首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hisaki I  Tohnai N  Miyata M 《Chirality》2008,20(3-4):330-336
The concept of supramolecular chirality has assumed increasing importance in association with the development of supramolecular chemistry over the last two decades. In chiral crystals, 2 1 helical molecular assemblies are frequently observed as key motifs. Helical handedness of the 2 1 assemblies, however, has not been determined from the mathematical or crystallographical viewpoints. In this context, we have proposed two new concepts, three-axial chirality and tilt chirality. On the basis of the concepts, we describe supramolecular chirality and determine the handedness of 2 1 assemblies that are composed of relatively complicated molecules with multiple stereogenic centers such as brucine, bile acids, and cinchona alkaloids as well as those of simple molecules.  相似文献   

2.
Patterning of solid surfaces with functional organic molecules has been a convenient route to fabricate two‐dimensional materials with programmed architecture and activities. One example is the chiral nanoporous networks that can be created via controlled self‐assembly of star‐shaped molecules under 2D confinement. In this contribution we use computer modeling to predict the formation of molecular networks in adsorbed overlayers comprising cruciform molecular building blocks equipped with discrete interaction centers. To that end, we employ the Monte Carlo simulation method combined with a coarse‐grained representation of the adsorbed molecules which are treated as collections of interconnected segments. The interaction centers within the molecules are represented by active segments whose number and distribution are adjusted. Our particular focus is on those distributions that produce prochiral molecules able to occur in adsorbed configurations being mirror images of each other (surface enantiomers). We demonstrate that, depending on size, aspect ratio, and intramolecular distribution of active sites, the surface enantiomers can co‐crystallize or segregate into extended homochiral domains with largely diversified nanosized cavities. The insights from our theoretical studies can be helpful in designing 2D chiral porous networks with potential applications in enantioselective adsorption and asymmetric heterogeneous catalysis. Chirality 27:397–404, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Supramolecular chiral assemblies of R(-) and S(+) 2-butanol, in their neat form or when dissolved in their nonchiral isomer isobutanol, were evaluated by isothermal titration calorimetry (ITC) ensuing mixing. Dilution of 0.5 M solution of R(-) 2-butanol in isobutanol into the latter liberated heat of several calories per mole, which was approximately double than that obtained in parallel dilutions of S(+) 2-butanol in isobutanol. The ITC dilution profiles indicated an estimate of about 100 isobutanol solvent molecules surrounding each of the 2-butanol enantiomers, presumably arranged in chiral configurations, with different adopted order between the isomers. Mixings of neat R and S 2-butanol were followed by endothermic ITC profiles, indicating that, in racemic 2-butanol, both the supramolecular order and the intermolecular binding energies are lower than in each of the neat chiral isomers. The diversion from symmetrical ITC patterns in these mixings indicated again a subtle difference in molecular organization between the neat enantiomers. It should be noted that the presence of impurities, α-pinene and teterhydrofuran, at a level totaling 0.5%, did not influence the ITC heat flow profiles. The findings of this study demonstrate for the first time that chiral solutes in organic solvents are expected to acquire asymmetric solvent envelopes that may be different between the enantiomers, thus broadening this phenomenon beyond the previously demonstrated cases in aqueous solutions.  相似文献   

4.
Banks HD  Dondoni A  Kleban M  Marra A 《Chirality》2002,14(2-3):173-179
Calixarenes are molecular bowls or baskets that have been demonstrated to serve as hosts for cations, anions, and neutral molecules. The central cavity and scaffolding of various functionalities on the upper and lower rims establishes this class of compounds as extremely important in supramolecular chemistry studies. In earlier studies, calixsugars (molecules that have sugar molecules appended to the upper rim of the calix) were prepared. Among the potential advantages of these molecules are increased water solubility and enhanced possibilities that these chiral attachments can promote enantiomeric selection. Computational studies, however, have indicated that the chosen calixsugars had significantly encumbered upper rims, suggesting that host-guest associations would be limited. In an attempt to understand those factors responsible for the favored conformations of calixsugars, a number of 5,17-disubstituted and tetrasubstituted calix[4]arenes were prepared and studied experimentally as well as by molecular mechanics conformational searching techniques.  相似文献   

