首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride (Cl) channel known to influence the function of other channels, including connexin channels. To further study potential functional interactions between CFTR and gap junction channels, we have co-expressed CFTR and connexin45 (Cx45) in Xenopus oocytes and monitored junctional conductance and voltage sensitivity by dual voltage clamp electrophysiology. In single oocytes expressing CFTR, an increase in cAMP caused by forskolin application induced a Cl current and increased membrane conductance; application of diphenylamine carboxylic acid (CFTR blocker) readily blocked the Cl current. With co-expression of CFTR and Cx45, application of forskolin to paired oocytes induced a typical outward current and increased junctional conductance (Gj). In addition, the presence of CFTR reduced the transjunctional voltage sensitivity of Cx45 channels without affecting the kinetics of junctional current inactivation. The drop in voltage sensitivity was further enhanced by forskolin application. The data indicate that CFTR influences cell-to-cell coupling mediated by Cx45 channels.  相似文献   

2.
We have investigated the electrophysiological basis of potassium inward rectification of the KAT1 gene product from Arabidopsis thaliana expressed in Xenopus oocytes and of functionally related K+ channels in the plasma membrane of guard and root cells from Vicia faba and Zea mays. The whole-cell currents passed by these channels activate, following steps to membrane potentials more negative than –100 mV, with half activation times of tens of milliseconds. This voltage dependence was unaffected by the removal of cytoplasmic magnesium. Consequently, unlike inward rectifier channels of animals, inward rectification of plant potassium channels is an intrinsic property of the channel protein itself. We also found that the activation kinetics of KAT1 were modulated by external pH. Decreasing the pH in the range 8.5 to 4.5 hastened activation and shifted the steady state activation curve by 19 mV per pH unit. This indicates that the activity of these K+ channels and the activity of the plasma membrane H+-ATPase may not only be coordinated by membrane potential but also by pH. The instantaneous current-voltage relationship, on the other hand, did not depend on pH, indicating that H+ do not block the channel. In addition to sensitivity towards protons, the channels showed a high affinity voltage dependent block in the presence of cesium, but were less sensitive to barium. Recordings from membrane patches of KAT1 injected oocytes in symmetric, Mg2+-free, 100 mM-K+, solutions allowed measurements of the current-voltage relation of single open KAT1 channels with a unitary conductance of 5 pS. We conclude that the inward rectification of the currents mediated by the KAT1 gene product, or the related endogenous channels of plant cells, results from voltage-modulated structural changes within the channel proteins. The voltage-sensing or the gating-structures appear to interact with a titratable acidic residue exposed to the extracellular medium. Correspondence to: R. Hedrich  相似文献   

3.
Intercellular communication is mediated by specialized cell-cell contact areas known as gap junctions. Connexins are the constitutive proteins of gap junction intercellular channels. Various cell expression systems are used to express connexins and, in turn, these expression systems can then be tested for their ability to form functional cell-cell channels. In this review, expression of murine endogenous connexins in primary cells and established cell lines is compared with results obtained by expression of exogenous connexins inXenopus oocytes and cultured mammalian cells. In addition, first reports on characterization of connexin-deficient mice are discussed.  相似文献   

4.
Protein translocation in Escherichia coli requires protein-conducting channels in cytoplasmic membranes to allow precursor peptides to pass through with adenosine triphosphate (ATP) hydrolysis. Here, we report a novel, sensitive method that detects the opening of the SecA-dependent protein-conducting channels at the nanogram level. E. coli inverted membrane vesicles were injected into Xenopus oocytes, and ionic currents were recorded using the two-electrode voltage clamp. Currents were observed only in the presence of E. coli SecA in conjunction with E. coli membranes. Observed currents showed outward rectification in the presence of KCl as permeable ions and were significantly enhanced by coinjection with the precursor protein proOmpA or active LamB signal peptide. Channel activity was blockable with sodium azide or adenylyl 5′-(β,γ-methylene)-diphosphonate, a nonhydrolyzable ATP analogue, both of which are known to inhibit SecA protein activity. Endogenous oocyte precursor proteins also stimulated ion current activity and can be inhibited by puromycin. In the presence of puromycin, exogenous proOmpA or LamB signal peptides continued to enhance ionic currents. Thus, the requirement of signal peptides and ATP hydrolysis for the SecA-dependent currents resembles biochemical protein translocation assay with E. coli membrane vesicles, indicating that the Xenopus oocyte system provides a sensitive assay to study the role of Sec and precursor proteins in the formation of protein-conducting channels using electrophysiological methods.  相似文献   

