首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
Baby-hamster kidney (BHK) cells were grown continuously in long-term monolayer culture in the presence of Swainsonine, an inhibitor of alpha-mannosidase II, a processing enzyme involved in glycoprotein biosynthesis. The asparagine-linked oligosaccharides (N-glycans) were isolated from Pronase-digested cells by gel filtration, ion-exchange chromatography and affinity chromatography on concanavalin A--Sepharose and lentil lectin--Sepharose. The major N-glycans, analysed by 500 MHz 1H-n.m.r. spectroscopy, were identified as hybrid structures containing five mannose residues and neutral high-mannose N-glycans. The major hybrid species contained a core-substituted fucose alpha(1----6) residue and a NeuNAc alpha(2----3)Gal beta(1----4)GlcNAc terminal sequence; smaller amounts of non-sialylated and non-fucosylated hybrid structures were also detected. Swainsonine-treated cells also produced neutral oligosaccharides containing a single reducing N-acetylglucosamine residue substituted with polymannose sequences. The glycopeptide composition of Swainsonine-treated BHK cells resembles closely that of the ricin-resistant BHK cell mutant, RicR21 [P. A. Gleeson, J. Feeney and R. C. Hughes (1985) Biochemistry 24, 493-503], except the hybrid structures of RicR21 cells contain three, not five, mannose residues. Like RicR21 cells, Swainsonine-treated BHK cells showed a greatly increased resistance to ricin cytotoxicity, but not to modeccin, another galactose-binding lectin. These effects were readily reversed on removal of Swainsonine and growth in normal medium.  相似文献   

2.
Previous work has shown that two ricin-resistant mutants of baby hamster kidney (BHK) cells, RicR15 and RicR19, synthesize only hybrid and oligomannose-type asparagine-linked oligosaccharides [Hughes, R. C. and Mills, G. (1985) Biochem. J. 226, 487-498]. In the present report glycopeptides were released from disrupted cells by exhaustive digestion with pronase, fractionated by chromatography on concanavalin-A--Sepharose, DEAE-Sephacel and lentil-lectin--Sepharose and characterized by 500-MHz 1H-NMR spectroscopy. The major hybrid structure identified in both cell lines contains five mannose residues and the sequence NeuNAc alpha 2----3Gal beta 1----4GlcNAc beta 1----2 linked to the alpha 1----3 arm mannose of the core pentasaccharide. Analysis of extracts of normal or mutant cells has shown in the mutants a deficiency in alpha-mannosidase activity measured with p-nitrophenyl alpha-mannoside. This activity is swainsonine-sensitive and exhibits a pH optimum at about 6-6.5. Assays using a specific substrate for alpha-mannosidase II, a terminal processing glycosidase in conversion of penta-mannose hybrid intermediates to complex N-glycans, reveals a reduced activity in RicR15 cells. Analysis of glycopeptides obtained from cells labelled with [3H]fucose or [3H]galactose revealed a small proportion of branched complex N-glycans of normal structure in mutant cells.  相似文献   

3.
Baby-hamster kidney (BHK) cells were labelled metabolically by growth in media containing radioactive sugars and the asparagine-linked glycopeptides (N-glycans) obtained by Pronase digestion of disrupted cells were fractionated by chromatography on concanavalin A-Sepharose. About 2-3% of the total [3H]galactose- or [3H]fucose-labelled glycopeptides were found to be bound tightly to the lectin column and were eluted with 500 mM-methyl alpha-mannoside. Further analysis of these minor components by chromatography on Bio-Gel P4, lentil-lectin-Sepharose and DEAE-Sephacel and sensitivity to alpha-mannosidase indicates the presence in BHK-cell glycopeptides of hybrid structures of the following form: (Formula: see text) Similar structures were identified as major features of the glycoproteins of ricin-resistant mutants RicR17 and RicR19 as described previously for RicR21 cells [Hughes, Mills & Stojanovic (1983) Carbohydr. Res. 120, 215-234]. The RicR15 cell line also produces significant amounts of hybrid N-glycans. The studies show that the novel N-glycans accumulating in ricin-resistant mutants are derived by a metabolic pathway that exists to a minor extent in normal BHK cells.  相似文献   

