首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.

Background

High-grade serous ovarian carcinoma (HG-SOC) is the dominant tumor histologic type in epithelial ovarian cancers, exhibiting highly aberrant microRNA expression profiles and diverse pathways that collectively determine the disease aggressiveness and clinical outcomes. However, the functional relationships between microRNAs, the common pathways controlled by the microRNAs and their prognostic and therapeutic significance remain poorly understood.

Methods

We investigated the gene expression patterns of microRNAs in the tumors of 582 HG-SOC patients to identify prognosis signatures and pathways controlled by tumor miRNAs. We developed a variable selection and prognostic method, which performs a robust selection of small-sized subsets of the predictive features (e.g., expressed microRNAs) that collectively serves as the biomarkers of cancer risk and progression stratification system, interconnecting these features with common cancer-related pathways.

Results

Across different cohorts, our meta-analysis revealed two robust and unbiased miRNA-based prognostic classifiers. Each classifier reproducibly discriminates HG-SOC patients into high-confidence low-, intermediate- or high-prognostic risk subgroups with essentially different 5-year overall survival rates of 51.6-85%, 20-38.1%, and 0-10%, respectively. Significant correlations of the risk subgroup’s stratification with chemotherapy treatment response were observed. We predicted specific target genes involved in nine cancer-related and two oocyte maturation pathways (neurotrophin and progesterone-mediated oocyte maturation), where each gene can be controlled by more than one miRNA species of the distinct miRNA HG-SOC prognostic classifiers.

Conclusions

We identified robust and reproducible miRNA-based prognostic subsets of the of HG-SOC classifiers. The miRNAs of these classifiers could control nine oncogenic and two developmental pathways, highlighting common underlying pathologic mechanisms and perspective targets for the further development of a personalized prognosis assay(s) and the development of miRNA-interconnected pathway-centric and multi-agent therapeutic intervention.
  相似文献   

4.

Background

Existing clustering approaches for microarray data do not adequately differentiate between subsets of co-expressed genes. We devised a novel approach that integrates expression and sequence data in order to generate functionally coherent and biologically meaningful subclusters of genes. Specifically, the approach clusters co-expressed genes on the basis of similar content and distributions of predicted statistically significant sequence motifs in their upstream regions.

Results

We applied our method to several sets of co-expressed genes and were able to define subsets with enrichment in particular biological processes and specific upstream regulatory motifs.

Conclusions

These results show the potential of our technique for functional prediction and regulatory motif identification from microarray data.
  相似文献   

5.

Background

Pleckstrin homology-like domain family A member 1 (PHLDA1) is a tumor suppressor gene in gastric cancer, but its role regulated by circular RNAs (circRNAs) is not known. CircRNAs are important regulators in cancer growth and progression, however, the molecular roles of circRNAs in gastric cancer are rarely known. The study was aimed to investigate the role of circRNAs in regulating PHLDA1 expression in gastric cancer.

Results

The circRNA expression profile in the gastric cancer tissues by circRNA microarray showed that hsa_circ_0027599 (circ_0027599) was significantly down-regulated in gastric cancer patients and cells when comparing with the controls. Circ_0027599 overexpression suppressed gastric cancer cell proliferation and metastasis. By using bioinformatics tools and luciferase reporter assays, circ_0027599 was verified as a sponge of miR-101-3p.1 (miR-101) and suppressed cancer cell survival and metastasis. It was also verified that PHLDA1 was regulated by circ_0027599 in gastric cancer cells.

Conclusions

The study uncovered that PHLDA1 was regulated by circ_0027599/miR-101, which suppressed gastric cancer survival and metastasis in gastric cancer.
  相似文献   

6.

Background

Differential gene expression is important to understand the biological differences between healthy and diseased states. Two common sources of differential gene expression data are microarray studies and the biomedical literature.

Methods

With the aid of text mining and gene expression analysis we have examined the comparative properties of these two sources of differential gene expression data.

Results

The literature shows a preference for reporting genes associated to higher fold changes in microarray data, rather than genes that are simply significantly differentially expressed. Thus, the resemblance between the literature and microarray data increases when the fold-change threshold for microarray data is increased. Moreover, the literature has a reporting preference for differentially expressed genes that (1) are overexpressed rather than underexpressed; (2) are overexpressed in multiple diseases; and (3) are popular in the biomedical literature at large. Additionally, the degree to which diseases are similar depends on whether microarray data or the literature is used to compare them. Finally, vaguely-qualified reports of differential expression magnitudes in the literature have only small correlation with microarray fold-change data.

