social microbiome’ can fundamentally shape the costs and benefits of group-living, but understanding social transmission of microbes in free-living animals is challenging due to confounding effects of kinship and shared environments (e.g. highly associated individuals often share the same spaces, food and water). Here, we report evidence for convergence towards a social microbiome among introduced common vampire bats, Desmodus rotundus, a highly social species in which adults feed only on blood, and engage in both mouth-to-body allogrooming and mouth-to-mouth regurgitated food sharing. Shotgun sequencing of samples from six zoos in the USA, 15 wild-caught bats from a colony in Belize and 31 bats from three colonies in Panama showed that faecal microbiomes were more similar within colonies than between colonies. To assess microbial transmission, we created an experimentally merged group of the Panama bats from the three distant sites by housing these bats together for four months. In this merged colony, we found evidence that dyadic gut microbiome similarity increased with both clustering and oral contact, leading to microbiome convergence among introduced bats. Our findings demonstrate that social interactions shape microbiome similarity even when controlling for past social history, kinship, environment and diet.  相似文献   

7.
Information about the population genetic structures of parasites is important for an understanding of parasite transmission pathways and ultimately the co-evolution with their hosts. If parasites cannot disperse independently of their hosts, a parasite's population structure will depend upon the host's spatial distribution. Geographical barriers affecting host dispersal can therefore lead to structured parasite populations. However, how the host's social system affects the genetic structure of parasite populations is largely unknown. We used mitochondrial DNA (mtDNA) to describe the spatio-temporal population structure of a contact-transmitted parasitic wing mite ( Spinturnix bechsteini ) and compared it to that of its social host, the Bechstein's bat ( Myotis bechsteinii ). We observed no genetic differentiation between mites living on different bats within a colony. This suggests that mites can move freely among bats of the same colony. As expected in case of restricted inter-colony dispersal, we observed a strong genetic differentiation of mites among demographically isolated bat colonies. In contrast, we found a strong genetic turnover between years when we investigated the temporal variation of mite haplotypes within colonies. This can be explained with mite dispersal occuring between colonies and bottlenecks of mite populations within colonies. The observed absence of isolation by distance could be the result from genetic drift and/or from mites dispersing even between remote bat colonies, whose members may meet at mating sites in autumn or in hibernacula in winter. Our data show that the population structure of this parasitic wing mite is influenced by its own demography and the peculiar social system of its bat host.  相似文献   

8.
Karsten Reckardt  Gerald Kerth 《Oikos》2009,118(2):183-190
In a two-year field study, we analyzed the distribution of two hematophagous ectoparasites, the bat fly Basilia nana and the wing mite Spinturnix bechsteini , within and among 14 female colonies and among 26 solitary male Bechstein's bats Myotis bechsteinii . Our goal was to investigate whether differences in the transmission mode of the parasites, which result from differences in their life cycle, affect their distribution between host colonies and among host individuals within colonies. Bat flies deposit puparia in bat roosts, allowing for the transmission of hatched flies via successively shared roosts, independent of body contact between hosts or of hosts occupying a roost at the same time. In contrast, wing mites stay on the bat's body and are transmitted exclusively by contact of bats that roost together. As expected in cases of higher inter-colony transmissibility, bat flies were more prevalent among the demographically isolated Bechstein's bat colonies and among solitary male bats, as compared to wing mites. Moreover, the prevalence and density of wing mites, but not of bat flies, was positively correlated with colony size, as expected in cases of low inter-colony transmissibility. Within colonies, bat flies showed higher abundance on host individuals in good body condition, which are likely to have high nutritional status and strong immunity. Wing mites showed higher abundance on hosts in medium body condition and on reproductive females and juveniles, which are likely to have relatively weak immunity. We suggest that the observed infestation patterns within host colonies reflect different host choice strategies of bat flies and wing mites, which may result from differences in their inter-colony transmissibility. Our data also indicate that infestation with wing mites, but not with bat flies, might be a cost of sociality in Bechstein's bats.  相似文献   

