首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 791 毫秒
1.
Although IGF-II activating the IGF-II receptor signaling pathway has been found to stimulate cardiomyocyte hypertrophy, the role of IGF-II in cardiac cell apoptosis remains unclear. This study aimed to identify the roles of IGF-II and/or IGF-II receptors (IGF-II/IIR) in cardiomyoblast apoptosis and in hypertensive rat hearts with abdominal aorta ligation. Cultured rat heart-derived H9c2 cardiomyoblasts and excised hearts from Sprague-Dawley rats with 0- to 20-day complete abdominal aorta ligation, a model of ANG II elevation and hypertension, were used. IGF-II/IIR expression, caspase activity, DNA fragmentation, and apoptotic cells were measured by RT-PCR, Western blot, agarose gel electrophoresis, and TUNEL assay following various combinations of ANG II, IGF-II/IIR antibody, CsA (calcineurin inhibitor), SP-600125 (JNK inhibitor), SB-203580 (p38 inhibitor), U-0126 (MEK inhibitor), or Staurosporine (PKC inhibitor) in H9c2 cells. ANG II-induced DNA fragmentation and TUNEL-positive cells were blocked by IGF-II/IIR antibodies and antisense IGF-II, but not by IGF-II sense. IGF-II-induced apoptosis was blocked by IGF-IIR antibody and CsA. The increased gene expressions of IGF-II and -IIR induced by ANG II were reversed by U-0126 and Sp600125, respectively. Caspase 8 activities induced by ANG II were attenuated by U-0126, SP-600125, and CsA. DNA fragmentation induced by ANG II was totally blocked by SP-600125, and CsA and was attenuated by U-0126. In rats with 0- to 20-day complete abdominal aorta ligation, the increases in IGF-II/IIR levels in the left ventricle were accompanied by hypertension as well as increases in caspase 9 activities and TUNEL-positive cardiac myocytes. ANG II-induced apoptosis was reversed by IGF-II/IIR blockade and coexisted with increased transactivation of IGF-II and -IIR, which are mediated by ERK and JNK pathways, respectively, both of which further contributed to cardiomyoblast apoptosis via calcineurin signaling. The increased cardiac IGF-II, IGF-IIR, caspase 9, and cellular apoptosis were also found in hypertensive rats with abdominal aorta ligation.  相似文献   

2.
BACKGROUND: Perturbation in a level of any peptide from insulin-like growth factor (IGF) family (ligands, receptors, and binding proteins) seems to be implicated in lung cancer formation; IGF ligands and IGF-I receptor through their mitogenic and anti-apoptotic action, and the mannose 6-phosphate/insulin-like growth factor II receptor (M6-P/IGF-IIR) possibly as a tumor suppressor. MATERIALS AND METHODS: To determine the identity, role, and mutual relationship of IGFs in lung cancer growth and maintenance, we examined IGF's gene (by RT-PCR) and protein (by immunohistochemistry) expression in 69 human lung carcinoma tissues. We also examined IGF-I receptor numbers (Scatchard analysis) and IGF-II production and release (by Western blot) in IGF-II/IGF-IR mRNA positive and negative lung carcinomas. Finally, the potential role of IGF-IR and IGF-II as growth promoting factors in lung cancer was studied using antisense oligodeoxynucleotides that specifically inhibit IGF-IR and IGF-II mRNA. RESULTS: Thirty-two tumors were positive for IGF-I, 39 for IGF-II, 48 for IGF-IR, and 35 for IGFBP-4 mRNA. Seventeen tumors were concomitantly positive for all four IGFs, whereas 34 were positive for IGF-II, IGF-IR, and IGFBP-4 mRNA. An elevated amount of IGF-II peptide was secreted into the growth medium of cell cultures established from five different IGF-II/IGF-IR mRNA positive lung cancer tissues. The cells also expressed elevated numbers of IGF-IR. Nine IGF-II-negative and 19 IGF-II-positive lung cancers of different stages were selected, and M6-P/ IGF-II receptor was determined immunohistochemically. Most of the IGF-II-negative tumors were strongly positive for M6-P/IGF-IIR. IGF-II-positive tumors were mostly negative for M6-P/IGF-II receptors. Antisense oligodeoxynucleotides to IGF-II significantly inhibited, by 25-60%, the in vitro growth of all six lung cancer cell lines. However, the best results (growth inhibition of up to 80%) were achieved with concomitant antisense treatment (to IGF-IR and IGF-II). CONCLUSION: Our data suggest that lung cancer cells produce IGF-IR and IGF-II, which in turn stimulates their proliferation by autocrine mechanism. Cancer cell proliferation can be abrogated or alleviated by blocking the mRNA activity of these genes indicating that an antisense approach may represent an effective and practical cancer gene therapy strategy.  相似文献   