4.
In our previous study (Woo, K. K., et al., Biosci. Biotechnol. Biochem., 68, 2547-2556 (2004), we purified an alpha-mannosidase from Ginkgo biloba seeds; it was activated by cobalt ions and highly active towards high-mannose type free N-glycans occurring in plant cells. In the present study, we have found that the substrate specificity of Ginkgo alpha-mannosidase is significantly regulated by cobalt ions. When pyridylamino derivative of Man9GlcNAc2 (M9A) was incubated with Ginkgo alpha-mannosidase in the absence of cobalt ions, Man5GlcNAc2-PA (M5A) having no alpha1-2 mannosyl residue was obtained as a major product. On the other hand, when Man9GlcNAc2-PA was incubated with alpha-mannosidase in the presence of Co2+ (1 mM), Man3-1GlcNAc2-PA were obtained as major products releasing alpha1-3/6 mannosyl residues in addition to alpha1-2 mannosyl residues. The structures of the products (Man8-5GlcNAc2-PA) derived from M9A by enzyme digestion in the absence of cobalt ions were the same as those in the presence of cobalt ions. These results clearly suggest that the trimming pathway from M9A to M5A is not affected by the addition of cobalt ions, but that hydrolytic activity towards alpha1-3/6 mannosyl linkages is stimulated by Co2+. Structural analysis of the products also showed clearly that Ginkgo alpha-mannosidase can produce truncated high-mannose type N-glycans, found in developing or growing plant cells, suggesting that alpha-mannosidase might be involved in the degradation of high-mannose type free N-glycans.  相似文献   

5.
alpha-L-Fucosidase was purified from human liver to apparent homogeneity and subjected to exhaustive digestion with Pronase. The resulting glycopeptides were isolated by gel filtration on Sephadex G-50 and further fractionated by Bio-Gel P-4 chromatography. Five glycopeptide fractions were obtained. The structures of the carbohydrate portions of all glycopeptide components were fully characterized by a combination of 500-MHz 1H NMR spectroscopy and carbohydrate composition analysis. Fraction I contained disialyl diantennary glycopeptides of the N-acetyllactosamine type. Fractions II and III contained predominantly mono(sialyl-N-acetyllactosaminyl) diantennary glycopeptides with the NeuAc alpha(2----6)Gal beta(1----4)GlcNAc beta(1----2) branch attached to alpha(1----3)-linked Man in II and to alpha(1----6)-linked Man in III. The N-acetyllactosamine-type glycopeptides in fractions I to III have a small portion (10-15%) of their Asn-linked GlcNAc residues substituted by additional alpha(1----6)-linked Fuc. Also, a minor portion of the NeuAc residues appeared to be attached to Gal in alpha(2----3) rather than alpha(2----6) linkage. Fraction IV contained a mixture of larger-size oligomannoside-type glycopeptides with a variable number (6 to 9) of Man residues. Smaller-size oligomannoside-type glycopeptides were found in fraction V, containing 3 or 5 Man residues; a small portion (10%) of the Man3GlcNAc2Asn component appeared to contain in addition a Fuc residue in alpha(1----6) linkage to the Asn-bound GlcNAc. The overall ratio of oligomannoside-type to N-acetyllactosamine-type carbohydrate structures was found to be 5:4. This article is the first account of the complete characterization of the oligomannoside-type structures in alpha-L-fucosidase; furthermore, the occurrence in alpha-L-fucosidase of mono(sialyl-N-acetyllactosaminyl) structures, Fuc-containing oligosaccharides, and NeuAc alpha(2----3) linked to Gal are reported for the first time.  相似文献   

6.
Insects, yeasts and plants generate widely different N-glycans, the structures of which differ significantly from those produced by mammals. The processing of the initial Glc2Man9GlcNAc2 oligosaccharide to Man8GlcNAc2 in the endoplasmic reticulum shows significant similarities among these species and with mammals, whereas very different processing events occur in the Golgi compartments. For example, yeasts can add 50 or even more Man residues to Man(8-9)GlcNAc2, whereas insect cells typically remove most or all Man residues to generate paucimannosidic Man(3-1)GlcNAc2N-glycans. Plant cells also remove Man residues to yield Man(4-5)GlcNAc2, with occasional complex GlcNAc or Gal modifications, but often add potentially allergenic beta(1,2)-linked Xyl and, together with insect cells, core alpha(1,3)-linked Fuc residues. However, genomic efforts, such as expression of exogenous glycosyltransferases, have revealed more complex processing capabilities in these hosts that are not usually observed in native cell lines. In addition, metabolic engineering efforts undertaken to modify insect, yeast and plant N-glycan processing pathways have yielded sialylated complex-type N-glycans in insect cells, and galactosylated N-glycans in yeasts and plants, indicating that cell lines can be engineered to produce mammalian-like glycoproteins of potential therapeutic value.  相似文献   

