首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
Cai S  Singh BR 《Biochemistry》2004,43(9):2541-2549
Fourier transform infrared spectroscopy is becoming an increasingly important method to study protein secondary structure. The amide I region of the protein infrared spectrum is the widely used region, whereas the amide III region has been comparatively neglected due to its low signal. Since there is no water interference in the amide III region and, more importantly, the different secondary structures of proteins have more resolved differences in their amide III spectra, it is quite promising to use the amide III region to determine protein secondary structure. In our current study, a partial least squares (PLS) method was used to predict protein secondary structures from the protein IR spectra. The IR spectra of aqueous solutions of 16 different proteins of known crystal structure have been recorded, and the amide I, the amide III, and the amide I combined with the amide III region of these proteins were used to set up the calibration set for the PLS algorithm. Our results correlate quite well with the data from X-ray studies, and the prediction from the amide III region is better than that from amide I or combined amide I and amide III regions.  相似文献   

2.
A method is presented for determining the secondary structural composition of a protein in aqueous solution from its infrared spectrum. A factor analysis approach is used to analyze the infrared spectra of 18 proteins whose crystal structures are known from X-ray studies. Factor analysis followed by multiple linear regression identifies those eigenspectra that correlate with the variation in properties described by the calibration set. The properties of interest in this study are % alpha-helix, % beta-sheet, and % turns. In the analysis of an unknown, the factor loadings required to reproduce its spectrum are substituted in the regression equation for each property to predict its secondary structural composition. The accuracy of the method was determined by removing each standard, in turn, from the calibration set and using a calibration set generated from the remainder to predict its composition. By this method we obtain standard errors of prediction of 3.9% for alpha-helix, 8.3% for beta-sheet, and 6.6% for turns. The method may also be applied to the spectra of proteins in 2H2O. The method has important advantages over those currently in use for the quantitative analysis of the infrared spectra of proteins. Manipulation of the spectrum is kept to a minimum, no curve-fitting is necessary, and the several amide I band components need not be assigned.  相似文献   

3.
A new method for estimating protein secondary structure from the laser Raman spectrum has been developed whereby the amide I Raman band of a protein is analyzed directly as a linear combination of amide I bands of proteins whose secondary structures are known. For 14 proteins, analyzed by removing each one from the reference set and analyzing its structure in terms of the remaining proteins, the average correlation coefficients between the Raman and X-ray diffraction estimates of helix, beta-strand, turn, and undefined were 0.98, 0.98, 0.82 and 0.35, respectively. Significant correlations were also observed for distinctions between alpha-helix (0.98) and disordered helix (0.82), and between parallel (0.82) and antiparallel (0.97) beta-sheets. The average standard deviation of these Raman estimates from the X-ray values is less than 4%. In addition, a singular value analysis of 20 Raman amide I spectra indicates that there may be as many as nine significant independent pieces of information present in the amide I region.  相似文献   

4.
A Dong  P Huang  W S Caughey 《Biochemistry》1990,29(13):3303-3308
Infrared spectra have been obtained for 12 globular proteins in aqueous solution at 20 degrees C. The proteins studied, which vary widely in the relative amounts of different secondary structures present, include myoglobin, hemoglobin, immunoglobulin G, concanavalin A, lysozyme, cytochrome c, alpha-chymotrypsin, trypsin, ribonuclease A, alcohol dehydrogenase, beta 2-microglobulin, and human class I major histocompatibility complex antigen A2. Criteria for evaluating how successfully the spectra due to liquid and gaseous water are subtracted from the observed spectrum in the amide I region were developed. Comparisons of second-derivative amide I spectra with available crystal structure data provide both qualitative and quantitative support for assignments of infrared bands to secondary structures. Band frequency assignments assigned to alpha-helix, beta-sheet, unordered, and turn structures are highly consistent among all proteins and agree closely with predictions from theory. alpha-Helix and unordered structures can each be assigned to only one band whereas multiple bands are associated with beta-sheets and turns. These findings demonstrate a method of analysis of second-derivative amide I spectra whereby the frequencies of bands due to different secondary structures can be obtained. Furthermore, the band intensities obtained provide a useful method for estimating the relative amounts of different structures.  相似文献   