5.
6.
An intermolecular hybrid semiempirical MO/molecular mechanics technique is described. The model allows polarisation of the quantum mechanical molecule(s), but not of the molecular mechanics part and is shown to be relatively insensitive to the size of the molecular mechanics environment. It has been validated by comparison of calculated and experimental absorption energies of small organic molecules in various zeolites. This validation gives us confidence that the method is also appropriate for experimentally less well characterised problems, such as solvation or ligand/enzyme complexation.  相似文献   

7.
Carbonaceous meteorites are rare fragments of asteroids that contain organic carbon of diverse composition, various complexity, and whose lineage can in several instances be traced back to pre-solar environments. Their analyses offer a unique glimpse into the chemistry of the solar system that preceded life and may have been available to its emergence on the early Earth. While the heterogeneity of the organic materials of meteorites is indicative of random synthetic processes for their formation, some of their components have identical counterparts in the biosphere, and a group of meteoritic amino acids were found to display chiral asymmetry, a property known since the time of Pasteur to be inextricably linked to life's processes. The ability of these amino acids to act as asymmetric catalysts, as well as indications that molecular asymmetry in meteorites may not be limited to these compounds, encourage the suggestion of possible involvement of meteoritic material in the induction of selective traits in molecular evolution.  相似文献   

8.
Chiral phenomena are common in living systems. Despite the fact that development of materials has often been inspired by chemistry from the biological world, materials that take advantage of inherent chirality have found relatively few applications. It is therefore probable that much remains to be gained from novel applications of molecular, macromolecular and supramolecular chirality. Among the most intriguing recent advances in studies of chiral materials is the development of mechanisms to control the shape and properties of chiral molecules. Photo-induced helical chirality inversions have been studied for several years and significant achievements have been reported. Recently, electronically triggered systems have drawn significant attention. These technologies offer the potential for development of novel materials that take advantage of photonic or electronic modulation of molecular recognition, optical or mechanical properties.  相似文献   

9.
Self-assembly plays an important role in the formation of many chiral biological structures and in the preparation of chiral functional materials. Therefore the control of chirality in synthetic or biological self-assembled systems is important either for the comprehension of recognition phenomena or to obtain materials with predictable and controllable properties. Circular dichroism was developed to study molecular chirality, however, because of its outstanding sensitivity to chiral perturbations of the system under investigation; it has been extended more recently to supramolecular chemistry. In particular, self-assembly processes leading to the formation of chiral supramolecular architectures (and eventually to gels or liquid crystal phases) can be monitored by CD. Furthermore, CD spectroscopy often allows one to obtain structural information on the assembled structures. This review deals with representative contributions to the study of supramolecular chirality by means of circular dichroism.  相似文献   

10.
The organic compounds synthesized in prebiotic experiments are racemic mixtures. A number of proposals have been offered to explain how asymmetric organic compounds formed on the Earth before life arose, with the influence of chiral weak nuclear interactions being the most frequent proposal. This and other proposed asymmetric syntheses give only slight enantiomeric excess and any slight excess will be degraded by racemization. This applies particularly to amino acids where half-lives of 10(5)-10(6) years are to be expected at temperatures characteristic of the Earth's surface. Since the generation of chiral molecules could not have been a significant process under geological conditions, the origins of this asymmetry must have occurred at the time of the origin of life or shortly thereafter. It is possible that the compounds in the first living organisms were prochiral rather than chiral; this is unlikely for amino acids, but it is possible for the monomers of RNA-like molecules.  相似文献   

11.
Simonyi M  Bikádi Z  Zsila F  Deli J 《Chirality》2003,15(8):680-698
The conventional organic chemistry concept of chirality relates to single molecules. This article deals with cases in which exciton chirality is generated by the interaction of associated carotenoids. The handed property responsible for exciton signals in these systems is due to the alignment of neighboring molecules held together by secondary chemical forces. Their mutual positions are characterized by the overlay angle. Experimental manifestation is obtained by spectroscopic studies on carotenoid aggregates. Compared to molecular spectra, both UV/visible and circular dichroism spectroscopic observations reveal modified absorption bands and induced Cotton effects of opposite sign (exciton couplets), respectively. A new term, "supramolecular exciton chirality," is suggested for these phenomena, allowing the detection of weak chemical interactions not readily accessible for experimental studies, although highly important in the mechanism of biological processes.  相似文献   