9.
Investigating macro-geographical genetic structures of animal populations is crucial to reconstruct population histories and to identify significant units for conservation. This approach may also provide information about the intraspecific flexibility of social systems. We investigated the history and current structure of a large number of populations in the communally breeding Bechstein's bat ( Myotis bechsteinii ). Our aim was to understand which factors shape the species' social system over a large ecological and geographical range. Using sequence data from one coding and one noncoding mitochondrial DNA region, we identified the Balkan Peninsula as the main and probably only glacial refugium of the species in Europe. Sequence data also suggest the presence of a cryptic taxon in the Caucasus and Anatolia. In a second step, we used seven autosomal and two mitochondrial microsatellite loci to compare population structures inside and outside of the Balkan glacial refugium. Central European and Balkan populations both were more strongly differentiated for mitochondrial DNA than for nuclear DNA, had higher genetic diversities and lower levels of relatedness at swarming (mating) sites than in maternity (breeding) colonies, and showed more differentiation between colonies than between swarming sites. All these suggest that populations are shaped by strong female philopatry, male dispersal, and outbreeding throughout their European range. We conclude that Bechstein's bats have a stable social system that is independent from the postglacial history and location of the populations. Our findings have implications for the understanding of the benefits of sociality in female Bechstein's bats and for the conservation of this endangered species.  相似文献   

10.
One of the most important attributes that allowed the evolution and maintenance of sociality in insects is their ability to distinguish members of their own colonies. The capacity for individual recognition in social insects is mediated by chemical signals that are acquired soon after the adult emerges, and vary according to the tasks performed by individuals in their colonies. We determined the time when adults of the wasp Mischocyttarus consimilis acquire the chemical signature of their colonies, as well as the variation in the cuticular hydrocarbon profiles of the exoskeleton of individuals, according to their functions in the colony. The method used was Fourier transform infrared photoacoustic spectroscopy directly on the gaster of each individual. Young wasps take three to four days to acquire the colony's chemical signature, with a small change on the fifth day, when the cuticular hydrocarbon profile of the workers is more similar to that of the queens than that of the males, probably because they are of the same sex, but primarily because of the similarity of tasks executed by these two groups of females in the colonies.  相似文献   

11.
Liu D  Huang KJ  Zhang JX 《Chemical senses》2011,36(9):799-810
Individual recognition has been studied across a number of taxa and modalities; however, few attempts have been made to combine chemical and biological approaches and arrive at a more complete understanding of the use of secretions as signals. We combined behavioral habituation experiments with gas chromatography-mass spectrometry of glandular secretions from the left and right flank gland and midventral gland of the rat-like hamster, Tscheskia triton. We found that females became habituated to one scent and then could discriminate individuals via another scent source from the same individual only when familiar with the scent donor. However, this prior social interaction was not required for females to discriminate different individuals in single-stimulus habituation-dishabituation tests. Chemical analyses revealed a similarity in volatile compounds between the left and right flank gland and midventral gland scents. It appears that individually distinctive cues are integratively coded by a combination of both flank gland and midventral gland secretions, instead of a single scent, albeit animals show different preferences to the novel scent. Our results suggest that odors from the flank and midventral glands may provide information related to individuality and aid individual recognition in this species and confirm that prior interaction between individuals is a prerequisite for rat-like hamsters to form multi-odor memory of a particular conspecific.  相似文献   

12.
Our study shows that endangered Bechstein'sbats utilise distinct habitats at differentstages of their reproductive cycle, a findingthat has implications how habitat should beselected for preservation. Using nuclear andmitochondrial microsatellite DNA markers wecompared gene diversity of Bechstein's batswithin breeding colonies and at potentialmating sites. Bechstein's bat is one of themost threatened European bat species. Duringsummer it depends largely on mature deciduousforests. Females exhibit strict natalphilopatry. They form demographicallyindependent breeding colonies comprisingmaternally closely related bats. Males aresolitary. Like other temperate bats,Bechstein's bats swarm at the end of summer infront of caves. Because the sexes meet there,such swarming sites are potentially importantfor gene flow. Our genetic analyses reveal thatswarming sites have greater mitochondrial DNAgene diversity than colonies. Furthermore,field data on the phenology and reproductivestatus of several hundred individuals suggestthat Bechstein's bats mate during swarming. Incombination our field and genetic data showthat swarming sites provide the opportunity forgene flow among bats originating from differentcolonies. Therefore, we suggest that swarmingsites should be strictly protected to maintainthe observed high levels of gene flow amongcolonies.  相似文献   