Conclusions

Reporting biases of differential gene expression in the literature can be affecting our appreciation of disease biology and of the degree of similarity that actually exists between different diseases.
  相似文献   

7.

Background

MicroRNAs (miRNAs) are a large class of non-coding RNAs with important functions wide spread in animals, plants and viruses. Studies showed that an RNase III family member called Drosha recognizes most miRNAs, initiates their processing and determines the mature miRNAs. The Drosha processing sites identification will shed some light on both miRNA identification and understanding the mechanism of Drosha processing.

Methods

We developed a computational method for Drosha processing site predicting, named as DroshaPSP, which employs a two-layer mathematical model to integrate structure feature in the first layer and sequence features in the second layer. The performance of DroshaPSP was estimated by 5-fold cross-validation and measured by ACC (accuracy), Sn (sensitivity), Sp (specificity), P (precision) and MCC (Matthews correlation coefficient).

Results

The results of testing DroshaPSP on the miRNA data of Drosophila melanogaster indicated that the Sn, Sp, and MCC thereof reach to 0.86, 0.99 and 0.86 respectively.

Conclusions

We found the Shannon entropy, a chemical kinetics feature, is a significant feature in telling the true sites among the nearby sites and improving the performance.
  相似文献   

8.

Background

MicroRNAs (miRNAs) have been shown to play important roles in regulating gene expression. Since miRNAs are often evolutionarily conserved and their precursors can be folded into stem-loop hairpins, many miRNAs have been predicted. Yet experimental confirmation is difficult since miRNA expression is often specific to particular tissues and developmental stages.

Results

Analysis of 29 human and 230 mouse longSAGE libraries revealed the expression of 22 known and 10 predicted mammalian miRNAs. Most were detected in embryonic tissues. Four SAGE tags detected in human embryonic stem cells specifically match a cluster of four human miRNAs (mir-302a, b, c&d) known to be expressed in embryonic stem cells. LongSAGE data also suggest the existence of a mouse homolog of human and rat mir-493.

Conclusion

The observation that some orphan longSAGE tags uniquely match miRNA precursors provides information about the expression of some known and predicted miRNAs.
  相似文献   

9.
10.
11.

Introduction

MicroRNAs (miRs) regulate gene expression to support important physiological functions. Significant evidences suggest that miRs play a crucial role in many pathological events and in the cell response to various stresses.

Methods

With the aim to identify new miRs induced by perturbation of intracellular calcium homeostasis, we analysed miR expression profiles of thapsigargin (TG)-treated cells by microarray. In order to identify miR-663a-regulated genes, we evaluated proteomic changes in miR-663a-overexpressing cells by two-dimensional differential in-gel electrophoresis coupled to mass spectrometric identification of the differentially represented proteins. Microarray and proteomic analyses were supported by biochemical validation.

Results

Results of microarray revealed 24 differentially expressed miRs; among them, miR-663a turned out to be by ER stress and under the control of the PERK pathway of the unfolded protein response. Proteomic analysis revealed that PLOD3, which is the gene encoding for collagen-modifying lysyl hydroxylase 3 (LH3), is regulated by miR-663a. Luciferase reporter assays demonstrated that miR-663a indeed reduces LH3 expression by targeting to 3′-UTR of PLOD3 mRNA. Interestingly, miR-663a inhibition of LH3 expression generates reduced extracellular accumulation of type IV collagen, thus suggesting the involvement of miR-663a in modulating collagen 4 secretion in physiological conditions and in response to ER stress.

Conclusion

The finding of the ER stress-induced PERK-miR-663a pathway may have important implications in the understanding of the molecular mechanisms underlying the function of this miR in normal and/or pathological conditions.
  相似文献   

12.
13.

Background

Microarray gene expression data are accumulating in public databases. The expression profiles contain valuable information for understanding human gene expression patterns. However, the effective use of public microarray data requires integrating the expression profiles from heterogeneous sources.

Results

In this study, we have compiled a compendium of microarray expression profiles of various human tissue samples. The microarray raw data generated in different research laboratories have been obtained and combined into a single dataset after data normalization and transformation. To demonstrate the usefulness of the integrated microarray data for studying human gene expression patterns, we have analyzed the dataset to identify potential tissue-selective genes. A new method has been proposed for genome-wide identification of tissue-selective gene targets using both microarray intensity values and detection calls. The candidate genes for brain, liver and testis-selective expression have been examined, and the results suggest that our approach can select some interesting gene targets for further experimental studies.