12.
Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.  相似文献   

13.
14.
Asymmetric molecular and supramolecular systems are characterized by: i. the circular dicroism in the angular distribution of valence photoelectrons emitted from randomly oriented chiral molecules by their interaction with circularly polarized VUV light; ii. the different stability and reactivity of diastereomeric aggregates. Both these aspects may have some relationship with the "chiral enrichment mechanism" of chirogenesis, based on the preferential destruction of one enantiomer of a racemate by interaction with a chiral agent, whether a massive species or a circularly polarized photon. The most recent spectroscopic and mass spectrometric studies on this topic are reported in the present mini-review.  相似文献   

15.
Self-assembly of molecules is one of the fundamental processes in biology and in supramolecular chemistry. Guanosine (Guo) and its derivatives are among the widely studied molecules because of self-assembly abilities. Their tetrameric associates are the nature of telomeric DNA, and furthermore they are fundamental building blocks of supramolecular reversible gels, which may arise in certain physical and chemical conditions. Although poorly soluble in water, Guo forms interesting structures with guanosine 5'-monophosphate salt (GMP) in the TRIS buffer. We used electronic circular dichroism and vibrational circular dichroism to describe the thermal response of gels formed by the Guo/GMP binary mixture. Using these complementary techniques suitable to study conformational changes of chiral compounds, we obtained information about the involvement of functional groups and weak interactions in the guanosine quartet (G(4)) and stacked G(4) structures.  相似文献   

16.
The asymmetric hydroformylation reaction represents a potential powerful synthetic tool for the preparation of large number of different chiral products to be used as precursors of several organic compounds endowed with therapeutic activity. Essential and nonessential amino acids, 2-arylpropanoic acids, aryloxypropyl- and beta-phenylpropylamines, modified beta-phenylethylamines, pheniramines, and other classes of pharmaceuticals are available through enantioselective oxo-reaction of appropriate functionalized olefins; this process is catalyzed by rhodium or platinum complexes with chiral ligands, mainly chelating phosphines, and sometimes affords very high enantiomeric excesses. Furthermore, the application of many simple optically active aldehydes arising from asymmetric hydroformylation as chiral building blocks for the synthesis of complex pharmacologically active molecules such as antibiotics, peptides, antitumor macrocycle compounds, and prostaglandins is conveniently emphasized. The possibility of a future application of this asymmetric process for the production of many synthons to obtain other valuable pharmaceuticals is widely discussed too.  相似文献   

17.
Transaminases catalyze amino transfer reactions from amino donors such as amino acids or amines to keto acids or ketones to give chiral amino acid or amines in optically pure form. α-Amino acid dehydrogenases catalyze the asymmetric reductive amination of α-keto acids using ammonia as amino donor to furnish L -amino acids. The distinct features and synthetic application of these two enzymes are reviewed in an effort to illustrate their promising and challenging aspects in serving as approaches to the direct asymmetric synthesis of optically pure amines from the corresponding keto compounds, a formidable problem in organic chemistry.  相似文献   

18.
Yang L  Dong Y  Hu X  Liu A 《Carbohydrate research》2012,347(1):40-46
A dendronized carbohydrate thermotropic liquid crystal was synthesized by attaching wedge-shaped mesogens onto a carbohydrate core. These molecules self-organize into chiral columnar hexagonal mesophase with each column slice (4.5 Å thicknesses) filled with average of two molecules. The supramolecular model was further optimized by molecular dynamics simulation. Moreover, chirality successfully expressed in columnar hexagonal mesophase by dendronized carbohydrate molecules may provide inspiration in searching for chiral mesophase of carbohydrate liquid crystals.  相似文献   

19.
In this article, we will review and highlight some recent computational work on enantioselective adsorption and catalysis in zeolites and metal–organic frameworks. The design, development and understanding of chiral structures will help expand the utility of nanoporous materials into chiral technology. The highlighted works are examples of how molecular simulations can provide a fundamental understanding of chirality in nanoporous materials. This understanding is essential to help in the design and development of next-generation enantioselective separation devices and catalysts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号