3.
Antibodies against the insulin-like growth factor-I (IGF-I) or the IGF-I receptor (IGF-IR) directly initiate a rapid (within 6 h) hypertrophy of isolated adult rat ventricular cardiomyocytes cultured in the absence of serum. Further, cardiomyocytes treated with either of these agonistic antibodies upregulate the expression of their genes for insulin-like growth factor-II (IGF-II) and the IGF-II receptor (IGF-IIR). Genistein, an inhibitor of the tyrosine kinase IGF-IR, also induces the cardiomyocytes to hypertrophy. Anti-IGF-II antibody inhibits the cardiomyocyte hypertrophy induced by anti-IGF-I and anti-IGF-IR antibodies or by genistein. Results are consistent with a model in which local production of IGF-II is upregulated when the IGF-IR signaling pathway is blocked and in which an IGF-II-mediated pathway, likely involving the IGF-IIR, then stimulates hypertrophy of the cardiomyocytes.  相似文献   

4.
Embryos produced through somatic cell nuclear transfer (NT) or in vitro production (IVP) are often associated with increased abortion and abnormalities thought to arise from disruptions in normal gene expression. The insulin-like growth factor (IGF) family has a major influence on embryonic, fetal and placental development; differences in IGF expression in NT- and IVP-derived embryos may account for embryonic losses during placental attachment. In the present study, expression of IGF-I, IGF-II, IGF-I receptor (IGF-IR), and IGF-IIR mRNAs was quantitated in Day 7 and 25 bovine embryos produced in vivo, by NT, IVP, or parthenogenesis, to further understand divergent changes occurring during development. Expression of the IGF-I gene was not detected in Day 7 blastocysts for any treatment. However, there were no differences (P>0.10) among Day 7 treatments in the amounts of IGF-IR, IGF-II, and IGF-IIR mRNA. For Day 25 conceptuses, there was higher expression of IGF-I mRNA for NT and IVP embryonic tissues than for in vivo embryonic tissues (P<0.05). Furthermore, embryonic tissues from NT-derived embryos had higher expression of IGF-II mRNA than IVP embryonic tissues (P<0.05). Placental expression of IGF-IIR mRNA was greater for NT-derived than in vivo-derived embryos (P<0.05). There were no differences in IGF-IR mRNA across all treatments and tissues (P>0.10). In conclusion, these differences in growth factor gene expression during early placental attachment and rapid embryonic growth may directly or indirectly contribute to increased losses and abnormalities in IVP- and NT-derived embryos.  相似文献   

5.
The pattern of expression of receptors for insulin-like growth factors (IGF-I and IGF-II) and insulin was studied on monocyte-depleted human peripheral blood T cells activated via anti-CD3. Binding assays demonstrated the sequential appearance of receptors for IGF-I, IGF-II, and insulin on activated T cells. IGF-IR appeared early, their expression reaching maximum levels at or before the peak of cellular proliferation. IGF-IIR expression generally followed that of the IGF-IR and was more transient, with increases and decreases in expression paralleling the rise and decline of cellular proliferation. Insulin receptor expression remained low throughout the activation time course. The identity of the IGFR on anti-CD3-activated T cells was confirmed in affinity cross-linking experiments. These data demonstrated a 135,000 Mr peptide that specifically binds radiolabeled IGF-I and corresponds to the alpha subunit of the type I IGF-IR, and a 260,000 Mr peptide that specifically binds radiolabeled IGF-II and corresponds to the type II IGFR. We have additionally found that IGF-I and IGF-II (in nanomolar concentrations) produce as much as a threefold enhancement of T cell proliferation early in the activation process, correlating with the early appearance of IGF-IR. The effect of both IGF appeared to be mediated through the type I receptor, since an antibody (alpha IR3), which blocks binding to the alpha subunit of this receptor, inhibited enhancement by up to 83%. Furthermore, we have found expression of IGF-IR on T cells after activation to be associated with both CD4+ and CD8+ T cell subpopulations. These observations provide a foundation for investigating the contribution of IGF in regulating T cell proliferation, differentiation, and effector function.  相似文献   

