首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X Liang  B Chow  C Raggo    L A Babiuk 《Journal of virology》1996,70(3):1448-1454
We previously reported that the genome of bovine herpesvirus 1 (BHV-1) contains an open reading frame (ORF) homologous to the herpes simplex virus UL49.5 ORF, and as with the herpes simplex virus UL49.5 ORF, the deduced amino acid sequence of the BHV-1 UL49.5 homolog (UL49.5h) contains features characteristic of an integral membrane protein, implying that it may constitute a functional gene encoding a novel viral envelope protein. This communication reports on the identification of the BHV-1 UL49.5h gene product. By employing an antibody against a synthetic BHV-1 UL49.5h peptide and an UL49.5h gene deletion mutant, the primary product of BHV-UL49.5h gene was identified as a polypeptide with a size of approximately 9 kDa; in both infected cells and isolated virions, the UL49.5h products were found to exist in three forms; monomer, disulfide-linked homodimer, and disulfide-linked heterodimer containing a second viral protein with a size of about 39 kDa. O-Glycosidase digestion and [3H]glucosamine labelling experiments showed that the UL49.5h protein is not glycosylated. Although the deduced amino acid sequence contains putative sites for myristylation and phosphorylation, we were unable to detect either modification. Surface labelling and trypsin digestion protection experiments showed that the BHV-1 UL49.5h protein was present on the surface of infected cells and on the surface of mature virions. Nonionic detergent partition of isolated virions revealed that the UL49.5h protein is more tightly associated with the virion tegument-nucleocapsid structure than envelope protein gD. The results from this study demonstrate that the BHV-1 UL49.5h gene encodes a nonglycosylated virion envelope protein which may associate with virion internal structures by forming a complex with the 39-kDa virion structural protein.  相似文献   

2.
Sequence analysis within the unique long segment of the bovine herpesvirus 1 (BHV-1) genome previously identified an open reading frame (ORF), designated UL2, whose deduced polypeptide of 204 amino acids contained a consensus uracil-DNA glycosylase (UDGase) signature sequence. To determine whether the BHV-1 UL2 ORF product has UDGase activity, we positioned the UL2 sequence downstream of the T7 promoter on the vector pET-28b(+) and expressed it in Escherichia coli. Upon induction with isopropyl β-D -thiogalactopyranoside these cells produced a 23-kDa protein, the molecular mass of which was in accordance with the prediction from the nucleotide sequence. A one-step purification procedure using nickel-chelating affinity chromatography resulted in a homogeneous preparation of this protein, which displayed specific UDGase activity in an in vitro enzyme assay. These results provide evidence that the BHV-1 UL2 gene does encode a UDGase.  相似文献   

3.
F C Purves  D Spector    B Roizman 《Journal of virology》1991,65(11):5757-5764
Earlier studies have shown that a herpes simplex virus 1 (HSV-1) open reading frame, US3, encodes a novel protein kinase and have characterized the cognate amino acid sequence which is phosphorylated by this enzyme. This report identifies an apparently essential viral phosphoprotein whose posttranslational processing involves the viral protein kinase. Analyses of viral proteins phosphorylated in the course of productive infection revealed a phosphoprotein whose mobility was viral protein kinase and serotype dependent. Thus, the corresponding HSV-1 and HSV-2 phosphoproteins differ in their electrophoretic mobilities, and the phosphoprotein specified by the HSV-1 mutant deleted in US3 (R7041) differs from that of the corresponding HSV-1 and HSV-2 proteins. Analyses of HSV-1 x HSV-2 recombinants mapped the phosphoprotein between 0.42 and 0.47 map units on the prototype HSV-1 DNA map. Within this region, the UL34 open reading frame was predicted to encode a protein of appropriate molecular weight which would also contain the consensus target site for phosphorylation by the viral protein kinase as previously defined with synthetic peptides. Replacement of the native UL34 gene with a UL34 gene tagged with a 17-amino-acid epitope from the alpha 4 protein identified this gene as encoding the phosphoprotein. Finally, mutagenesis of the predicted phosphorylation site on UL34 in the viral genome, and specifically the substitution of threonine or serine with alanine in the product of the UL34 gene, yielded phosphoproteins whose electrophoretic mobilities could not be differentiated from that of the US3- mutant. We conclude that the posttranslational processing of the UL34 gene product to its wild-type phenotype requires the participation of the viral protein kinase. While the viral protein kinase is not essential for viral replication in cells in culture, the UL34 gene product itself may not be dispensable.  相似文献   

