首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jones MA  Shen JJ  Fu Y  Li H  Yang Z  Grierson CS 《The Plant cell》2002,14(4):763-776
Root hairs provide a model system for the study of cell polarity. We examined the possibility that one or more members of the distinct plant subfamily of RHO monomeric GTPases, termed Rop, may function as molecular switches regulating root hair growth. Specific Rops are known to control polar growth in pollen tubes. Overexpressing Rop2 (Rop2 OX) resulted in a strong root hair phenotype, whereas overexpressing Rop7 appeared to inhibit root hair tip growth. Overexpressing Rops from other phylogenetic subgroups of Rop did not give a root hair phenotype. We confirmed that Rop2 was expressed throughout hair development. Rop2 OX and constitutively active GTP-bound rop2 (CA-rop2) led to additional and misplaced hairs on the cell surface as well as longer hairs. Furthermore, CA-rop2 depolarized root hair tip growth, whereas Rop2 OX resulted in hairs with multiple tips. Dominant negative GDP-bound Rop2 reduced the number of hair-forming sites and led to shorter and wavy hairs. Green fluorescent protein-Rop2 localized to the future site of hair formation well before swelling formation and to the tip throughout hair development. We conclude that the Arabidopsis Rop2 GTPase acts as a positive regulatory switch in the earliest visible stage in hair development, swelling formation, and in tip growth.  相似文献   

2.
Reactive oxygen species (ROS) production by an NADPH oxidase (NOX) encoded by AtrbohC/RHD2 is required for root hair growth in Arabidopsis thaliana. ROP (RHO of plants) GTPases are also required for normal root hair growth and have been proposed to regulate ROS production in plants. Therefore, the role of ROP GTPase in NOX-dependent ROS formation by root hairs was investigated. Plants overexpressing wild-type ROP2 (ROP2 OX), constitutively active (CA-rop2), or dominant negative (DN-rop2) rop2 mutant proteins were used. Superoxide formation by root hairs was detected by superoxide dismutase-sensitive nitroblue tetrazolium reduction, and ROS production in the root hair differentiation zone was detected by dihydrofluorescein diacetate oxidation. Both probes showed that ROS production was increased in ROP2 OX and CA-rop2 plants, and decreased in DN-rop2 plants, relative to wild-type plants. When CA-rop2 was expressed in the NOX loss-of-function rhd2-1 mutant, ROS formation and root hair growth were impaired, suggesting that RHD2 is required for this ROP2-dependent ROS formation.  相似文献   

3.
极性生长是植物生长发育中的常见现象,但囊泡运输与极性生长的关系还未完全明确。花粉管和根毛是植物细胞极性生长的典型模式。早期研究显示NtGNL1(Nicotiana tabacum GNOM-LIKE 1)通过调节囊泡的后高尔基体转运来影响烟草的花粉管生长。本文以NtGNL1 RNAi转基因植株为材料,研究NtGNL1基因在根毛生长中的作用。结果表明,NtGNL1 RNAi转基因植株的根毛生长明显滞后于野生型,且其根毛出现膨大、弯折、扭曲等形态,与NtGNL1 RNAi转基因植株的花粉管异常形态类似。q RT-PCR检测RNAi转基因株系根毛中PIN1、PIN2、GL2、ROP6、RHD6基因的m RNA表达量,显示PIN2和GL2的表达量显著下调,PIN1、ROP6和RHD6的表达量变化不明显。FM4-64染色表明烟草根表皮细胞和根毛的囊泡分布都受到影响,即NtGNL1基因也影响根毛中的囊泡运输。BFA处理加剧了囊泡的聚集程度,提示根毛尖端还存在其它对BFA敏感并调控囊泡运输的基因。以上证据显示,NtGNL1基因通过囊泡运输途径影响烟草根毛的极性生长,NtGNL1基因的表达下调也影响了PIN2和GL2的表达,从而间接影响根毛的极性生长。  相似文献   