5.
Rat basophilic leukemia cells (RBL-2H3) have previously been shown to contain a single type of voltage-activated channel, namely an inwardly rectifying K+ channel, under normal recording conditions. Thus, RBL-2H3 cells seemed like a logical source of mRNA for the expression cloning of inwardly rectifying K+ channels. Injection of mRNA isolated from RBL-2H3 cells into Xenopus oocytes resulted in the expression of an inward current which (1) activated at potentials negative to the K+ equilibrium potential (EK), (2)decreased in slope conductance near EK, (3) was dependent on [K+]o and (4) was blocked by external Ba2+ and Cs+. These properties were similar to those of the inwardly rectifying K+ current recorded from RBL-2H3 cells using whole-cell voltage clamp. Injection of size-fractionated mRNA into Xenopus oocytes revealed that the current was most strongly expressed from the fraction containing mRNA of approximately 4–5 kb. Expression of this channel represents a starting point for the expression cloning of a novel class of K+ channels.  相似文献   

6.
A new procedure was used to purify the peroxisomal matrix enzyme hydroxypyruvate reductase (HPR) from green leaves of pumpkin (Cucurbita pepo L.) and spinach (Spinacia oleracea L.). Monospecific antibodies were prepared against this enzyme in rabbits. Immunoprecipitation of HPR from watermelon (Citrullus vulgaris Schrad.) yielded a single protein with a subunit molecular weight of 45 kDa. Immunohistochemical labeling of HPR was found exclusively in watermelon microbodies. Isolated polyadenylated mRNA from light-grown watermelon cotyledons was injected into Xenopus laevis oocytes. The heterologous in-vivo translation product of HPR exhibited the same molecular weight as the immunoprecipitate from watermelon cotyledons, indicating the lack of a cleavable extra sequence. The watermelon HPR translated in oocytes was imported into isolated glyoxysomes from castor bean (Ricinus communis L.) endosperm and remained resistant to proteolysis after the addition of proteinase K. The HPR did not change its apparent molecular weight during sequestration; however, it may have changed its conformation.Abbreviations HPR hydroxypyruvate reductase - PMSF phenylmethylsulfonyl fluoride - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

7.
CLIC proteins comprise a family of chloride channels whose physiological roles are uncertain. To gain further insight into possible means of CLIC1 channel activity regulation, this protein was expressed in Xenopus oocytes alone or in combination with the cystic fibrosis transmembrane conductance regulator (CFTR). Whole-cell currents were determined using two-electrode voltage-clamp methods. Expression of CLIC1 alone did not increase whole-cell conductance either at rest or in response to increased intracellular cyclic adenosine monophosphate (cAMP). However, expression of CLIC1 with CFTR led to increased cAMP-activated whole-cell currents compared to expression from the same amount of CFTR mRNA alone. IAA-94 is a drug known to inhibit CLIC family channels but not CFTR. In oocytes expressing both CLIC1 and CFTR, a fraction of the cAMP-activated whole-cell current was sensitive to IAA-94, whereas in oocytes expressing CFTR alone, the cAMP-stimulated current was resistant to the drug. Cell fractionation studies revealed that the presence of CFTR conferred cAMP-stimulated redistribution of a fraction of CLIC1 from a soluble to a membrane-associated form. We conclude that when expressed in Xenopus oocytes CFTR confers cAMP regulation to CLIC1 activity in the plasma membrane and that at least part of this regulation is due to recruitment of CLIC1 from the cytoplasm to the membrane.  相似文献   