6.
Progression of prostate cancer is facilitated by growth factors that activate critical signaling cascades thereby promote prostate cancer cell growth, survival, and migration. To investigate the effect of quercetin on insulin-like growth factor signaling and apoptosis in androgen independent prostate cancer cells (PC-3), IGF-IR, PI-3K, p-Akt, Akt, cyclin D1, Bad, cytochrome c, PARP, caspases-9 and 10 protein levels were assessed by western blot analysis. Mitochondrial membrane potency was detected by rhodamine-123 staining. Quercetin induced caspase-3 activity assay was performed for activation of apoptosis. Further, RT-PCR was also performed for Bad, IGF-I, II, IR, and IGFBP-3 mRNA expression. Quercetin significantly increases the proapoptotic mRNA levels of Bad, IGFBP-3 and protein levels of Bad, cytochrome C, cleaved caspase-9, caspase-10, cleaved PARP and caspase-3 activity in PC-3 cells. IGF-IRβ, PI3K, p-Akt, and cyclin D1 protein expression and mRNA levels of IGF-I, II and IGF-IR were decreased significantly. Further, treatment with PI3K inhibitor (LY294002) and quercetin showed decreased p-Akt levels. Apoptosis is confirmed by loss of mitochondrial membrane potential in quercetin treated PC-3 cells. This study suggests that quercetin decreases the survival of androgen independent prostate cancer cells by modulating the expression of insulin-like growth factors (IGF) system components, signaling molecules and induces apoptosis, which could be very useful for the androgen independent prostate cancer treatment.  相似文献   

7.
IGF signaling is involved in cell proliferation, differentiation and apoptosis in a wide range of tissues, both normal and diseased, and so IGF-IR has been the focus of intense interest as a promising drug target. In this computational study on cartilage, we focus on two questions: (i) what are the key factors influencing IGF-IR complex formation, and (ii) how might cells regulate IGF-IR complex formation? We develop a reaction-diffusion computational model of the IGF system involving twenty three parameters. A series of parametric and sensitivity studies are used to identify the key factors influencing IGF signaling. From the model we predict the free IGF and IGF-IR complex concentrations throughout the tissue. We estimate the degradation half-lives of free IGF-I and IGFBPs in normal cartilage to be 20 and 100 mins respectively, and conclude that regulation of the IGF half-life, either directly or indirectly via extracellular matrix IGF-BP protease concentrations, are two critical factors governing the IGF-IR complex formation in the cartilage. Further we find that cellular regulation of IGF-II production, the IGF-IIR concentration and its clearance rate, all significantly influence IGF signaling. It is likely that negative feedback processes via regulation of these factors tune IGF signaling within a tissue, which may help explain the recent failures of single target drug therapies aimed at modifying IGF signaling.  相似文献   

8.
Cardiac hypertrophy is a common phenomenon observed in progressive heart disease associated with heart failure. Insulin-like growth factor receptor II (IGF-IIR) has been much implicated in myocardial hypertrophy. Our previous studies have found that increased activities of signaling mediators, such as calcium/calmodulin-dependent protein kinase II (CaMKII) and calcineurin induces pathological hypertrophy. Given the critical roles played by CaMKII and calcineurin signaling in the progression of maladaptive hypertrophy, we anticipated that inhibition of CaMKII and calcineurin signaling may attenuate IGF-IIR-induced cardiac hypertrophy. The current study, therefore, investigated the effects of IGF-IIR activation on the CaMKII and calcineurin signaling and whether the combinatorial inhibition of the CaMKIIδ and calcineurin signaling could ameliorate IGF-IIR-induced pathological hypertrophy. In the present study, we induced IGF-IIR through the cardiomyocyte-specific transduction of IGFIIY27L via adeno-associated virus 2 (AAV2) to evaluate its effects on cardiac hypertrophy. Interestingly, it was observed that the activation of IGF-IIR signaling through IGFIIY27L induces significant hypertrophy of the myocardium and increased cardiac apoptosis and fibrosis. Moreover, we found that Leu27IGF-II significantly induced calcineurin and CaMKII expression. Furthermore and importantly, the combinatorial treatment with CaMKII and calcineurin inhibitors significantly alleviates IGF-IIR-induced hypertrophic responses. Thus, it could be envisaged that the inhibition of IGF-IIR may serve as a promising candidate for attenuating maladaptive hypertrophy. Both calcineurin and CaMKII could be valuable targets for developing treatment strategies against hypertension-induced cardiomyopathies.  相似文献   