4.
Rhizobia preferentially enter legume root hairs via infection threads, after which root hairs undergo tip swelling, branching, and curling. However, the mechanisms underlying such root hair deformation are poorly understood. Here, we showed that a type II small GTPase, ROP10, of Medicago truncatula is localized at the plasma membrane (PM) of root hair tips to regulate root hair tip growth. Overexpression of ROP10 and a constitutively active mutant (ROP10CA) generated depolarized growth of root hairs, whereas a dominant negative mutant (ROP10DN) inhibited root hair elongation. Inoculated with Sinorhizobium meliloti, the depolarized swollen and ballooning root hairs exhibited extensive root hair deformation and aberrant infection symptoms. Upon treatment with rhizobia-secreted nodulation factors (NFs), ROP10 was transiently upregulated in root hairs, and ROP10 fused to green fluorescent protein was ectopically localized at the PM of NF-induced outgrowths and curls around rhizobia. ROP10 interacted with the kinase domain of the NF receptor NFP in a GTP-dependent manner. Moreover, NF-induced expression of the early nodulin gene ENOD11 was enhanced by the overexpression of ROP10 and ROP10CA. These data suggest that NFs spatiotemporally regulate ROP10 localization and activity at the PM of root hair tips and that interactions between ROP10 and NF receptors are required for root hair deformation and continuous curling during rhizobial infection.  相似文献   

5.
Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs.  相似文献   

6.
Nuclear dynamics in root hairs, which depends upon the actin cytoskeleton, appears to be an important factor in root-hair tip growth. Previous evidence suggests that there is an absolute requirement for the nucleus to be a fixed distance from the growing root-hair tip for tip growth to proceed. To test this hypothesis, nuclear dynamics were examined in root-hair cells bearing multiple root hairs. The majority of root-hair cells of transgenic plants overexpressing the ROP2 GTPase (ROP2 OX) bear multiple root hairs. Simultaneous and sustained fast tip growth occurred in multiple root hairs of ROP2 OX, with the continual presence of tip-localized cytoplasm in these growing hairs. Nuclear dynamics were imaged in ROP2 OX by co-expressing a transgene encoding a nuclear localization signal (NLS)-green fluorescent protein (GFP) fusion protein. The nucleus was in continual proximity to one of the growing root-hair tips, whilst the other tip elongated at a similar rate but in the absence of the nucleus from the shank of that root hair. To test whether this phenomenon was an artefact of ROP2 overexpression, nuclear dynamics were examined in wild-type and NLS-GFP transgenic plants. Multiple root hairs on the same cell underwent simultaneous and sustained fast tip growth, with the nucleus lying deep within the shank of only one of these hairs. The nucleus was also moved into the root-hair tip during the severe root-hair tip branching which is characteristic of ROP2 OX transgenic plants. These results suggest that fast tip growth can proceed in some multiple root hairs at extreme distances from the nucleus.  相似文献   

7.
Fu Y  Li H  Yang Z 《The Plant cell》2002,14(4):777-794
Polar cell expansion in differentiating tissues is critical for the development and morphogenesis of plant organs and is modulated by hormonal and developmental signals, yet little is known about signaling in this fundamental process in plants. In contrast to tip-growing cells, such as pollen tubes and root hairs, cells in developing tissues are thought to expand by diffuse growth. In this study, we provide evidence that these cells expand in two phases with distinct mechanisms. In the early phase, cell expansion can occur in both longitudinal and radial or lateral directions and is mediated by Rop GTPase signaling, a mechanism known to control tip growth. The expression of a dominant-negative mutant for ROP2 (DN-rop2) inhibited polar cell expansion, whereas the expression of a constitutively active mutant (CA-rop2) caused isotropic expansion in the early phase. In the late phase, expansion occurs only in the longitudinal direction and is not affected by DN-rop2 or CA-rop2 expression. The transition from the early to the late phase coincides with the reorientation of cortical microtubules from random to transverse arrangements. Thus, cell expansion in the late phase is consistent with polar diffuse growth, in which polarity probably is defined by transverse cortical microtubules. We show that the direction of cell expansion in the early phase is associated with the localization of diffuse fine cortical F-actin in leaf epidermal cells. DN-rop2 expression specifically inhibited the formation of this F-actin, but not actin cables, whereas CA-rop2 expression caused delocalized distribution of this fine F-actin throughout the cell cortex. Furthermore, green fluorescent protein-ROP2 was localized preferentially to the cortical region of the cell, where expansion apparently occurs. These observations suggest that ROP2 control of the polar expansion of cells within tissues is analogous to the Rop control of tip growth and of tip-localized F-actin in pollen tubes and root hairs and that the tip growth mechanism also may modulate polar cell expansion in differentiating tissues.  相似文献   