7.
The complete structure of oligosaccharides from locust lipophorin was studied. The asparagine-linked oligosaccharides were first liberated from the protein moiety of lipophorin by digestion with almond glycopeptidase (N-oligosaccharide glycopeptidase, EC 3.5.1.52). Two major oligosaccharides (E and F), separated by subsequent thin-layer chromatography, were analyzed by methylation analysis and 1H-NMR. Based on the experimental data, the whole structure of oligosaccharide E was identified as Man alpha 1----2Man alpha 1----6(Man alpha 1----2Man alpha 1----3) Man alpha 1----6(Man alpha 1----2Man alpha 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAc. The data also revealed that oligosaccharide F is identical with oligosaccharide E in the structure, except for one glucose residue that is linked to the nonreducing terminal Man alpha 1----2 residue.  相似文献   

8.
Glycoprotein 71 from Friend murine leukemia virus was digested with proteases and the glycopeptides obtained were isolated and assigned, by amino acid sequencing, to the eight N-glycosylated asparagines in the molecule; only Asn334 and Asn341 could not be separated. The oligosaccharides liberated from each glycopeptide by endo-beta-N-acetylglucosaminidase H, or by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F, were fractionated and subjected to structural analysis by one- and two-dimensional 1H NMR, as well as by methylation/gas-liquid-chromatography/mass-fragmentography. At each glycosylation site, the substituents were found to be heterogeneous including, at Asn334/341 and Asn410, substitution by different classes of N-glycans: oligomannosidic oligosaccharides, mainly Man alpha 1----6(Man alpha 1----3)Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAc beta 1----, were detected at Asn168, Asn334/341 and Asn410. Hybrid species, partially sialylated, intersected and (proximally) funcosylated Man alpha 1----6(Man alpha 1----3)Man alpha 1----6 and Man alpha 1----3Man alpha 1----6 and Man alpha 1----3Man alpha 1----6(Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAc beta 1----, were found at Asn12, as previously published [Schlüter, M., Linder, D., Geyer, R., Hunsmann, H., Schneider, J. & Stirm, S. (1984) FEBS Lett. 169, 194-198] and at Asn334/341. N-Acetyllactosaminic glycans, mainly partially intersected and fucosylated NeuAc alpha 2----3 or Gal alpha 1----3Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(NeuAc alpha 2----6 or NeuAc alpha 2----3Gal-beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNac beta 1----4GlcNAc beta 1---- with some bifurcation at ----6Man alpha 1----6, were obtained from Asn266, Asn302, Asn334/341, Asn374 and Asn410. In addition, Thr268, Thr277, Thr279, Thr304/309, as well as Ser273 and Ser275, were found to be O-glycosidically substituted by Gal beta 1----3GalNAc alpha 1----, monosialylated or desialylated at position 3 of Gal or/and position 6 of GalNAc.  相似文献   

9.
Elsewhere, we characterized the structure of twelve N-glycans purified from royal jelly glycoproteins (Kimura, Y. et al., Biosci. Biotechnol. Biochem., 64, 2109-2120 (2000)). Structural analysis showed that the typical high-mannose type structure (Man9-4GlcNAc2) accounts for about 72% of total N-glycans, a biantennary-type structure (GlcNAc2Man3GlcNAc2) about 8%, and a hybrid-type structure (GlcNAc1Man4GlcNAc2) about 3%. During structural analysis of minor N-glycans of royal jelly glycoproteins, we found that one had an N-acetyl-galactosaminyl residue at the non reducing end; most of such residues have been found in N-glycans of mammalian glycoproteins. By exoglycosidase digestion, methylation analysis, ion-spray (IS)-MS analysis, and 1H NMR spectroscopy, we identified the structure of the N-glycan containing GalNAc as; GlcNAc(beta)1-2Man(alpha)1-6(GalNAcbeta1 - 4GIcNAcbeta1 - 2Man(alpha)1 - 3)Manbeta1 - 4GlcNAc(beta)1-4GlcNAc. This result suggested that a beta1-4 GalNAc transferase is present in hypopharyngeal and mandibular glands of honeybees.  相似文献   