9.
In BALB/c 3T3 cells pretreated with platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) (primed-competent cells), insulin-like growth factors I and II (IGF-I and IGF-II) bind to their own receptors (IGF-IR and IGF-IIR) and stimulate calcium influx and DNA synthesis by a mechanism involving a 40-kDa pertussis toxin substrate. In contrast, these IGFs do not act on unprimed quiescent cells. In this study, the 40-kDa pertussis toxin substrate was identified as Gi-2 alpha using anti-G protein antibodies. We analyzed the quality of signal transduction from IGF-II to Gi-2 alpha. There was no difference in the amount of Gi-2 alpha between quiescent and primed-competent cells, and both of these cells had similar Kd values and numbers of IGF-II-binding sites. Whereas IGF-II did not alter pertussis toxin-catalyzed ADP-ribosylation of Gi-2 alpha in quiescent cells, IGF-II reduced the pertussis toxin substrate activity by 35-50% via the IGF-IIR in primed-competent cells. The action of IGF-II lasted for up to 3 h when IGF-II was present in the medium, and it disappeared when IGF-II was removed. These results suggest that the signaling pathway triggered by IGF-II is uncoupled between the IGF-IIR and Gi-2 alpha in quiescent cells and that PDGF and EGF restore the IGF-IIR-Gi-2 coupling. This study also indicates that low concentrations of IGF-I reduce the pertussis toxin substrate activity of Gi-2 alpha in primed-competent cells in a time course slower than that of IGF-II, but not at all in quiescent cells. However, both of these cells had similar Kd values and numbers of IGF-I binding sites. Therefore, the IGF-I signaling pathway may also be uncoupled between the IGF-IR and Gi-2 alpha in quiescent cells and restored by PDGF and EGF. In BALB/c 3T3 cells transfected with temperature-sensitive Kirsten sarcoma virus bearing the v-Ki-ras gene (ts cells), a 40-kDa pertussis toxin substrate was also identified as Gi-2 alpha. In nonpermissive ts cells, IGF-II was without effect on the pertussis toxin substrate activity of Gi-2 alpha or on calcium influx.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
《MABS-AUSTIN》2013,5(5):475-480
The insulin-like growth factors (IGFs) signaling system has been shown to play important roles in neoplasia. The IGF receptor type 1 (IGF-IR) is overexpressed in many types of solid and hematopoietic malignancies, and there is substantial experimental and clinical evidence that targeting IGF-IR is a promising therapeutic strategy against cancer. It has been previously reported that a mouse monoclonal antibody (mAb), 4G11, blocked IGF-I binding to IGF-IR and downregulated the IGF-IR in MCF-7 cells. We cloned this antibody, constructed a human-mouse chimeric antibody, designated m590, and characterized it. The chimeric IgG1 m590 bound to cell-associated IGF-IR on NWT c43 stably transfected cells and MCF-7 breast cancer cells as efficiently as the parental murine antibody. Using purified IGF-IR extracellular domains, we found that both the chimeric m590 and the parental 4G11 antibodies bind to conformational epitopes on IGF-IR. Neither of these antibodies bound to the insulin receptor (IR) ectodomain. Furthermore, IgG1 m590 blocked the binding of IGF-I and IGF-II to IGF-IR, and inhibited both IGF-I and IGF-II induced phosphorylation of IGF-IR in MCF-7 cells. These results suggest that m590 could be an useful antibody in diagnosis and treatment of cancer, as well as a research tool.  相似文献   

11.
The insulin-like growth factors (IGFs) signaling system has been shown to play important roles in neoplasia. The IGF receptor type 1 (IGF-IR) is overexpressed in many types of solid and hematopoietic malignancies, and there is substantial experimental and clinical evidence that targeting IGF-IR is a promising therapeutic strategy against cancer. It has been previously reported that a mouse monoclonal antibody (mAb), 4G11, blocked IGF-I binding to IGF-IR and downregulated the IGF-IR in MCF-7 cells. We cloned this antibody, constructed a human-mouse chimeric antibody, designated m590, and characterized it. The chimeric IgG1 m590 bound to cell-associated IGF-IR on NWT c43 stably transfected cells and MCF-7 breast cancer cells as efficiently as the parental murine antibody. Using purified IGF-IR extracellular domains, we found that both the chimeric m590 and the parental 4G11 antibodies bind to conformational epitopes on IGF-IR. Neither of these antibodies bound to the insulin receptor (IR) ectodomain. Furthermore, IgG1 m590 blocked the binding of IGF-I and IGF-II to IGF-IR, and inhibited both IGF-I and IGF-II induced phosphorylation of IGF-IR in MCF-7 cells. These results suggest that m590 could be an useful antibody in diagnosis and treatment of cancer, as well as a research tool.  相似文献   