8.
Root hairs elongate in a highly polarized manner known as tip growth. Overexpression of constitutively active Rho of Plant (ROP)/RAC GTPases mutants induces swelling of root hairs. Here, we demonstrate that Atrop11CA‐induced swelling of root hairs depends on the composition of the growth medium. Depletion of ammonium allowed normal root hair elongation in Atrop11CA plants, induced the development of longer root hairs in wild‐type plants and suppressed the effect of Atrop11CA expression on actin organization and reactive oxygen species distribution, whereas membrane localization of the protein was not affected. Ammonium at concentrations higher than 1 mM and the presence of nitrate were required for induction of swelling. Oscillations in wall and cytoplasmic pH are known to accompany tip growth in root hairs, and buffering of the growth medium decreased Atrop11CA‐induced swelling. Fluorescence ratio imaging experiments revealed that in wild‐type root hairs, the addition of NH4NO3 to the growth medium induced an increase in the amplitude of extracellular and intracellular pH oscillations and an overall decrease in cytoplasmic pH at the cell apex. Based on these results, we suggest a model in which ROP GTPases and nitrogen‐dependent pH oscillations function in parallel pathways, creating a positive feedback loop during root hair growth.  相似文献   

9.
Root hairs emerge from epidermal root cells (trichoblasts) and differentiate by highly localized tip growth. Microtubules (MTs) are essential for establishing and maintaining the growth polarity of root hairs. The current knowledge about the configuration of the MT cytoskeleton during root hair development is largely based on experiments on fixed material, and reorganization and in vivo dynamics of MTs during root hair development is at present unclear. This in vivo study provides new insights into the mechanisms of MT (re)organization during root hair development in Arabidopsis (Arabidopsis thaliana). Expression of a binding site of the MT-associated protein-4 tagged with green fluorescent protein enabled imaging of MT nucleation, growth, and shortening and revealed distinct MT configurations. Depending on the dynamics of the different MT populations during root hair development, either repeated two-dimensional (x, y, t) or repeated three-dimensional (x, y, z, t) scanning was performed. Furthermore, a new image evaluation tool was developed to reveal important data on MT instability. The data show how MTs reorient after apparent contact with other MTs and support a model for MT alignment based on repeated reorientation of dynamic MT growth.  相似文献   

10.
A member of the cellulose synthase-like (subfamily D) gene family of Arabidopsis, AtCSLD3, has been identified by T-DNA tagging. The analysis of the corresponding mutant, csld3-1, showed that the AtCSLD3 gene plays a role in root hair growth in plants. Root hairs grow in phases: First a bulge is formed and then the root hair elongates by polarized growth, the so-called "tip growth." In the mutant, root hairs were initiated at the correct position and grew into a bulge, but their elongation was severely reduced. The tips of the csld3-1 root hairs easily leaked cytoplasm, indicating that the tensile strength of the cell wall had changed at the site of the tip. Based on the mutant phenotype and the functional conservation between CSLD3 and the genuine cellulose synthase proteins, we hypothesized that the CSLD3 protein is essential for the synthesis of polymers for the fast-growing primary cell wall at the root hair tip. The distinct mutant phenotype and the ubiquitous expression pattern indicate that the CSLD3 gene product is only limiting at the zone of the root hair tip, suggesting particular physical properties of the cell wall at this specific site of the root hair cell.  相似文献   