8.
HERG CCardiac, a C-terminal splice variant of the human ether-à-go-go-related gene (HERG A), was identified and found to be 100% homologous to HERGUSO. Real-time polymerase chain reaction data indicated that in the human heart HERG CCardiac mRNA was expressed eight times more than HERG A, whereas in human ventricular tissue it was expressed six times more than HERG A. A HERG CCardiac-green fluorescence protein (GFP) construct was heterologously expressed in Xenopus oocytes. Confocal micrographs revealed that HERG CCardiac was mainly expressed in the plasma membrane. HERG CCardiac channel expressed in oocytes produced slower inactivating outward currents and faster deactivating tail currents than those of HERG A channel. Equal amounts of HERG A and HERG CCardiac cRNA coinjected into oocytes formed intermediate HERG A + HERG CCardiac heteromultimers, which was reconfirmed by immunoprecipitation experiments with a HERG A N-terminal antibody. These heteromultimers had different inactivation, deactivation and activation kinetics from those of HERG A and HERG CCardiac channels. HERG A + HERG CCardiac heteromultimers significantly reduced the model action potential mean amplitude and increased the fast and slow inactivation τ values of the action potential repolarization phase, suggesting involvement of HERG A and HERG CCardiac heteromultimers in modulation of the refractory interval.  相似文献   

9.
The Arabidopsis thaliana KAT1, an inward-rectifying potassium channel, shares molecular features with the Shaker family of outward rectifier K+ channels. The KAT1 amino-acid sequence reveals the presence of a positively charged S4 and a segment containing the TXGYGD signature sequence in the pore (P) region. To test whether the inward-rectifying properties of KAT1 are due to reverse orientation in the membrane, such that the voltage sensor is oriented in the opposite direction of the electric field compared with the Shaker K+ channel, we have inserted a flag epitope in the NH2 terminus or the S3–S4 loop. The KAT1 and tagged constructs expressed functional channels in whole cells, Xenopus oocytes and COS-7. The electrophysiological properties of both tagged constructs were similar to those of the wild type. Immunofluorescence with an antibody against the flag epitope and an anti-C terminal KAT1 determined the membrane localization of these epitopes and the orientation of the KAT1 channel in the membrane. Our data confirm that KAT1 in eukaryotic cells has an orientation similar to the Shaker K+ channel.  相似文献   

10.
The single transmembrane-spanning Ca2+-binding protein, STIM1, has been proposed to function as a Ca2+ sensor that links the endoplasmic reticulum to the activation of store-operated Ca2+ channels. In this study, the presence, subcellular localization and function of STIM1 in store-operated Ca2+ entry in oocytes was investigated using the pig as a model. Cloning and sequence analysis revealed the presence of porcine STIM1 with a coding sequence of 2058 bp. In oocytes with full cytoplasmic Ca2+ stores, STIM1 was localized predominantly in the inner cytoplasm as indicated by immunocytochemistry or overexpression of human STIM1 conjugated to the yellow fluorescent protein. Depletion of the Ca2+ stores was associated with redistribution of STIM1 along the plasma membrane. Increasing STIM1 expression resulted in enhanced Ca2+ influx after store depletion and subsequent Ca2+ add-back; the influx was inhibited when the oocytes were pretreated with lanthanum, a specific inhibitor of store-operated Ca2+ channels. When STIM1 expression was suppressed using siRNAs, there was no change in cytosolic free Ca2+ levels in the store-depleted oocytes after Ca2+ add-back. The findings suggest that in oocytes, STIM1 serves as a sensor of Ca2+ store content that after store depletion moves to the plasma membrane to stimulate store-operated Ca2+ entry.  相似文献   

11.
1. The role of synaptophysin in the exocytotic release of dopamine (DA) was examined in Xenopus laevis oocytes injected with rat brain mRNA.2. The mRNA-injected oocytes showed DA uptake which depended on the incubation time and external DA concentrations.3. Stimulation with KCl (10–50 mM) of mRNA-injected oocytes preloaded with DA evoked external Ca2+-dependent release of DA. The noninjected and water-injected oocytes did not produce uptake of DA and stimulation-evoked release of DA.4. The high-KCl (50 mM)-stimulated release of DA decreased in the oocytes injected with rat brain mRNA together with antibody to synaptophysin.5. Immunoblot analysis demonstrated that synaptophysin was expressed in the brain mRNA-injected oocytes but not in the noninjected and water-injected oocytes.6. Thus, uptake and release machinery similar to native dopaminergic nerve terminals was expressed in Xenopus oocytes by injecting mRNA-extracted from the rat brain, and synaptophysin may play a role in the exocytotic release of DA.  相似文献   