13.
The decision where to live has far-reaching fitness consequences for animals. In contrast to most other mammals or birds that use sheltered nest sites, female Bechstein's bats frequently switch day roosts during one breeding season, and therefore must often decide where to spend the day. Selecting the right roost is important, because roost quality, e.g. microclimatic condition, influences survival and reproduction in bats. Although thermal factors are very important for the quality of roosts occupied by bats, whether bats base their day roost selection directly on roost temperature has not been tested in the field. Over one summer, we examined and tested the roost choice of 21 individually marked female Myotis bechsteinii living in one maternity colony. In a field experiment, we allowed the bats to choose between relatively warm versus cold bat boxes, while controlling for site preferences. We expected females to exhibit a preference for warm roosts during pregnancy and lactation to accelerate gestation and shorten the period of growth of their young. Roost occupancy over 160 census days reflected significant temperature differences among 89 surveyed roosts (14 tree holes and 75 bat boxes), and preferences changed with the season. Females significantly preferred cold roosts before parturition, whereas post-partum, they significantly favoured warm roosts. Temperature preferences were independent of the roost site, and thus roost selection was based directly on temperature. Boxes with significantly different daytime temperatures did not differ significantly at night. Consequently, bats would have to spend at least 1 day in a new roost to test it. Information transfer among colony members might facilitate knowledge of roost availability. Access to many roosts providing different microclimates is likely to be important for successful reproduction in the endangered Bechstein's bat.  相似文献   

14.
Understanding the ecological, behavioural and genetic factors influencing animal social systems is crucial to investigating the evolution of sociality. Despite the recent advances in population genetic methods and the analysis of social interactions, long-term studies exploring the causes and consequences of social systems in wild mammals are rare. Here, we provide a synthesis of 15?years of data on the Bechstein's bat (Myotis bechsteinii), a species that raises its young in closed societies of 10-45 females living together for their entire lives and where immigration is virtually absent. We discuss the potential causes and consequences of living in closed societies, based on the available data on Bechstein's bat and other species with similar social systems. Using a combination of observational and genetic data on the bats together with genetic data on an ecto-parasite, we suggest that closed societies in Bechstein's bats are likely caused by a combination of benefits from cooperation with familiar colony members and parasite pressure. Consequences of this peculiar social system include increased sensitivity to demographic fluctuations and limits to dispersal during colony foundation, which have broad implications for conservation. We also hope to illustrate by synthesizing the results of this long-term study the diversity of tools that can be applied to hypothesize about the factors influencing a species' social system. We are convinced that with the expansion of the number of social mammals for which comparably detailed socio-genetic long-term data are available, future comparative studies will provide deeper insights into the evolution of closed societies.  相似文献   

15.
Members of social insect colonies employ a large variety of chemical signals during their life. Of these, cuticular hydrocarbons are of primary importance for social insects since they allow for the recognition of conspecifics, nestmates and even members of different castes. The objectives of this study were (1) to characterize the variation of the chemical profiles among workers of the stingless bee Melipona marginata, and (2) to investigate the dependence of the chemical profiles on the age and on the behavior of the studied individuals. The results showed that cuticular hydrocarbon profiles of workers were composed of alkanes, alkenes and alkadienes that varied quantitatively and qualitatively according to function of workers in the colony.  相似文献   

16.
Group decisions are required when group coordination is beneficial, but individuals can choose between alternatives. Despite the increased interest in animal group decision making, there is a lack of experimental field studies that investigate how animals with conflicting information make group decisions. In particular, no field studies have considered the influence of fission-fusion behaviour (temporary splitting into subgroups) on group decisions. We studied group decision making in two wild Bechstein's bat colonies, which are fission-fusion societies of stable individual composition. Since they frequently switch communal roosts, colony members must regularly make group decisions over where to roost. In the two-field experiments, we provided marked individuals with conflicting information about the suitability of potential roosts. We investigated whether conflicting information led to group decisions that followed a 'unanimous' or a 'majority' rule, or increased colony fission. Individual behaviour suggests that bats considered both their own information and the behaviour of others when deciding where to roost. Group decisions about communal roosts reflected the information available to a majority of the bats roosting together, but conflicting information led to an increased fission in one colony. Our results suggest that fission-fusion societies allow individuals to avoid majority decisions that are not in their favour.  相似文献   