10.
We have elucidated the carbohydrate-binding profile of a non-monosaccharide-binding lectin named Eucheuma serra lectin (ESA)-2 from the red alga Eucheuma serra using a lectin-immobilized column and a centrifugal ultrafiltration-high performance liquid chromatography method with a variety of fluorescence-labeled oligosaccharides. In both methods, ESA-2 exclusively bound with high-mannose type (HM) N-glycans, but not with any of other N-glycans including complex type, hybrid type and core pentasaccharides, and oligosaccharides from glycolipids. These findings indicate that ESA-2 recognizes the branched oligomannosides of the N-glycans. However, ESA-2 did not bind with any of the free oligomannoses examined that are constituents of the branched oligomannosides implying that the portion of the core N-acetyl-D-glucosamine (GlcNAc) residue(s) of the N-glycans is also essential for binding. Thus, the algal lectin was strictly specific for HM N-glycans and recognized the extended carbohydrate structure with a minimum size of the pentasaccharide, Man(alpha1-3)Man(alpha1-6)Man(beta1-4)GlcNAc(beta1-4) GlcNAc. Kinetic analysis of binding with a HM heptasaccharide (M5) showed that ESA-2 has four carbohydrate-binding sites per polypeptide with a high association constant of 1.6x10(8) M-1. Sequence analysis, by a combination of Edman degradation and mass analyses of the intact protein and of peptides produced by its enzymic digestions, showed that ESA-2 is composed of 268 amino acids (molecular weight 27950) with four tandemly repeated domains of 67 amino acids. The number of repeats coincided with the number of carbohydrate-binding sites in the monomeric molecule. Surprisingly, the marine algal lectin was homologous to hemagglutinin from the soil bacterium Myxococcus xanthus.  相似文献   

11.
Structural studies were carried out on two kinds of teichuronic acid-glycopeptide complexes (designated as TU-GP-I and TU-GP-II) isolated from lysozyme digest of N-acetylated cell walls of Bacillus megaterium AHU 1375 by ion-exchange chromatography and gel chromatography. TU-GP-I, accounting for about 25% of the cell walls, contained N-acetylmannosaminuronic acid, N-acetylglucosamine, glucose, galactose, glycerol, and phosphorus in an approximate molar ratio of 1:1:2:1:0.5:0.5, together with small amounts of glycopeptide components. TU-GP-II, accounting for about 9% of the cell walls, contained glucuronic acid, glucose, and fucose in a molar ratio of about 2:1.5:1, together with small amounts of glycopeptide components. The results of analyses involving Smith degradation, chromium oxidation, methylation, acetolysis, and H-NMR measurement led to the conclusion that the polysaccharide chain of TU-GP-I comprised repeating units,----6) Glc(alpha 1----3)-ManNAcUA(beta 1----4)[Gal(alpha 1----3)][Glc(beta 1----6)]GlcNAc(beta 1----. About half of the repeating units were substituted by glycerophosphoryl residues at C-6 of the beta-glucosyl residues linked to the N-acetylglucosamine residues. By means of a similar procedure, the polysaccharide chain of TU-GP-II was shown to comprise repeating units,----4)GlcUA(alpha 1----3)GlcUA(alpha 1----3)Glc(alpha 1----3)Fuc(alpha 1----, of which about half were substituted by alpha-glucosyl residues at C-3 of the 4-substituted glucuronosyl residues.  相似文献   