12.
A phosphorylated protein with molecular mass of 25,000 (pp25) is a component of Xenopus laevis vitellogenin B1. In an attempt to elucidate the physiological role of pp25, its effect on protein phosphorylation was studied. In vitro phosphorylation of some endogenous proteins from the cytoplasm and membrane fraction of Xenopus oocytes by casein kinase II and protein kinase C (PKC) was inhibited by increasing the concentration of pp25. By Western blot analysis using an antibody against phospho-(Ser/Thr) PKC substrate, phosphorylation of some endogenous proteins, especially in the cytoplasm, of Xenopus embryos was seen to increase when pp25 disappeared during developmental stages 35–45. These results suggest that pp25 may have a role as an inhibitory modulator of some protein phosphorylation in Xenopus oocytes and embryos.  相似文献   

13.
We have previously described the isolation of a complementary DNA (cDNA) from the freshwater molluscLymnaea stagnalis encoding a polypeptide that exhibits 50% identity to the ß-subunits of vertebrate -aminobutyric acid (GABA) type A (GABAA) receptor. When expressed inXenopus laevis oocytes fromin vitro-transcribed RNA, the snail subunit forms functional homo-oligomeric receptors possessing chloride-selective ion channels. In recordings from voltage-clamped oocytes held at –60 mV, GABA induced an inward current, whereas application of the chloride-channel blocker picrotoxin (in the absence of agonist) elicited an apparent outward current. Single channel recordings obtained from cell-attached patches have revealed a single population of 20 pS channels, with an open probability greater than 90% (at a pipette potential of –100 mV) in the absence of GABA. The relationship between single channel current and pipette potential was linear over the studied range (–100 mV to +60 mV), but the open probability was less for hyperpolarizations than for depolarizations. The spontaneous channel openings were blocked by micromolar concentrations of picrotoxin. Functional hetero-oligomeric receptors were formed when the molluscan subunit was co-expressed in oocytes with the bovine GABAA receptor 1-subunit, but the channels gated by these receptors did not open spontaneously.  相似文献   

14.
Although the bys-like family of genes has been conserved from yeast to humans, it is not apparent to what extent the function of Bys-like proteins has been conserved across phylogenetic groups. Human Bystin is thought to function in a novel cell adhesion complex involved in embryo implantation. The product of the yeast bys-like gene, Enp1, is nuclear and has a role in pre-ribosomal RNA (pre-rRNA) splicing and ribosome biogenesis. To gain insight into the function of the Drosophila melanogaster bys-like family member, termed bys, we examined bys mRNA expression and the localization of Bys protein. In embryos, bys mRNA is expressed in a tissue-specific pattern during gastrulation. In the larval wing imaginal disc, bys mRNA is expressed in the ventral and dorsal regions of the wing pouch, regions that give rise to epithelia that adhere to one another after the wing disc everts. The bys mRNA expression patterns could be interpreted as being consistent with a role for Bys in events requiring cell-cell interactions. However, embryonic bys mRNA expression patterns mirror those of genes that are potential targets of the growth regulator Myc and encode nucleolar proteins implicated in cell growth. Additionally, in Schneider line 2 (S2) cells, an epitope-tagged Bys protein is localized to the nucleus, suggesting that Drosophila Bys function may be conserved with that of yeast Enp1.Edited by D.A. Weisblat  相似文献   

15.

Background and purpose

Vascular endothelial and smooth muscle cell phenotypes may change dramatically after isolation and in cell cultures. This study was designed to investigate gap junctions coupling in an integrated intact preparation and to test if KIR channels modulate resting membrane conductance in “in situ” endothelial cells (EC), and acetylcholine (ACh)-evoked relaxation of the rat superior mesenteric artery.