17.
The ability of social insects to differentiate between colony members and others is essential for the survival of the colony. It enables individuals to direct altruistic behavior towards colony mates, while protecting the colony from intruders. Colonies have a distinct chemical signature that facilitates colony-mate recognition. However, in large polydomous colonies, this signal is likely to be modified by factors unique to each nest. We demonstrate, using near-infrared spectroscopy (NIRS), that individual weaver ants, Oecophylla smaragdina, can be differentiated with respect to their colony and nest of origin. 76.5% of individuals from four colonies could be correctly assigned to their colony of origin; and 79.6% of individuals could be assigned to the correct nest (of two) within their colony. Despite the differences between nests within colonies, in most cases individuals from one nest were more similar to individuals from the other nest within the colony than they were to individuals from any nest outside the colony. Therefore, a distinctive colony identity is maintained despite differences between nests within colonies. We discuss the advantages of using NIRS as a faster and less expensive alternative to the analysis of cuticular hydrocarbons following extraction and identification with gas chromatography/mass spectroscopy. Received 26 November 2007; revised 22 January 2008; accepted 25 January 2008.  相似文献   

18.
In many social animals, group members exchange information about where to feed. Thereby, they may gain direct benefits, for example, if social hunting enhances individual foraging success. Alternatively, individuals may receive indirect fitness benefits by preferentially sharing information about suitable feeding sites with kin. Indeed, in some species, a positive correlation between the degree of relatedness among individuals and the overlap among their foraging areas was found. However, sharing foraging sites with kin can also have costs if it increases food competition, which is not compensated by direct benefits. The goal of this study was to investigate whether sharing of individual foraging areas in female Bechstein's bats is best explained by kin selection or by direct benefits through social foraging. To assess their individual foraging behaviour, we analysed radio‐tracking data of 22 members of one maternity colony, including nine mother–daughter pairs, seven pairs of less closely related individuals and six pairs of unrelated bats. We examined the bats' fidelity to specific foraging areas during several years and quantified the influence of kinship on the overlap among individual foraging areas. By measuring how close to each other the bats foraged, we assessed whether individuals with overlapping areas are likely to forage together. Our study confirms previous findings that Bechstein's bats show high fidelity to foraging areas across years. Moreover, we found that relatives share foraging areas significantly more often compared with unrelated colony members. Finally, our data reveal for the first time that most colony members that share foraging areas are unlikely to forage together. This suggests that female Bechstein's bats gain no direct benefits from sharing foraging areas with members of the same maternal lineage. Our findings also have implications for conservation as habitat loss within a colony's home range might expose entire matrilines to high risks.  相似文献   

19.
For elusive mammals like bats, colonization of new areas and colony formation are poorly understood, as is their relationship with the genetic structure of populations. Understanding dispersal and group formation behaviors is critical not only for a better comprehension of mammalian social dynamics, but also for guiding conservation efforts of rare and endangered species. Using nuclear and mitochondrial markers, we studied patterns of genetic diversity and differentiation among and within breeding colonies of giant noctule bats (Nyctalus lasiopterus), their relation to a new colony still in formation, and the impact of this ongoing process on the regionwide genetic makeup. Nuclear differentiation among colonies was relatively low and mostly nonsignificant. Mitochondrial variation followed this pattern, contrasting with findings for other temperate bat species. Our results suggest that this may indicate a recent population expansion. On average, female giant noctules were not more closely related to other colony members than to foreign individuals. This was also true for members of the newly forming colony and those of another, older group sampled shortly after its formation, suggesting that contrary to findings for other temperate bats, giant noctule colonies are not founded by relatives. However, mother–daughter pairs were found in the same populations more often than expected under random dispersal. Given this indication of philopatry, the lack of mitochondrial differentiation among most colonies in the region is probably due to the combination of a recent population expansion and group formation events.  相似文献   

20.
Roost fidelity is an important aspect of mammalian biology. Studying the mechanisms underlying philopatry can help us understand a species’ energetic requirements, ecological constraints and social organisation. Temperate bat species notably exhibit a high degree of female philopatry considering their size, resulting in maternity colonies segregated at the mitochondrial level. We focus on the greater noctule, Nyctalus lasiopterus, to study this behaviour in more depth. We make use of microsatellite data for 11 markers across 84 individuals residing in Maria Luisa Park in Seville, Spain. At the time of sampling this urban park boasted the highest number of bats of any known colony of this species, among which three social groups were observed to segregate spatially. We studied the distribution of pairs of individuals across filial relationship categories and relatedness estimates relative to the social group of each individual. This analysis was complemented by information on roost-use frequency among a subset of genotyped bats. We found no significant relationship between roost use and genetic distance, but there was evidence that more closely related bats are more likely to be found in the same social group. Mother-daughter pairs shared the same group more often than expected, as did pairs of individuals of relatedness above 0.43. We discuss the implications of these results in terms of the behavioural ecology of temperate bats and for conservation efforts aimed at preserving them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号