11.
Root hairs are single-cell protrusions that enable roots to optimize nutrient and water acquisition. These structures attain their tubular shapes by confining growth to the cell apex, a process called tip growth. The actin cytoskeleton and endomembrane systems are essential for tip growth; however, little is known about how these cellular components coordinate their activities during this process. Here, we show that SPIRRIG (SPI), a beige and Chediak Higashi domain-containing protein involved in membrane trafficking, and BRK1 and SCAR2, subunits of the WAVE/SCAR (W/SC) actin nucleating promoting complex, display polarized localizations in Arabidopsis thaliana root hairs during distinct developmental stages. SPI accumulates at the root hair apex via post-Golgi compartments and positively regulates tip growth by maintaining tip-focused vesicle secretion and filamentous-actin integrity. BRK1 and SCAR2 on the other hand, mark the root hair initiation domain to specify the position of root hair emergence. Consistent with the localization data, tip growth was reduced in spi and the position of root hair emergence was disrupted in brk1 and scar1234. BRK1 depletion coincided with SPI accumulation as root hairs transitioned from initiation to tip growth. Taken together, our work uncovers a role for SPI in facilitating actin-dependent root hair development in Arabidopsis through pathways that might intersect with W/SC.  相似文献   

12.
Two recessive mutant alleles at CAN OF WORMS1 (COW1), a new locus involved in root hair morphogenesis, have been identified in Arabidopsis thaliana L. Heynh. Root hairs on Cow1- mutants are short and wide and occasionally formed as pairs at a single site of hair formation. The COW1 locus maps to chromosome 4. Root hairs on Cow1- plants form in the usual positions, suggesting that the phenotype is not the result of abnormal positional signals. Root hairs on Cow1- roots begin hair formation normally, forming a small bulge, or root hair initiation site, of normal size and shape and in the usual position on the hair-forming cell. However, when Cow1- root hairs start to elongate by tip growth, abnormalities in the shape and elongation rate of the hairs become apparent. Genetic evidence from double-mutant analysis of cow1-1 and other loci involved in root hair development supports our conclusion that COW1 is required during root hair elongation.  相似文献   

13.
Root hairs develop as long extensions from root epidermal cells. After the formation of an initial bulge at the distal end of the epidermal cell, the root hair structure elongates by tip growth. Because root hairs are not surrounded by other cells, root hair formation provides an excellent system for studying the highly complex process of plant cell growth. Pharmacological experiments with actin filament-interfering drugs have provided evidence that the actin cytoskeleton is an important factor in the establishment of cell polarity and in the maintenance of the tip growth machinery at the apex of the growing root hair. However, there has been no genetic evidence to directly support this assumption. We have isolated an Arabidopsis mutant, deformed root hairs 1 (der1), that is impaired in root hair development. The DER1 locus was cloned by map-based cloning and encodes ACTIN2 (ACT2), a major actin of the vegetative tissue. The three der1 alleles develop the mutant phenotype to different degrees and are all missense mutations, thus providing the means to study the effect of partially functional ACT2. The detailed characterization of the der1 phenotypes revealed that ACT2 is not only involved in root hair tip growth, but is also required for correct selection of the bulge site on the epidermal cell. Thus, the der1 mutants are useful tools to better understand the function of the actin cytoskeleton in the process of root hair formation.  相似文献   