12.
IGF-II stimulates both mitogenesis and myogenesis through its binding and activation of the IGF-I receptor (IGF-IR). How this growth factor pathway promotes these two opposite cellular responses is not well understood. We investigate whether local IGF binding protein-5 (IGFBP-5) promotes the myogenic action of IGF-II. IGFBP-5 is induced before the elevation of IGF-II expression during myogenesis. Knockdown of IGFBP-5 impairs myogenesis and suppresses IGF-II gene expression. IGF-II up-regulates its own gene expression via the PI3K-Akt signaling pathway. Adding IGF-II or constitutively activating Akt rescues the IGFBP-5 knockdown-caused defects. However, an IGF analogue that binds to the IGF-IR but not IGFBP has only a limited effect. When added with low concentrations of IGF-II, IGFBP-5 restores IGF-II expression and myogenic differentiation, whereas an IGF binding–deficient IGFBP-5 mutant has no effect. These findings suggest that IGFBP-5 promotes muscle cell differentiation by binding to and switching on the IGF-II auto-regulation loop.  相似文献   

13.
Insulin-like growth factor (IGF)-I is up-regulated in pancreatic cancer tissues. Pancreatic cancer cell lines were analyzed in serum-free media as a model of the fibrous tissues that these cells often invade. Pancreatic cancer surgical specimens were immunostained with anti-IGF-I receptor (IGF-IR)β antibody. The growth of pancreatic cancer cells in serum-free media was also analyzed. Cell lysates were analyzed for protein by western blot analysis. Cells cultured in the presence of picropodophyllin (PPP), LY294002, or PD98059, were subjected to cell proliferation and scratch assays. In addition, BrdU uptake and apoptosis were analyzed in these cells. IGF-IRβ was detected in pancreatic cancer cells invading fibrous tissues. NOR-P1 grew most rapidly in serum-free media. The concentrations of IGF-I and IGF-II in the media were higher in NOR-P1 than the other cell lines. Cell proliferation in NOR-P1 cells was enhanced by IGF-I or IGF-II treatment more than in MIA-Paca2 or PK-1 cells. PPP, LY294002, and PD98059 suppressed proliferation and motility of NOR-P1 cells and inhibited BrdU uptake, while PPP induced apoptosis. IGF-IRβ may be a potential therapeutic target to inhibit invasion of pancreatic cancer.  相似文献   

14.
The mammalian cation-independent mannose 6-phosphate/insulin-like growth factor (IGF)-II receptor binds IGF-II with high affinity. Ligands transported by the MPR 300/IGF-IIR include IGF-II and mannose 6-phosphate-modified proteins. By targeting IGF-II to lysosomal degradation, it plays a key role in the maintenance of correct IGF-II levels in the circulation and in target tissues. Although, from our studies we found homologous receptor in calotes but its functional significance was not known. We present here the first report on the calotes MPR 300/IGF-IIR binds IGF-II with Kd of 12.02 nM; these findings provide new and strong evidence that MPR 300/IGF-IIR in Calotes versicolor binds IGFII with high affinity.  相似文献   

15.
The insulin-like growth factor-II receptor (IGF-IIR) is frequently mutated or deleted in some malignant human tumors, suggesting that the IGF-IIR is a tumor suppressor. However, the exact mechanism by which IGF-IIR suppresses growth in tumors has not been definitively established. We demonstrate that IGF-IIR-deficient murine L cells (D9) have higher growth rates than IGF-IIR-positive L cells (Cc2) in response to IGF-II. IGF-II levels are higher in growth-conditioned medium from D9 versus Cc2 cells. Receptor neutralization studies and measurements of insulin receptor substrate 1 phosphorylation confirm that the enhanced growth of D9 cells is due to increased stimulation of the IGF-I and insulin receptors by IGF-II. In contrast, the levels of secreted latent and active transforming growth factor beta (TGF-beta) are similar for both D9 and Cc2 cells, indicating that the slower growth of Cc2 cells is not due to activation of latent TGF-beta by IGF-IIR and growth inhibition. The results directly demonstrate that down regulation of the IGF-IIR promotes the growth of transformed D9 cells by sustaining IGF-II, which binds to and activates IGF-IR and insulin receptor to increase intracellular growth signals.  相似文献   