5.
The vibrational circular dichroism (VCD) spectra of 20 proteins dissolved in D2O are presented in the amide I' region. These data are decomposed into a linear combination of orthogonal subspectra generated by the principal component method of factor analysis, and the results for 13 of them are compared to their secondary structures as determined from X-ray crystallography. Factor analysis of the VCD yields six statistically significant subspectra that can be used to reproduce the spectra. Their coefficients can then be used to characterize a given protein. Comparison of cluster analyses of these VCD coefficients and of the secondary structure fractional coefficients from X-ray crystallography showed that proteins clustered in the VCD analysis were also clustered in the X-ray analysis. The relative fractions of alpha-helix and beta-sheet in the protein dominate the clustering in both data sets. Qualitative characterization of the secondary structure of a given protein is obtained from its clustering on the basis of spectral characteristics. A strong linear correlation was found between the coefficient of the second subspectrum and the alpha-helical fraction for the proteins studied. The second coefficient also correlated to the beta-sheet fraction, and the first coefficient weakly correlated to the fraction for "other". Subsequent multiple-parameter regression analyses of the VCD factor analysis coefficients, constrained to include only significant dependencies, yielded reliable determination of the alpha-helix fraction and somewhat less confident determination of beta-sheet, bend, and "other" components. Predictive capability for proteins not in the regression was good. Varimax rotation of the coefficients transformed the subspectra and gave simple correlations to secondary structure components but had less reliability and more restrictions than the multiple regression on the original coefficients. The partial least-squares analysis method was also used to predict fractional secondary structures for the training set proteins but resulted in somewhat higher average error, particularly for beta-sheet, than the multiple regression. The turn fraction was effectively undetermined in both the regression and partial least-squares analyses. These statistical analyses represent the first determination of a quantitative relationship between VCD spectra and secondary structure in proteins.  相似文献   

6.
The amide I band in the laser Raman spectrum of proteins has been resolved into six components, each representing residues in a different type of secondary structure. These structure types are ordered or bihydrogen-bonded helix (believed to be located in the center of helical segments), disordered or monohydrogen-bonded helix (believed to be located at the ends of helical segments), antiparallel beta sheet, parallel beta sheet, reverse turn, and undefined. The Raman spectrum representing 100% of each type of residue conformation has been computed from the solvent-subtracted Raman spectra of ten proteins with known secondary structure, plus poly-l-lysine using a least-squares solution of the overdetermined system of equations. Linear combinations of these reference spectra were then fitted to the experimental amide I spectra of these and other proteins to estimate the fractions of residues in these conformations. Statistical tests suggest that the discrimination between bihydrogen-bonded helix and monohydrogen-bonded helix is significant as is the discrimination between parallel and antiparallel β-sheet. However, the discrimination between random structure and turns has not yet been accomplished by these studies. The absolute difference between X-ray and Raman estimates of structure for 17 protein samples is generally less than 6%. We conclude that detailed and reasonably accurate estimates of secondary structure can be derived from the amide I spectra of proteins.  相似文献   

7.
Raman spectroscopy was employed to examine the secondary structure of the cAMP receptor protein (CRP). Spectra were obtained over the range 400-1900 cm-1 from solutions of CRP and from CRP-cAMP cocrystals. The spectra of CRP dissolved in 30 mM sodium phosphate and 0.15 M NaCl buffered at either pH 6 or pH 8 or dissolved in 0.15-0.2 M NaCl at protein concentrations of 5, 15, and 30 mg/mL were examined. Estimates of the secondary structure distribution were made by analyzing the amide I region of the spectra (1630-1700 cm-1). CRP secondary structure distributions were essentially the same in either pH and at all protein concentrations examined. The amide I analyses indicated a structural distribution of 44% alpha-helix, 28% beta-strand, 18% turn, and 10% undefined for CRP in solution. Raman spectra of CRP-cAMP cocrystals differed from the spectra of CRP in solution. Some differences were assigned to interfering background bands, whereas other spectral differences were attributed to changes in CRP structure. Differences in the amide III region and in the intensity at 935 cm-1 were consistent with alterations in secondary structure. Analysis of the amide I region of the CRP-cAMP cocrystal spectrum indicated a secondary structure distribution of 37% alpha-helix, 33% beta-strand, 17% turn, and 12% undefined. This result is in agreement with a published secondary structure distribution derived from X-ray analysis of CRP-cAMP cocrystals (37% alpha-helix and 36% beta-strand).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
R A Copeland  T G Spiro 《Biochemistry》1987,26(8):2134-2139
Raman intensities obtained with UV laser excitation at 223, 218, 204, 200, and 192 nm are reported for the amide I, II, III, and II' bands of random-coil polylysine. The excitation profiles show enhancement via the pi-pi electronic transition, at approximately 190 nm. Enhancement for amide I is weak, however, and most of the intensity can be accounted for by preresonance with a deeper UV transition at approximately 165 nm. The amide II' band dominates the spectrum in D2O, consistent with the suggestion that the main distortion coordinate in the pi-pi excited state is the stretching of the C-N peptide bond. Amide II intensities with 200- and 192-nm excitation are reported for several proteins. The previously reported negative linear correlation with alpha-helix content (due to Raman hypochromism in the alpha-helices) is found not to apply to proteins with high beta-sheet content when the excitation wavelength is 200 nm. Much higher intensities are seen for these proteins and are attributed to a red shift of the pi-pi absorption for the beta-structure. A linear correlation with alpha-helix content is found for excitation of 192 nm, which corresponds to an isosbestic point of the beta-sheet and random-coil absorption bands. Characteristic amide II Raman cross sections are derived for alpha-helical, beta-sheet, and random-coil elements and are used to determine secondary structure for alpha 1- and beta-purothionin, by use of amide II intensities with 200- and 192-nm excitation. The results are in good agreement with a previous determination based on amide I band deconvolution in off-resonance Raman spectra.  相似文献   