Experimental approach

Whole cell blind patch recordings of ionic currents from in situ EC, dye-coupling experiments, and functional studies were performed in rat superior mesenteric artery.

Key results

EC were dye-coupled through gap junctions. 18β-glycyrretinic acid (25 μM) decreased outward and inward currents, the 80% decay of time and time constant of the capacitative transients, capacitance, and increased input resistance. Barium chloride (30 μM) decreased resting and ACh-evoked inward currents, the sensitivity of ACh-evoked relaxation, and decreased both the sensitivity and the maximal relaxation to S-nitroso-N-acetyl penicillamine in arteries with, but not in arteries without endothelium.

Conclusions

The present results suggest that the EC layer of this large artery is electrically coupled, and that KIR channels regulate resting inward conductance, hence suggesting that they are of importance for resting membrane potential in in situ EC. Moreover, EC KIR channels are involved in ACh-evoked relaxation.  相似文献   

16.
Interferon-α (IFNα) affects the opioid system. However, the direct action of IFNα on cloned opioid receptors remains unknown. Taking advantage of the functional coupling of cloned opioid receptors to G protein-activated inwardly rectifying K+ (GIRK) channels in a Xenopus oocyte expression system, we investigated the effects of recombinant IFNα on cloned μ-, δ- and κ-opioid receptors. In oocytes co-injected with mRNAs for either the δ- or κ-opioid receptor and for GIRK channel subunits, IFNα at high concentrations induced small GIRK currents that were abolished by naloxone, an opioid-receptor antagonist, compared with the control responses to each selective opioid agonist. Additionally, IFNα induced no significant current response in oocytes injected with mRNA(s) for either opioid receptor alone or GIRK channels. In oocytes expressing the μ-opioid receptor and GIRK channels, IFNα had little or no effect. Moreover, in oocytes expressing each opioid receptor and GIRK channels, GIRK current responses to each selective opioid agonist were not affected by the presence of IFNα, indicating no significant antagonism of IFNα toward the opioid receptors. Furthermore, IFNα had little or no effect on the μ/δ-, δ/κ- or μ/κ-opioid receptors expressed together with GIRK channels in oocytes. Our results suggest that IFNα weakly activates the δ and κ-opioid receptors. The direct activation of the δ- and κ-opioid receptors by IFNα may partly contribute to some of the IFNα effects under its high-dose medication.  相似文献   

17.
The topological distribution of the chemoreceptors to quinine in the membrane of a ciliate Paramecium caudatum were examined by conventional electrophysiological techniques. A CNR-mutant specimen defective in voltage-gated Ca channels produced a transient depolarization followed by a transient hyperpolarization and a sustained depolarization when 1 mM quinine-containing solution was applied to its entirety. A Ni2+-paralyzed CNR-mutant specimen produced a simple membrane depolarization in response to a local application of 1 mM quinine-containing solution to its anterior end, whereas it produced a transient membrane hyperpolarization in response to an application to its posterior end. An anterior half fragment of a CNR specimen produced a membrane depolarization whereas a posterior half fragment of the specimen produced a transient hyperpolarization upon application of 1 mM quinine-containing solution. Both anterior depolarization and posterior hyperpolarization took place prior to the contraction of the cell body. It is concluded that Paramecium caudatum possesses two kinds of chemoreceptors or two kinds of coupling of the same receptor to different signal transduction pathways to quinine which are distributed in different locations on the cell surface. Activation of the anterior receptor produces a sustained depolarizing receptor potential while activation of the posterior receptor produces a transient hyperpolarizing receptor potential.Abbreviation CNR caudatum non reversal  相似文献   