16.
The insulin-like growth factor I receptor (IGF-IR) activated by its ligands insulin-like growth factor (IGF)-I or IGF-II mediates suppression of apoptosis and contributes to tumorigenesis and cell growth. Here we investigated the activation of the stress-activated protein kinases including Jun N-terminal Kinases and p38 MAPK by IGF-I in interleukin-3-dependent FL5.12 lymphocytic cells that overexpress the IGF-IR (FL5.12/WT). We have shown previously that IGF-I protects these cells from apoptosis induced by interleukin-3 withdrawal but does not promote proliferation. IGF-I induced a rapid and transient activation of JNK that peaked at 40 min that was paralleled by a transient and robust phosphorylation of c-Jun. p38 was constitutively phosphorylated in FL5.12/WT cells. Activation of the JNK pathway by IGF-I occurred in the presence of phosphatidylinositol 3-kinase inhibitors and could be enhanced by anisomycin. Analysis of a series of FL5.12 cells expressing mutated IGF-IRs and analysis of 32D/IGF-IR cells showed that neither the C terminus of the receptor nor IRS-1 and IRS-2 were required for JNK activation, although tyrosine 950 was essential for full activation. The JNK inhibitor dicumarol suppressed IGF-I-mediated activation of JNK and phosphorylation of c-Jun but did not affect p38 and IkappaB phosphorylation or activation of AKT. IGF-I-mediated protection from apoptosis in FL5.12/WT cells was completely suppressed by dicumarol and partially suppressed by a p38 inhibitor. In the breast carcinoma cell line MCF-7, treatment with dicumarol also induced apoptosis. These data indicate that transient activation of JNK by IGF-I is mediated by signals that are distinct from those leading to phosphatidylinositol 3-kinase and AKT activation. The data further suggest that the SAPK pathways contribute to suppression of apoptosis by the IGF-IR.  相似文献   

17.
The insulin-like growth factor (IGF) system plays an important role in cell proliferation and survival. However, more recently, a small number of studies have shown that IGFs induce apoptosis in some cells. Our initial studies showed this occurred in LIM 1215 colon cancer cells but not RD rhabdomyosarcoma cells. IGFs induced both proliferation and apoptosis in LIM 1215 cells, and the induction of apoptosis was dose-dependent. [R54, R55]IGF-II, which binds to the IGF-I receptor with normal affinity but does not bind to the IGF-II receptor, induced apoptosis to the same extent as IGF-II, whereas [L27]IGF-II, which binds to the IGF-I receptor with 1000-fold reduced affinity, had no effect on apoptosis. These results suggest that the IGF-I receptor is involved in induction of apoptosis. Western blot analyses demonstrated that Akt and Erk1/2 were constitutively activated in RD cells. In contrast, phosphorylation of Akt and Erk1/2 were transient and basal expression of Akt protein was lower in LIM 1215 cells. Analysis of apoptosis-related proteins showed that IGFs decreased pro-caspase-3 levels and increased expression of pro-apoptotic Bad in LIM 1215 cells. IGFs co-activate proliferative and apoptotic pathways in LIM 1215 cells, which may contribute to increased cell turnover. Since high turnover correlates with poor prognosis in colorectal cancer, this study provides further evidence for the role of the IGF system in its progression.  相似文献   

18.
The insulin-like growth factors (insulin-like growth factor I [IGF-I] and IGF-II) exert important effects on growth, development, and differentiation through the IGF-I receptor (IGF-IR) transmembrane tyrosine kinase. The insulin receptor (IR) is structurally related to the IGF-IR, and at high concentrations, the IGFs can also activate the IR, in spite of their generally low affinity for the latter. Two mechanisms that facilitate cross talk between the IGF ligands and the IR at physiological concentrations have been described. The first of these is the existence of an alternatively spliced IR variant that exhibits high affinity for IGF-II as well as for insulin. A second phenomenon is the ability of hybrid receptors comprised of IGF-IR and IR hemireceptors to bind IGFs, but not insulin. To date, however, direct activation of an IR holoreceptor by IGF-I at physiological levels has not been demonstrated. We have now found that IGF-I can function through both splice variants of the IR, in spite of low affinity, to specifically activate IRS-2 to levels similar to those seen with equivalent concentrations of insulin or IGF-II. The specific activation of IRS-2 by IGF-I through the IR does not result in activation of the extracellular signal-regulated kinase pathway but does induce delayed low-level activation of the phosphatidylinositol 3-kinase pathway and biological effects such as enhanced cell viability and protection from apoptosis. These findings suggest that IGF-I can function directly through the IR and that the observed effects of IGF-I on insulin sensitivity may be the result of direct facilitation of insulin action by IGF-I costimulation of the IR in insulin target tissues.  相似文献   