12.
The N-glycans of purified recombinant middle surface protein (preS2+S) from hepatitis B virus, a candidate vaccine antigen expressed in a mnn9 mutant strain of Saccharomyces cerevisiae, have been characterized structurally. The glycans were released by N-glycanase treatment, isolated by size-exclusion chromatography on Sephadex G-50 and Bio-Gel P-4 columns, and analyzed by 500-MHz 1H NMR spectroscopy and fast atom bombardment mass spectrometry. The mixture of oligosaccharides was fractionated by HPLC, the major subfractions were isolated, and their carbohydrate compositions were determined by high-pH anion-exchange chromatography with pulsed amperometric detection. The combined results suggest that high-mannose oligosaccharides account for all the N-glycans released from preS2+S: structures include Man7GlcNAc2, Man8GlcNAc2, and Man9GlcNAc2 isomers in the ratios of 3:6:1. Approximately 80% of the oligosaccharides contain the C2,C6-branched trimannosyl structural element typical of yeast high-mannose oligosaccharides but not usually found in high-mannose oligosaccharides in animal glycoproteins.  相似文献   

13.
Five cell lines of ricin-resistant BHK cells have been assayed for gross carbohydrate analysis of cellular glycoproteins, for the activities of several glycosidases and of specific glycosyl transferases active in assembly of N-glycans of glycoproteins. The latter enzymes include sialyl transferase using asialofetuin as glycosyl acceptor, fucosyl transferases using asialofetuin and asialoagalactofetuin acceptors, galactosyl transferases using ovalbumin, ovomucoid and N-acetylglucosamine as acceptors and N-acetylglucosaminyl transferases using ovalbumin and glycopeptides as acceptors. Cell line RicR14, binding less ricin than normal BHK cells, contains reduced amounts of sialic acid, galactose and N-acetylglucosamine in cellular glycoproteins and lacks almost completely N-acetylglucosamine transferase I, an essential enzyme in assembly of ricin-binding carbohydrate sequences of N-glycans. These cells also contain reduced levels of N-acetylglucosamine transferase II active on a product of N-acetylglucosamine transferase I action. Sialyl transferase activity is severely depressed while fucose-(alpha 1 leads to 6)-N-acetylglucosamine fucosyl transferase activity is increased. Cell lines RicR15, 17, 19 and 21 showed partial deficiencies in galactosyl and N-acetylglucosaminyl transferases. A hypothesis is put forward to account for the different carbohydrate compositions and ricin binding properties of glycoproteins synthesised by these cells in terms of the determined enzyme defects, the normal level of sialyl transferases detected in RicR15 and RicR21 cells and the elevated levels of sialyl and fucosyl transferases detected in RicR17 and 19 cells. None of the above changes in glycosyl transfer reactions in the RicR cell lines are due to enhanced glycosidase or sugar nucleotidase activities in the mutant cells.  相似文献   

14.
The pollen of oil palm (Elaeis guineensis Jacq.) is a strong allergen and causes severe pollinosis in Malaysia and Singapore. In the previous study (Biosci. Biotechnol. Biochem., 64, 820-827 (2002)), from the oil palm pollens, we purified an antigenic glycoprotein (Ela g Bd 31 K), which is recognized by IgE from palm pollinosis patients. In this report, we describe the structural analysis of sugar chains linked to palm pollen glycoproteins to confirm the ubiquitous occurrence of antigenic N-glycans in the allergenic pollen. N-Glycans liberated from the pollen glycoprotein mixture by hydrazinolysis were labeled with 2-aminopyridine followed by purification with a combination of size-fractionation HPLC and reversed-phase HPLC. The structures of the PA-sugar chains were analyzed by a combination of two-dimensional sugar chain mapping, electrospray ionization mass spectrometry (ESI-MS), and tandem MS analysis, as well as exoglycosidase digestions. The antigenic N-glycan bearing alpha1-3 fucose and/or beta1-2 xylose residues accounts for 36.9% of total N-glycans: GlcNAc2Man3Xyl1Fuc1GlcNAc2 (24.6%), GlcNAc2Man3Xyl1GlcNAc2 (4.4%), Man3Xyl1Fuc1-GlcNAc2 (1.1%), GlcNAc1Man3Xyl1Fuc1GlcNAc2 (5.6%), and GlcNAc1Man3Xyl1GlcNAc2 (1.2%). The remaining 63.1% of the total N-glycans belong to the high-mannose type structure: Man9GlcNAc2 (5.8%), Man8GlcNAc2 (32.1%), Man7GlcNAc2 (19.9%), Man6GlcNAc2 (5.3%).  相似文献   