Conclusion

A computational approach has been developed in this study for combining microarray expression profiles from heterogeneous sources. The integrated microarray data can be used to investigate tissue-selective expression patterns of human genes.
  相似文献   

14.

Background

MicroRNAs (miRNAs) regulate many biological processes by post-translational gene silencing. Analysis of miRNA expression profiles is a reliable method for investigating particular biological processes due to the stability of miRNA and the development of advanced sequencing methods. However, this approach is limited by the broad specificity of miRNAs, which may target several mRNAs.

Result

In this study, we developed a method for comprehensive annotation of miRNA array or deep sequencing data for investigation of cellular biological effects. Using this method, the specific pathways and biological processes involved in Alzheimer’s disease were predicted with high correlation in four independent samples. Furthermore, this method was validated for evaluation of cadmium telluride (CdTe) nanomaterial cytotoxicity. As a result, apoptosis pathways were selected as the top pathways associated with CdTe nanoparticle exposure, which is consistent with previous studies.

Conclusions

Our findings contribute to the validation of miRNA microarray or deep sequencing results for early diagnosis of disease and evaluation of the biological safety of new materials and drugs.
  相似文献   

15.
16.

Background

MicroRNAs play important roles in regulation of the cardiovascular system. The purpose of this study was to investigate microRNA-320 (miR-320) expression in myocardial ischemia-reperfusion (I/R) injury and the roles of miR-320 in cardiomyocyte apoptosis by targeting AKIP1 (A kinase interacting protein 1).

Methods

The level of miR-320 was detected using quantitative real-time polymerase chain reaction (qRT-PCR), and cardiomyocyte apoptosis was detected via terminal dUTP nick end-labeling assay. Cardiomyocyte apoptosis and the mitochondrial membrane potential were evaluated via flow cytometry. Bioinformatics tools were used to identify the target gene of miR-320. The expression levels of AKIP1 mRNA and protein were detected via qRT-PCR and Western blot, respectively.

Results

Both the level of miR-320 and the rate of cardiomyocyte apoptosis were substantially higher in the I/R group and H9c2 cells subjected to H/R than in the corresponding controls. Overexpression of miR-320 significantly promoted cardiomyocyte apoptosis and increased the loss of the mitochondrial membrane potential, whereas downregulation of miR-320 had an opposite effect. Luciferase reporter assay showed that miR-320 directly targets AKIP1. Moreover, knock down and overexpression of AKIP1 had similar effects on the H9c2 cells subjected to H/R.

Conclusions

miR-320 plays an important role in regulating cardiomyocyte apoptosis induced by I/R injury by targeting AKIP1 and inducing the mitochondrial apoptotic pathway.
  相似文献   

17.
18.

Background

Pemetrexed (PEM) is an anti-cancer agent targeting DNA and RNA synthesis, and clinically in use for mesothelioma and non-small cell lung carcinoma. A mechanism of resistance to PEM is associated with elevated activities of several enzymes involved in nucleic acid metabolism.

Methods

We established two kinds of PEM-resistant mesothelioma cells which did not show any increase of the relevant enzyme activities. We screened genes enhanced in the PEM-resistant cells with a microarray analysis and confirmed the expression levels with Western blot analysis. A possible involvement of the candidates in the PEM-resistance was examined with a WST assay after knocking down the expression with si-RNA. We also analyzed a mechanism of the up-regulated expression with agents influencing AMP-activated protein kinase (AMPK) and p53.

Results

We found that expression of cardiac ankyrin repeat protein (CARP) was elevated in the PEM-resistant cells with a microarray and Western blot analysis. Down-regulation of CARP expression with si-RNA did not however influence the PEM resistance. Parent and PEM-resistant cells treated with PEM increased expression of CARP, AMPK, p53 and histone H2AX. The CARP up-regulation was however irrelevant to the p53 genotypes and not induced by an AMPK activator. Augmented p53 levels with nutlin-3a, an inhibitor for p53 degradation, and DNA damages were not always associated with the enhanced CARP expression.

Conclusions

These data collectively suggest that up-regulated CARP expression is a potential marker for development of PEM-resistance in mesothelioma and that the PEM-mediated enhanced expression is not directly linked with immediate cellular responses to PEM.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号