4.
F Y Liu  B Roizman 《Journal of virology》1991,65(10):5149-5156
The herpes simplex virus 1 open reading frames UL26 and UL26.5 are 3' coterminal. The larger, UL26 open reading frame encodes a protein approximately 80,000 in apparent molecular weight and contains the promoter and coding sequence of the UL26.5 gene, which specifies a capsid protein designated infected cell protein 35. The larger product contains in its entirety the amino acid sequence of the smaller protein. We report that the UL26 gene encodes a protease which catalyzes its own cleavage and that of the more abundant product of UL26.5. By inserting the coding sequence of an epitope to a cytomegalovirus monoclonal antibody and homologs of the immunoglobulin G binding domain of staphylococcal protein A into the 3' termini of the coding domains of the two open reading frames, we identified both products of the cleavage and determined that the cleavage site is approximately 20 amino acids from the carboxyl termini of both proteins.  相似文献   

5.
Saccharomyces cerevisiae CDC8 gene and its product.   总被引:14,自引:6,他引:8  
  相似文献   

6.
The nucleotide sequence of the UL31 open reading frame is predicted to encode a basic protein with a hydrophilic amino terminus and a nuclear localization signal. To identify its gene product, we constructed a viral genome in which the thymidine kinase gene was inserted between the UL31 and UL32 open reading frames. The thymidine kinase gene was then deleted, and in the process, the 5' terminus of the UL31 open reading frame was replaced with a 64-bp sequence in frame with the complete, authentic sequence of the UL31 open reading frame. The inserted sequence encoded a hydrophilic epitope derived from glycoprotein B of human cytomegalovirus and for which a monoclonal antibody is available. We report that in infected cells, the tagged protein localized in and was dispersed throughout the nucleus. Nuclear fractionation studies revealed that the UL31 protein partitions with the nuclear matrix. The protein is phosphorylated in infected cells maintained in medium containing 32Pi.  相似文献   

7.
8.
P L Ward  D E Barker    B Roizman 《Journal of virology》1996,70(5):2684-2690
An open reading frame mapping antisense to the UL43 gene of herpes simplex virus 1 encodes a protein with an apparent Mr of 38,000. The protein was detected in wild-type-infected cells with rabbit monospecific polyclonal antibody directed against a fusion protein containing all of the sequences encoded by the open reading frame. The antibody did not react with mutants from which the open reading frame was deleted. Expression of this gene, designated UL43.5, was grossly decreased or abolished in infected cells incubated in medium containing inhibitory concentrations of phosphonoacetic acid, suggesting that it is regulated as a gamma gene. UL43.5 is dispensable in cell culture. UL43.5 protein colocalized with the major capsid protein (infected cell protein 5) and the capsid scaffolding proteins (infected cell protein 35) in nuclear structures situated at the periphery of the nucleus. The predicted amino acid sequence indicates that the UL43.5 protein is a highly hydrophilic protein. The colocalization of UL43.5 protein with capsid proteins in discrete nuclear structures suggests that the former may be involved in assembly of viral particles in an accessory role in cells in culture.  相似文献   

9.
A viral deletion mutant (delta UL21) that lacked the sequences encoding 484 of the predicted first 535 amino acids of the UL21 open reading frame was genetically engineered and studied with respect to its phenotype in cells in culture. We report the following. (i) The replication of delta UL21 was identical to that of the parent herpes simplex virus 1 (HSV-1) strain F in Vero cells, but the yields were three- to fivefold lower than those of the parent virus in human embryonic lung cells. (ii) To characterize the UL21 protein, we immunized rabbits against a purified bacterial fusion protein consisting of glutathione S-transferase fused to the majority of the coding domain of the UL21 gene. Rabbit antiserum directed against the fusion protein recognized a broad band with an apparent M(r) of 62,000 to 64,000 in lysates of cells infected with HSV-1 strain F and in virions purified from the infected cell cytoplasm. This band was absent from lysates of mock-infected cells or cells infected with the delta UL21 virus. The band was significantly reduced in intensity in lysates of cells infected in the presence of phosphonoacetic acid, indicating that it is expressed as a late (gamma 1) gene. (iii) Immunofluorescence studies localized the UL21 antigen primarily in brightly staining granules in the cytoplasms of infected cells. Taken together, the data indicate that the UL21 protein is a virion component dispensable for all aspects of replication of HSV-1 in the cells tested. The electrophoretic mobility of the UL21 protein suggests that it is extensively modified posttranslationally.  相似文献   