15.
Incubation of honeybee (Apis mellifica) venom-gland extracts with GDP-[14C]fucose and GlcNAc beta 1----2Man alpha 1----6(GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAc beta 1----N-Asn-peptide(NAc) gave a labeled product in 40% yield. Analysis by 500-MHz 1H-NMR spectroscopy indicated the transferred fucose-(Fuc) residue to be alpha 1----3-linked to the Asn-bound GlcNAc. Further proof was provided by one-dimensional and two-dimensional 1H-NMR analysis of the incubation mixture, after incubation with beta-N-acetylhexosaminidase. The established carbohydrate structure (formula; see text) proves the existence of a novel alpha 1----3-fucosyltransferase with the ability to effect difucosylation of the Asn-bound GlcNAc in N-glycans.  相似文献   

16.
Although it has been found that plant endo-beta-N-acetylglucosaminidase shows strong activity towards denatured glycoproteins and glycopeptides with high-mannose type N-glycans and free high-mannose type N-glycans bearing the chitobiosyl unit, the endogenous substrates for plant endoglycosidase have not yet been identified. Recently we purified and characterized an endo-beta-N-acetylglucosaminidase from rice culture cells and identified the gene encoded. Furthermore, we found structural features of free N-glycans in the cells, indicating that high-mannose type species (Man(9-5)GlcNAc(1)) occur at concentration of several micromolar (microM). Hence, in this study we analyzed glycoform of N-glycans linked to glycoproteins expressed in rice culture cells to see whether endogenous glycoproteinous substrate occurs in reasonable amounts. Structural analysis revealed that more than 95% of total N-glycans linked to glycoproteins in the rice cells had the plant complex type structure, including Lewis a epitope-harboring type, although high-mannose type structures account for less than 5% of total N-glycans.  相似文献   

17.
The N-glycosidically linked glycans in the large subunit (HA1) of the hemagglutinin from fowl plague virus, strain Dutch (containing about 15%, w/w, of carbohydrates), were liberated by alkaline hydrolysis, and were filtrated through Bio-Gel as the re-N-acetylated oligosaccharide alditols. One major fraction (90%, mol/mol) was obtained. It was subfractionated by concanavalin A affinity chromatography and was analyzed by methylation/capillary gas chromatography/mass fragmentography and especially by one-dimensional and two-dimensional 1H nuclear magnetic resonance. The major HA1 glycans, which are not sialylated, were thus found to comprise about 40%, 30% and 20% (mol/mol), respectively, of biantennary intersected, biantennary, and triantennary N-acetyllactosaminic ('complex') oligosaccharides. About two thirds of the internal GlcNAc residues in these glycans are substituted by Fuc(alpha 1----6), all the triantennary species carry the third Gal(beta 1----4)GlcNAc(beta 1----unit at the Man(alpha 1----6)-branch, and roughly one fourth of the N-acetyllactosamine units in the non-intersected biantennary oligosaccharides are incomplete.  相似文献   

18.
The structures of unconjugated or free N-glycans in stems of soybean seedlings and dry seeds have been identified. The free N-glycans were extracted from the stems of seedlings or defatted dry seeds. After desalting by two kinds of ion-exchange chromatography and a gel filtration, the free N-glycans were coupled with 2-aminopyridine. The resulting fluorescence-labeled (PA-) N-glycans were purified by gel filtration, Con A affinity chromatography, reverse-phase HPLC, and size-fractionation HPLC. The structures of the PA-sugar chains purified were analyzed by the combination of two-dimensional sugar chain mapping, jack bean alpha-mannosidase digestion, alpha-1,2-mannosidase digestions, partial acetolysis, and ESI-MS/MS. The free N-glycan structures found showed that two categories of free N-glycans occur in the stems of soybean seedlings. One is a high-mannose type structure having one GlcNAc residue at the reducing end (Man 9 approximately 5 GlcNAc1, 93%), that would be derived by endo-GM (Kimura, Y. et al., Biochim. Biophys. Acta, 1381, 27-36 (1998)). The other small component is a xylose-containing type one having two GlcNAc residues at the reducing end (Man3Xyl1GlcNAc2, 7%), which would be derived by PNGase-GM (Kimura, Y. and Ohno, A., Biosci. Biotechnol. Biochem., 62, 412-418 (1998)). The detailed structural analysis of free glycans showed that high-mannose type free N-glycans (Man 9 approximately 5 GlcNAc1) in the soybean seedlings have a common core structural unit; Manalpha1-6(Man1-3)Manalpha1-6(Manalpha1-3)Ma nbeta1-4GlcNAc. Comparing the amount of free N-glycans in the seedling stems and dry seeds, the amount in the stems of seedlings was much higher than that in the dry seeds; approximately 700 pmol per one stem, 8 pmol in one dry seed. This fact suggested that free N-glycans in soybean seedlings could be produced by two kinds of N-glycan releasing enzymes during germination or seedling-development.  相似文献   