9.
An infrared (ir) method to determine the secondary structure of proteins in solution using the amide I region of the spectrum has been devised. The method is based on the circular dichroism (CD) matrix method for secondary structure analysis given by Compton and Johnson (L. A. Compton and W. C. Johnson, 1986, Anal. Biochem. 155, 155-167). The infrared data matrix was constructed from the normalized Fourier transform infrared spectra from 1700 to 1600 cm-1 of 17 commercially available proteins. The secondary structure matrix was constructed from the X-ray data of the seventeen proteins with secondary structure elements of helix, beta-sheet, beta-turn, and other (random). The CD and ir methods were compared by analyzing the proteins of the CD and ir databases as unknowns. Both methods produce similar results compared to structures obtained by X-ray crystallographic means with the CD slightly better for helix conformation, and the ir slightly better for beta-sheet. The relatively good ir analysis for concanavalin A and alpha-chymotrypsin indicate that the ir method is less affected by the presence of aromatic groups. The concentration of the protein and the cell path length need not be known for the ir analysis since the spectra can be normalized to the total ir intensity in the amide I region. The ir spectra for helix, beta-sheet, beta-turn, and other, as extracted from the data-base, agree with the literature band assignments. The ir data matrix and the inverse matrix necessary to analyze unknown proteins are presented.  相似文献   

10.
Inverse circular dichroism (CD) spectra are presented for each of the five major secondary structures of proteins: alpha-helix, antiparallel and parallel beta-sheet, beta-turn, and other (random) structures. The fraction of the each secondary structure in a protein is predicted by forming the dot product of the corresponding inverse CD spectrum, expressed as a vector, with the CD spectrum of the protein digitized in the same way. We show how this method is based on the construction of the generalized inverse from the singular value decomposition of a set of CD spectra corresponding to proteins whose secondary structures are known from X-ray crystallography. These inverse spectra compute secondary structure directly from protein CD spectra without resorting to least-squares fitting and standard matrix inversion techniques. In addition, spectra corresponding to the individual secondary structures, analogous to the CD spectra of synthetic polypeptides, are generated from the five most significant CD eigenvectors.  相似文献   

11.
Selected regions of infarred (ir) and circular dichroism (CD) spectral data from 10 proteins were combined and analyzed by a factor analysis method. The regions consisted of the area normalized amide I region from 1700 to 1600 cm-1 for the ir spectra and from 178 to 240 nm for the CD spectra. Each CD spectrum was scaled by a factor of 0.5 before appending the data to the ir spectral data. The scaling factor was deemed necessary to account for relative intensity differences between the ir and CD data and provided nearly optimum agreement between secondary structure estimated by the combined approach to secondary structure determined by X-ray crystallography. The ir/CD combined approach to estimation of helix, beta-sheet, beta-turn, and other or undefined secondary structure agreed with X-ray crystallographic determined structure better than estimation using data from either method alone. Correlation coefficients between X-ray and ir/CD combined secondary structure determinations were 0.99 for helix, 0.90 for beta-sheet, 0.70 for beta-turn, and 0.78 for other structure. The four most significant eigenvectors or basis spectra from eigenanalysis of the ir/CD data are presented as well as generalized inverse spectra for four secondary structures.  相似文献   