14.
Polar growth of root hairs is critical for plant survival and requires fine‐tuned Rho of plants (ROP) signaling. Multiple ROP regulators participate in root hair growth. However, protein S‐acyl transferases (PATs), mediating the S‐acylation and membrane partitioning of ROPs, are yet to be found. Using a reverse genetic approach, combining fluorescence probes, pharmacological drugs, site‐directed mutagenesis and genetic analysis with related root‐hair mutants, we have identified and characterized an Arabidopsis PAT, which may be responsible for ROP2 S‐acylation in root hairs. Specifically, functional loss of PAT4 resulted in reduced root hair elongation, which was rescued by a wild‐type but not an enzyme‐inactive PAT4. Membrane‐associated ROP2 was significantly reduced in pat4, similar to S‐acylation‐deficient ROP2 in the wild type. We further showed that PAT4 and SCN1, a ROP regulator, additively mediate the stability and targeting of ROP2. The results presented here indicate that PAT4‐mediated S‐acylation mediates the membrane association of ROP2 at the root hair apex and provide novel insights into dynamic ROP signaling during plant tip growth.  相似文献   

15.
The Arabidopsis thaliana AGD1 gene encodes a class 1 adenosine diphosphate ribosylation factor‐gtpase‐activating protein (ARF‐GAP). Previously, we found that agd1 mutants have root hairs that exhibit wavy growth and have two tips that originate from a single initiation point. To gain new insights into how AGD1 modulates root hair polarity we analyzed double mutants of agd1 and other loci involved in root hair development, and evaluated dynamics of various components of root hair tip growth in agd1 by live cell microscopy. Because AGD1 contains a phosphoinositide (PI) binding pleckstrin homology (PH) domain, we focused on genetic interactions between agd1 and root hair mutants altered in PI metabolism. Rhd4, which is knocked‐out in a gene encoding a phosphatidylinositol‐4‐phosphate (PI‐4P) phosphatase, was epistatic to agd1. In contrast, mutations to PIP5K3 and COW1, which encode a type B phosphatidylinositol‐4‐phosphate 5‐kinase 3 and a phosphatidylinositol transfer protein, respectively, enhanced the root hair defects of agd1. Enhanced root hair defects were also observed in double mutants to AGD1 and ACT2, a root hair‐expressed vegetative actin isoform. Consistent with our double‐mutant studies, targeting of tip growth components involved in PI signaling (PI‐4P), secretion (RABA4b) and actin regulation (ROP2), were altered in agd1 root hairs. Furthermore, tip cytosolic calcium ([Ca2+]cyt) oscillations were disrupted in root hairs of agd1. Taken together, our results indicate that AGD1 links PI signaling to cytoskeletal‐, [Ca2+]cyt?, ROP2‐, and RABA4b‐mediated root hair development.  相似文献   

16.

Background

Local activation of Rho GTPases is important for many functions including cell polarity, morphology, movement, and growth. Although a number of molecules affecting Rho-of-Plants small GTPase (ROP) signalling are known, it remains unclear how ROP activity becomes spatially organised. Arabidopsis root hair cells produce patches of ROP at consistent and predictable subcellular locations, where root hair growth subsequently occurs.

Methodology/Principal Findings

We present a mathematical model to show how interaction of the plant hormone auxin with ROPs could spontaneously lead to localised patches of active ROP via a Turing or Turing-like mechanism. Our results suggest that correct positioning of the ROP patch depends on the cell length, low diffusion of active ROP, a gradient in auxin concentration, and ROP levels. Our theory provides a unique explanation linking the molecular biology to the root hair phenotypes of multiple mutants and transgenic lines, including OX-ROP, CA-rop, aux1, axr3, tip1, eto1, etr1, and the triple mutant aux1 ein2 gnom eb.

Conclusions/Significance

We show how interactions between Rho GTPases (in this case ROPs) and regulatory molecules (in this case auxin) could produce characteristic subcellular patterning that subsequently affects cell shape. This has important implications for research on the morphogenesis of plants and other eukaryotes. Our results also illustrate how gradient-regulated Turing systems provide a particularly robust and flexible mechanism for pattern formation.  相似文献   