10.
11.
We determined the nucleotide sequence of a 3.5-kb region of the bovine herpesvirus 1 (BHV-1) genome which contained the complete BHV-1 homologs of the herpes simplex virus type 1 (HSV-1) UL26 and UL26.5 genes. In HSV-1, the UL26 and UL26.5 open reading frames encode scaffold proteins upon which viral capsids are assembled. The UL26-encoded protein is also a proteinase and specifically cleaves both itself and the UL26.5-encoded protein. The overall BHV-1-encoded amino acid sequence showed only 41% identity to the HSV-1 sequences and was most divergent in the regions defined to be involved in the scaffolding function. We substituted the proteins encoded by the BHV-1 homologs of the UL26 and UL26.5 open reading frames, expressed in baculovirus, for the corresponding HSV-1 proteins in an in vitro HSV-1 capsid assembly system. The proteins expressed from the BHV-1 UL26 and UL26.5 homologs facilitated the formation of hybrid type B capsids indistinguishable from those formed entirely with HSV-1-encoded proteins.  相似文献   

12.
The gene encoding bovine herpesvirus 1 (BHV-1) glycoprotein gIV was mapped, cloned, and sequenced. The gene is situated between map units 0.892 and 0.902 and encodes a predicted protein of 417 amino acids with a signal sequence cleavage site between amino acids 18 and 19. Comparison of the BHV-1 amino acid sequence with the homologous glycoproteins of other alphaherpesviruses, including herpes simplex virus type 1 glycoprotein gD, revealed significant homology in the amino-terminal half of the molecules, including six invariant cysteine residues. The identity of the open reading frame was verified by expression of the authentic recombinant BHV-1 gIV in bovine cells by using eucaryotic expression vectors pRSDneo (strong, constitutive promoter) and pMSG (weak, dexamethasone-inducible promoter). Constitutive expression of gIV proved toxic to cells, since stable cell lines could only be established when the gIV gene was placed under the control of an inducible promoter. Expression of gIV was cell associated and localized predominantly in the perinuclear region, although nuclear and plasma membrane staining was also observed. Radioimmunoprecipitation revealed that the recombinant glycoprotein was efficiently processed and had a molecular weight similar to that of the native form of gIV expressed in BHV-1-infected bovine cells. Recombinant gIV produced in the transfected bovine cells induced cell fusion, polykaryon formation, and nuclear fusion. In addition, expression of gIV interfered with BHV-1 replication in the transfected bovine cells.  相似文献   

13.
The gene encoding the DNA methyltransferase M.CviRI from Chlorella virus XZ-6E was cloned and expressed in Escherichia coli. M.CviRI methylates adenine in TGCA sequences. DNA containing the M.CviRI gene was sequenced and a single open reading frame of 1137 bp was identified which could code for a polypeptide of 379 amino acids with a predicted molecular weight of 42,814. Comparison of the M.CviRI predicted amino acid sequence with another Chlorella virus and 14 bacterial adenine methyltransferases revealed extensive similarity to the other Chlorella virus enzyme.  相似文献   