12.
The infrared amide bands are sensitive to the conformation of the polypeptide backbone of proteins. Since the backbone of proteins folds in complex spatial arrangements, the amide bands of these proteins result from the superimposition of vibration modes corresponding to the different types of structural motifs (alpha helices, beta sheets, etc.). Initially, band deconvolution techniques were applied to determine the secondary structure of proteins, i.e., the abundance of each structural motif in the polypeptide chain was directly related to the area of the suitable deconvolved vibration modes under the amide I band (1700-1600 cm(-1)). Recently, several multivariate regression methods have been used to predict the secondary structure of proteins as an alternative to the previous methods. They are based on establishing a relationship between a matrix of infrared protein spectra and another that includes their secondary structure, expressed as the fractions of the different structural motifs, determined from X-ray analysis. In this study, we investigated the use of the local regression method interval partial least-squares (iPLS) to seek improvements to the full-spectrum PLS and other regression methods. The local character of iPLS avoids the use of spectral regions that can introduce noise or that can be irrelevant for prediction and focuses on finding specific spectral ranges related to each secondary structure motif in all the proteins. This study has been applied to a representative protein data set with infrared spectra covering a large wavenumber range, including amides I-III bands (1700-1200 cm(-1)). iPLS has revealed new structural mode assignments related to less explored amide bands and has offered a satisfactory predictive ability using a small amount of selected specific spectral information.  相似文献   

13.
A ridge regression method is presented for prediction of the secondary structure of proteins by the circular dichroism spectra (CD) from 190 to 236 nm. Eight types of the secondary structure were calculated on a microcalculator. The method is based on the X-ray data of Kabsh and Sander. The teaching rule is constructed on CD spectra of 30 proteins of all structural classes of the globular proteins (alpha, alpha/beta, alpha + beta and beta-proteins). The errors of the methods are analysed by removing each protein from the reference set and analyzing its structure in terms of the remaining proteins. Correlation coefficients and root-mean square deviations between CD and X-ray data were: 0.99 and 0.03 for alpha-helix, 0.86 and 0.02 for 3(10)-helix, 0.92 and 0.06 for antiparallel beta-sheet, 0.86 and 0.03 for parallel beta-sheet, 0.94 and 0.01 for T3 beta-turn, 0.85 and 0.02 for other beta-turn, 0.84 and 0.03 for S-bends, 0.83 and 0.04 for "random" structure.  相似文献   

14.
Human airway lysozyme, purified from pathological bronchial secretions, is characterized by a specific activity 3-fold higher than that of hen egg-white lysozyme. The amino acid composition of human airway lysozyme is identical to that of other human lysozymes. The laser Raman spectra of human airway lysozyme and hen egg-white lysozyme in phosphate buffer solution (pH 7.2) are recorded in the range 300-1900 cm-1 at 488 nm. Drastic intensity differences are observed between the spectra analyzed in the ranges characteristic of the peptide backbone (e.g., beta-sheet; C alpha-C, C alpha-N), and of the aromatic side-chain vibrations (tyrosine, tryptophan). The deconvolution of the Raman amide I band gives secondary structures of 38% and 39% alpha-helix, 25% and 20% beta-sheet, and 37% and 41% undefined structure for the human and hen lysozymes, respectively.  相似文献   

15.
Fourier transform infrared spectroscopy (FTIR) was used to investigate the secondary structure of 5'-nucleotidase from bull seminal plasma (BSP). Spectra of protein in both D2O and H2O were analyzed by deconvolution and second derivative methods in order to observe the overlapping components of the amide I band. The protein, which is made up of two apparently identical subunits and which contains two zinc atoms, was studied in its native form, in the presence of dithiotreitol (DTT) and after removal of the two zinc atoms by means of nitrilotriacetic acid (NTA). Deconvolved and second derivative spectra of amide I band showed that the native protein contains mostly beta-sheet structure with a minor content of alpha-helix. The quantitative analysis of the amide I components was performed by a curve-fitting procedure which revealed 54% beta-sheet, 18% alpha-helix, 22% beta-turns and 6% unordered structure. The second derivative and deconvolved spectra of amide I band showed that no remarkable changes in the secondary structure of 5'-nucleotidase were induced by either DTT or NTA. These results were confirmed by the curve-fitting analysis where little or no changes occurred in the relative content of amide I components when the protein was treated with DTT or with NTA. Major changes, however, were observed in the thermal denaturation behavior of the protein. The native protein showed denaturation at temperatures between 70 and 75 degrees C, while the maximum of denaturation was observed between 65 and 70 degrees C and between 55 and 60 degrees C in the presence of NTA and DTT, respectively. The results obtained indicate that the two separate subunits of the protein have essentially the same secondary structure as that of the native enzyme.  相似文献   