17.
The soil bacterium Rhizobium infects its leguminous host plants in temperate regions of the world mostly by way of the growing root hairs. Root hair curling is a prerequisite for root hair infection, although sidelong root hair infections occasionally have been observed. The processes underlying Rhizobium -induced root hair curling are unknown.
Computer simulation of root hair growth indicates that one-sided tip growth inhibition by Rhizobium can result in root hair curling when three conditions are simultaneously fulfilled: 1) rhizobial growth inhibition is strong enough to prevent removal out of the tip growth range: 2) root hair surface growth between the attached Rhizobium and the root hair top is inhibited; 3) rhizobial growth inhibition is limited to one side of the root hair.
The results predict that root hair curling by stimulation of tip growth is improbable. This study accentuates the need for information about the growth processes contributing to tip growth in leguminous root hairs.  相似文献   

18.
AKT1 and TRH1 are required during root hair elongation in Arabidopsis   总被引:5,自引:0,他引:5  
TRH1 is a member of the AtKT/AtKUP/AtHAK family of potassium carriers that is required for root hair elongation and AKT1 is an inward rectifying potassium channel expressed in the root epidermis, endodermis and cortex of Arabidopsis thaliana. Plants homozygous for the trh1-1 mutation form short root hairs. The Trh1(-) phenotype cannot be suppressed by growing plants homozygous for the trh1-1 mutation in the presence of high external KCl concentration. This indicates an absolute requirement for TRH1 in root hair tip growth. Plants homozygous for the akt1-1 mutation develop longer root hairs than the wild type when grown in 0 mM external potassium, but develop shorter hairs than the wild type when grown in higher concentrations [>10 mM] of potassium. These data indicate that both TRH1 and AKT1 are active in the root hair over a wide range of external potassium concentrations, but suggest they have different functions in the growing hair cell.  相似文献   

19.
In legumes, rhizobia attach to root hair tips and secrete nodulation factor to activate rhizobial infection and nodule organogenesis. Endosymbiotic rhizobia enter nodule primordia via a specialized transcellular compartment known as the infection thread (IT). The IT elongates by polar tip growth, following the path of the migrating nucleus along and within the root hair cell. Rho-family ROP GTPases are known to regulate the polarized growth of cells, but their role in regulating polarized IT growth is poorly understood. Here, we show that LjSPK1, a DOCK family guanine nucleotide exchange factor (GEF), interacts with three type I ROP GTPases. Genetic analyses showed that these three ROP GTPases are involved in root hair development, but only LjROP6 is required for IT formation after rhizobia inoculation. Misdirected ITs formed in the root hairs of Ljspk1 and Ljrop6 mutants. We show that LjSPK1 functions as a GEF that activates LjROP6. LjROP6 enhanced the plasma membrane localization LjSPK1 in Nicotiana benthamiana leaf cells and Lotus japonicus root hairs, and LjSPK1 and LjROP6 interact at the plasma membrane. Taken together, these results shed light on how the LjROP6-LjSPK1 module mediates the polarized growth of ITs in L. japonicus.  相似文献   

20.
Microtubule dynamics are critically important for plant cell development. Here, we show that Arabidopsis thaliana ARMADILLO-REPEAT KINESIN1 (ARK1) plays a key role in root hair tip growth by promoting microtubule catastrophe events. This destabilizing activity appears to maintain adequate free tubulin concentrations in order to permit rapid microtubule growth, which in turn is correlated with uniform tip growth. Microtubules in ark1-1 root hairs exhibited reduced catastrophe frequency and slower growth velocities, both of which were restored by low concentrations of the microtubule-destabilizing drug oryzalin. An ARK1-GFP (green fluorescent protein) fusion protein expressed under its endogenous promoter localized to growing microtubule plus ends and rescued the ark1-1 root hair phenotype. Transient overexpression of ARK1-RFP (red fluorescent protein) increased microtubule catastrophe frequency. ARK1-fusion protein constructs lacking the N-terminal motor domain still labeled microtubules, suggesting the existence of a second microtubule binding domain at the C terminus of ARK1. ARK1-GFP was broadly expressed in seedlings, but mutant phenotypes were restricted to root hairs, indicating that ARK1’s function is redundant in cells other than those forming root hairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号