14.
Identification and characterization of pseudorabies virus dUTPase.   总被引:8,自引:5,他引:3       下载免费PDF全文
Sequence analysis within the long segment of the pseudorabies virus (PrV) genome identified an open reading frame of 804 bp whose deduced protein product of 268 amino acids exhibited homology to dUTPases of other herpesviruses. The gene was designated UL50 because of its colinearity with the homologous gene of herpes simplex virus type 1. An antiserum raised against a bacterially expressed fragment of PrV UL50 specifically detected a 33-kDa protein in lysates of infected cells, which is in agreement with the predicted molecular mass of the PrV UL50 protein. A UL50-negative PrV mutant (PrV UL50-) was constructed by the insertion of a beta-galactosidase expression cassette into the UL50 coding sequence. A corresponding rescuant (PrV UL50resc) was also isolated. The interruption of the UL50 gene led to the disappearance of the 33-kDa protein, whereas restoration of UL50 gene expression restored detection of the 33-kDa protein. Enzyme activity assays confirmed that UL50 of PrV codes for a dUTPase which copurifies with nuclei of infected cells. PrV UL50- replicated with an only slightly reduced efficiency in epithelial cells in culture compared with that of its parental wild-type virus strain. Our results thus demonstrate that UL50 of PrV encodes a protein of 33 kDa with dUTPase activity which copurifies with nuclei of infected cells and is dispensable for replication in cultured epithelial cells.  相似文献   

15.
Sequence analysis within BamHI fragment 3 of the pseudorabies virus (PrV) genome revealed an open reading frame homologous to the UL10 gene of herpes simplex virus. A rabbit antiserum directed against a synthetic oligopeptide representing the carboxy-terminal 18 amino acids of the predicted UL10 product recognized a major 45-kDa protein in lysates of purified Pr virions. In addition, a second protein of 90 kDa which could represent a dimeric form was observed. Enzymatic deglycosylation showed that the PrV UL10 protein is N glycosylated. Therefore, it was designated PrV gM according to its homolog in herpes simplex virus. A PrV mutant lacking ca. 60% of UL10 coding sequences was able to productively replicate on noncomplementing cells, demonstrating that PrV gM is not required for viral replication in cell culture. However, infectivity of the mutant virus was reduced and penetration was delayed, indicating a modulatory role of PrV gM in the initiation of infection.  相似文献   

16.
The DNA sequence of a vaccinia virus late gene contains an open reading frame that corresponds to the 28,000-dalton (28K) polypeptide made by in vitro translation of hybrid-selected mRNA. To further characterize the protein product of this late gene, we cloned a segment of DNA containing part of the open reading frame into a bacterial expression vector. The fusion protein produced from this vector, containing 151 amino acids of the predicted vaccinia virus protein, was used to immunize rabbits. The resulting antiserum specifically bound to a major 25K structural protein that is localized in the core of vaccinia virions, as well as to a 28K protein found in infected cells. Pulse-chase experiments indicated that the 25K core protein is originally made as a 28K precursor.  相似文献   

17.
18.
Summary We determined the nucleotide sequence of gene 1 of Klebsiella phage K11, which is a member of the T7 group of phages. The largest open reading frame corresponds to a polypeptide with 906 amino acids and a molecular weight of 100383 daltons. The deduced amino acid sequence of this polypeptide shows 71% homology to the T7 RNA polymerase (the product of T7 gene 1), 72% homology to the T3 RNA polymerase and 27% homology to the SP6 RNA polymerase. Divergent evolution was clearly most pronounced in the amino-terminal portion.  相似文献   

19.
C Pan  T L Mason 《Nucleic acids research》1995,23(18):3673-3677
An open reading frame encoding a member of the L16 family of ribosomal proteins is adjacent to the URA7 gene on the left arm of chromosome II in Saccharomyces cerevisiae. The predicted L16-like polypeptide is basic (pl 11.12), contains 232 amino acids (26.52 kDa) and has 36% amino acid sequence identity to E. coli L16. Immunoblot analysis with polyclonal antibodies to the L16-like polypeptide showed specific cross-reaction with a 22,000 Mr mitochondrial polypeptide that co-sediments with the large subunit of the mitochondrial ribosome in sucrose density gradients. The levels of the L16 mRNA and protein varied in response to carbon source. In [rho degree] cells lacking mitochondrial rRNA, the L16 mRNA accumulated at normal levels, but the protein was barely detectable, indicating RNA-dependent accumulation of the L16 protein. Gene disruption experiments demonstrated that the yeast mitochondrial L16 is an essential ribosomal protein in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号