16.
Peptide-chain secondary structure of bacteriorhodopsin.   总被引:7,自引:3,他引:4       下载免费PDF全文
Ultraviolet circular dichroism spectroscopy in the interval from 190 to 240 nm and infrared spectroscopy in the region of the amide I band (1,600 cm-1 to 1,700 cm-1) has been used to estimate the alpha-helix content and the beta-sheet content of bacteriorhodopsin. Circular dichroism spectroscopy strongly suggests that the alpha-helix content is sufficient for only five helices, if each helix is composed of 20 or more residues. It also suggests that there is substantial beta-sheet conformation in bacteriorhodopsin. The presence of beta-sheet secondary structure is further suggested by the presence of a 1,639 cm-1 shoulder on the amide I band in the infrared spectrum. Although a structural model consisting of seven alpha-helical rods has been generally accepted up to this point, the spectroscopic data are more consistent with a model consisting of five alpha-helices and four strands of beta-sheet. We note that the primary amino acid sequence can be assigned to segments of alpha-helix and beta-sheet in a way that does not require burying more than two charged groups in the hydrophobic membrane interior, contrary to the situation for any seven-helix model.  相似文献   

17.
Ribosomal proteins from Escherichia coli MRE600 have been obtained by a new, mild purification procedure. This involves extraction of the subunits with salt followed by chromatographic fractionation in the presence of salt. The use of urea or other denaturing agents and conditions is avoided. A survey of the secondary structure of the 30 S and 50 S proteins, as observed by circular dichroic spectroscopy, is presented. The spectra have been analysed by a new procedure which uses a library of 16 circular dichroic spectra of proteins with a known three-dimensional structure. This method provides a more reliable analysis, especially of the contribution from beta-sheet. The results show that most of the 30 S proteins have a high alpha-helix content, whereas the 50 S proteins are more diverse. The latter group shows a larger contribution from beta-sheet. The data presented here are compared with those already published for a number of proteins which were, with one exception, prepared in the presence of urea. In most cases we find higher alpha-helix and beta-sheet values for the salt-extracted proteins than for the corresponding urea-treated proteins. In those cases, however, where special care was taken to renature the urea-treated proteins agreement is found to within the expected experimental error. The results show that salt-extracted ribosomal proteins have a well-defined secondary structure with a relatively small contribution from unordered structure.  相似文献   

18.
Attenuated total reflection Fourier-transform infrared spectroscopy of thin hydrated films of soluble and membrane protein included in a phospholipid bilayer is shown to provide useful information as to the secondary structure of the protein. The analysis of the amide I band of deuterated samples by Fourier self-deconvolution followed by a curve fitting was performed by a new procedure in which all the input parameters are generated by the computer rather than by the investigator. The results of this analysis provide a correct estimation of the alpha-helix and beta-sheet structure content with a standard deviation of 8.6% when X-ray structures are taken as a reference. We also show that the orientation of the different secondary structures resolved by the Fourier self-deconvolution/curve-fitting procedure and of the phospholipid acyl chains can be simultaneously evaluated for membrane proteins reconstituted in a lipid bilayer. Of special interest for reconstitution of membrane proteins, the lipid/protein ratio can be accurately and quickly determined from the infrared spectrum.  相似文献   

19.
Polarization sensitive coherent anti-Stokes Raman scattering (PCARS) spectroscopy is a fruitful technique to study Raman vibrations of diluted molecules under off-electron resonant conditions. We apply PCARS as a direct spectroscopic method to investigate the broad amide I band of proteins in heavy water. In spontaneous Raman spectroscopy, this band is not well resolved. We fit a number of spectra taken of each protein under different polarization conditions, with a single set of parameters. It then appears that some substructure is observed in the amide I band. From this substructure, we determine the percentage of alpha-helix, beta-sheet, and random coil for the proteins lysozyme, albumin, ribonuclease A, and alpha-chymotrypsin.  相似文献   

20.
A Fourier transform infrared spectrometer has been interfaced with a surface balance and a new external reflection infrared sampling accessory, which permits the acquisition of spectra from protein monolayers in situ at the air/water interface. The accessory, a sample shuttle that permits the collection of spectra in alternating fashion from sample and background troughs, reduces interference from water vapor rotation-vibration bands in the amide I and amide II regions of protein spectra (1520-1690 cm-1) by nearly an order of magnitude. Residual interference from water vapor absorbance ranges from 50 to 200 microabsorbance units. The performance of the device is demonstrated through spectra of synthetic peptides designed to adopt alpha-helical, antiparallel beta-sheet, mixed beta-sheet/beta-turn, and unordered conformations at the air/water interface. The extent of exchange on the surface can be monitored from the relative intensities of the amide II and amide I modes. Hydrogen-deuterium exchange may lower the amide I frequency by as much as 11-12 cm-1 for helical secondary structures. This shifts the vibrational mode into a region normally associated with unordered structures and leads to uncertainties in the application of algorithms commonly used for determination of secondary structure from amide I contours of proteins in D2O solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号