19.
The structures of N-glycans of total glycoproteins in royal jelly have been explored to clarify whether antigenic N-glycans occur in the famous health food. The structural feature of N-glycans linked to glycoproteins in royal jelly was first characterized by immunoblotting with an antiserum against plant complex type N-glycan and lectin-blotting with Con A and WGA. For the detail structural analysis of such N-glycans, the pyridylaminated (PA-) N-glycans were prepared from hydrazinolysates of total glycoproteins in royal jelly and each PA-sugar chain was purified by reverse-phase HPLC and size-fractionation HPLC. Each structure of the PA-sugar chains purified was identified by the combination of two-dimensional PA-sugar chain mapping, ESI-MS and MS/MS analyses, sequential exoglycosidase digestions, and 500 MHz 1H-NMR spectrometry. The immunoblotting and lectinblotting analyses preliminarily suggested the absence of antigenic N-glycan bearing beta1-2 xylosyl and/or alpha1-3 fucosyl residue(s) and occurrence of beta1-4GlcNAc residue in the insect glycoproteins. The detailed structural analysis of N-glycans of total royal jelly glycoproteins revealed that the antigenic N-glycans do not occur but the typical high mannose-type structure (Man(9 to approximately 4)GlcNAc2) occupies 71.6% of total N-glycan, biantennary-type structures (GlcNAc2Man3 GlcNAc2) 8.4%, and hybrid type structure (GlcNAc1 Man4GlcNAc2) 3.0%. Although the complete structures of the remaining 17% N-glycans; C4, (HexNAc3 Hex3HexNAc2: 3.0%), D2 (HexNAc2Hex5HexNAc2: 4.5%), and D3 (HexNAc3Hex4HexNAc2: 9.5%) are still obscure so far, ESI-MS analysis, exoglycosidase digestions by two kinds of beta-N-acetylglucosaminidase, and WGA blotting suggested that these N-glycans might bear a beta1-4 linkage N-acetylglucosaminyl residue.  相似文献   

20.
Subcellular distribution of plant endo-beta-N-acetylglucosaminidase (endo-beta-GlcNAc-ase) and high-mannose type free N-glycans produced by the endoglycosidase has been analyzed using cotyledons of pumpkin seedlings as the model plant cells. Each organelle in the cotyledons was fractionated by ultracentrifugation with the sucrose density gradient system and the endo-beta-GlcNAc-ase activity in each fraction was assayed with fluorescence labeled N-glycans as substrates. The endoglycosidase activity was exclusively recovered in the soluble fraction (cytosol fraction) but not in other specific organellar fractions, suggesting that the endoglycosidase would reside predominantly in the cytosol. The quantitative analysis of high-mannose type free N-glycans occurring in each fraction showed that more than 70% of the free N-glycans was recovered from the soluble fraction, suggesting the endoglycosidase would work in the cytosol and the resulting free N-glycans would accumulate in the same fraction. The pumpkin endo-beta-GlcNAc-ase (endo-CM) partially purified from the cotyledons showed optimum activity around pH 6.5, supporting this enzyme would reside in the cytosol. Furthermore, the detailed analysis of substrate specificity of endo-CM using various high-mannose type N-glycans showed that the pumpkin enzyme, as well as other plant endo-beta-N-acetylglucosaminidases, were highly active toward the high-mannose type glycans bearing the Man(alpha1)-2Man(alpha1)-3Man(beta1)-structural unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号