19.
Insulin-like growth factors (IGF) I and II are potent mitogens for a variety of cancer cells. The proliferative and anti-apoptotic actions of IGF are mediated by the IGF-I receptor (IGF-IR), to which both IGF-I and IGF-II bind with high affinity. To investigate the mitogenic and anti-apoptotic activities of IGF-IR and to achieve better inhibition of IGF-IR function, single-chain antibodies against human IGF-IR (αIGF-IR scFvs) were constructed and expressed. IgG cDNA encoding variable regions of light and heavy chains (VL and VH) from mouse IgG were cloned from a hybridoma producing the 1H7 αIGF-IR monoclonal antibody [Li et al., Biochem Biophys Res Commun 196: 92–98 (1993)]. The splice-overlap extension polymerase chain reaction was used to assemble a gene encoding the αIGF-IR scFv, including the N-terminal signal peptide, VL, linker peptide, VH, and C-terminal DYKD tag. Two types of soluble αIGF-IR scFvs, a prototype αIGF-IR scFv and its alternative type αIGF-IR scFv-Fc, were constructed and expressed in murine myeloma cells. αIGF-IR scFv-Fc, containing the human IgG1 Fc domain, was stably expressed in NS0 myeloma cells, using a glutamine synthase selection system, and purified from the conditioned medium of stable clones by protein-A–agarose chromatography. Levels of αIGF-IR scFv-Fc expression ranged from 40 mg/l to 100 mg/l conditioned medium. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis analysis under reducing and nonreducing conditions indicated that αIGF-IR scFv-Fc is a dimeric antibody. αIGF-IR scFv-Fc retained general characteristics of the parental 1H7 monoclonal antibody except that its binding affinity for IGF-IR was estimated to be approximately 108 M−1, which was one-order of magnitude lower than that of 1H7 monoclonal antibody. Injection of αIGF-IR scFv-Fc (500 μg/mouse, twice a week) significantly suppressed MCF-7 tumor growth in athymic mice. These results suggest that the αIGF-IR scFv-Fc is a first-generation recombinant αIGF-IR for the potential development of future αIGF-IR therapeutics. Received: 21 January 2000 / Accepted: 7 March 2000  相似文献   

20.
The initial response of the IGF-I system and the expression and cellular localization of IGF type-I receptor (IGF-IR) were studied in the gill of a euryhaline teleost during salinity acclimation. Exposure of striped bass (Morone saxatilis) to hyperosmotic and hypoosmotic challenges induced small, transitory (<24 h) deflections in hydromineral balance. Transfer from freshwater (FW) to seawater (SW) induced an initial decrease in plasma IGF-I levels after 24 h in both fed and fasted fish. There was an overall decrease in liver IGF-I mRNA levels after SW transfer, suggesting that decreased plasma levels may be due to a decline in hepatic IGF-I synthesis. No changes were observed in gill IGF-I mRNA, but SW transfer induced an increase in gill IGF-IR mRNA after 24 h. Transfer from SW to FW induced an increase in plasma IGF-I levels in fasted fish. In fed fish, no significant changes were observed in either plasma IGF-I, liver, or gill IGF-I mRNA, or gill IGF-IR mRNA levels. In a separate experiment, FW-acclimated fish were injected with saline or IGF-I prior to a 24-h SW challenge. Rapid regain of osmotic balance following SW transfer was hindered by IGF-I. Immunohistochemistry revealed for the first time in teleosts that IGF-IR and Na(+)-K(+)-ATPase are localized in putative chloride cells at the base of the lamellae, identifying these cells in the gill as a target for IGF-I and IGF-II. Overall the data suggest a hyperosmoregulatory role of IGF-I in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号