18.
Insect sodium channels and insecticide resistance   总被引:1,自引:0,他引:1  
Voltage-gated sodium channels are essential for the generation and propagation of action potentials (i.e., electrical impulses) in excitable cells. Although most of our knowledge about sodium channels is derived from decades of studies of mammalian isoforms, research on insect sodium channels is revealing both common and unique aspects of sodium channel biology. In particular, our understanding of the molecular dynamics and pharmacology of insect sodium channels has advanced greatly in recent years, thanks to successful functional expression of insect sodium channels in Xenopus oocytes and intensive efforts to elucidate the molecular basis of insect resistance to insecticides that target sodium channels. In this review, I discuss recent literature on insect sodium channels with emphases on the prominent role of alternative splicing and RNA editing in the generation of functionally diverse sodium channels in insects and the current understanding of the interactions between insect sodium channels and insecticides.  相似文献   

19.
Processes of oocyte maturation that may be affected by boron (B) deficiency were studied to potentially determine a possible biochemical role of B in the Xenopus laevis oocyte. More specifically, the Xenopus oocyte membrane progesterone receptor (OMPR) in B-deficient oocytes was characterized by evaluating progesterone affinity for the OMPR and OMPR responsiveness to progesterone stimulation. The responsiveness of B-deficient oocytes to microinjection of a purified oocyte cytoplasmic fraction (OCF) from B-adequate oocytes was also studied to evaluate which aspects of the maturation process were affected by B deficiency. Results suggested that B deficiency resulted in incomplete oocyte maturation and that maturation could not be induced by the administration of exogenous progesterone. Progesterone successfully induced germinal vesicle breakdown (GVBD) in oocytes from females fed a B-supplemented diet (+B) and females administered a traditional diet of beef liver and lung (B adequate). Addition of exogenous B to the -B oocytes increased the rate of progesterone-induced GVBD slightly. The B-deficient X. laevis oocytes were capable of undergoing GVBD when endogenously stimulated by microinjected purified B-adequate OCF. These results indicated that the inability of the B-deficient oocytes to undergo GVBD was not associated with the cytoplasmic induction process specifically, but possibly in the progesterone receptor or signal transduction pathways. Radio-binding studies found that progesterone binding to the B-deficient OPMR was greatly reduced compared to B-adequate or B-supplemented OMPR. Moreover, washout studies determined that progesterone binding to the OMPR in B-deficient oocytes was more transient than the B adequate or +B oocytes.  相似文献   

20.
l-leucine uptake in stage V Xenopus laevis oocytes was affected by the specific methods used to remove the follicle cells. In the presence of 100 mM NaCl, l-leucine uptake was reduced by 67.5%±5.7 when defolliculation was performed enzymatically by collagenase treatment, whereas the reduction was 30.5%±6.4 after mechanical defolliculation. The Na+-dependent uptake of 0.1 mM l-leucine was 18.6±4.6 pmol oocyte−1 40 min−1 in folliculated oocytes and 5.6±1.9 in collagenase defolliculated oocytes (means±SE). l-leucine uptake was not affected by the removal of the follicular layer if defolliculation occurred after the transport period; radiolabeled l-leucine is therefore not taken up into a compartment that is removed by the defolliculation process. The different l-leucine uptake rates observed in folliculated and defolliculated oocytes were not due to non-specific l-leucine binding to membranes. l-leucine kinetics showed that the l-leucine Vmax and Km values were lower in oocytes deprived of the follicular layer than in control oocytes enveloped in intact follicular layers. The Vmax and Km values of Na+-dependent l-leucine transport, calculated from data obtained the day after defolliculation by collagenase treatment, were: 16±1.5 pmol oocyte−1 40 min−1 and 57±21 μmol (mean±SD). The Na+-activation curve of 0.1 mM l-leucine was hyperbolic in folliculated oocytes and sigmoidal in defolliculated oocytes. The morphological analysis performed in parallel with the transport experiments showed that after defolliculation, the fibers forming the vitelline membrane tended to be arranged in a more regular orthogonal array, and the number of oocyte microvilli was reduced after collagenase treatment. Mechanical defolliculation did not appreciably affect the oocyte microvilli, however this procedure did not completely remove all follicle cells. The damage to collagenase treated oocytes was reversible, and the functional and structural features of most oocytes improved upon subsequent in vitro incubation. The recovery process seemed to involve protein synthesis in view of the increased value of l-leucine Vmax, and microscopic observation showing recovery of the microvillar apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号