首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
STUDIES ON THE PERMEABILITY OF LYMPHATIC CAPILLARIES   总被引:3,自引:0,他引:3       下载免费PDF全文
The passageway for interstitial fluids and large molecules across the connective tissue lymph interface has been investigated in dermal lymphatic capillaries in the ears of guinea pigs. Numerous endothelial cells overlap extensively at their margins and lack adhesion devices at many points. The observations suggest that these sites are free to move as a result of slight pressure changes. Immediately following interstitial injections of tracer particles (ferritin, thorium, carbon, and latex spheres), many of the overlapped endothelial cells are separated and thus passageways are provided between the interstitium and lymphatic lumen. Tracer particles also occur in plasmalemmal invaginations along both connective tissue and luminal fronts. All of the tracer particles accumulate within large autophagic-like vacuoles. Very few particles of ferritin are observed in the endothelium after 24 hr; however, the vesicles containing the nonprotein tracer particles (carbon, thorium, and latex) increase in size and content and remain within the lymphatic endothelial cells up to 6 months. The role of vesicles in the transport of large molecules and particles is discussed in relation to the accretion of tracer particles within large vesicles and autophagic-like vacuoles in the endothelial cytoplasm.  相似文献   

2.
Investigation performed on topography, structure and resorptive function of lymphatic microvessels in the serous membranes gives possibilities to work out a model on formation and transport of lymph. Lymphatic postcapillaries (LP) - thin-walled endothelial channels with valves make an important link of the lymphatic system. The LP structure is similar to that of capillaries. These microvessels are situated in the interstitial space area, that are characterized with their high content of plasma proteins and water. Interrelation in concentrations of protein in the LP lumen and in the tissue ensures the existence of the osmotic gradient pressure through the wall and contributes liquor resorption into the lumen of microvessels. Peritoneal lymphatic capillaries are situated in the areas of a higher hydrotation level of the interstitial space. They can control the rate of the liquor filtration from plasma into tissue and regulate the resorption level in the whole lymphatic network. The model provides a differentiated participation of the LP and capillaries in performing resorption of proteins and liquor from the interstitium. The resorption mechanisms are closely connected with processes of the lymph movement along the vessels.  相似文献   

3.
4.
This study investigates the fluid flow through tissues where lymphatic drainage occurs. Lymphatic drainage requires the use of two valve systems, primary and secondary. Primary valves are located in the initial lymphatics. Overlapping endothelial cells around the circumferential lining of lymphatic capillaries are presumed to act as a unidirectional valve system. Secondary valves are located in the lumen of the collecting lymphatics and act as another unidirectional valve system; these are well studied in contrast to primary valves. We propose a model for the drainage of fluid by the lymphatic system that includes the primary valve system. The analysis in this work incorporates the mechanics of the primary lymphatic valves as well as the fluid flow through the interstitium and that through the walls of the blood capillaries. The model predicts a piecewise linear relation between the drainage flux and the pressure difference between the blood and lymphatic capillaries. The model describes a permeable membrane around a blood capillary, an elastic primary lymphatic valve and the interstitium lying between the two.  相似文献   

5.
Lymphatic endothelium: morphological, molecular and functional properties   总被引:12,自引:0,他引:12  
The lymphatic microvasculature is uniquely adapted for the continuous removal of interstitial fluid and proteins, and is an important point of entry for leukocytes and tumor cells. The traditional view that lymphatic capillaries are passive participants in these tasks is currently being challenged. This overview highlights recent advances in our understanding of the molecular mechanisms underlying the formation and function of lymphatic vessels.  相似文献   

6.
Abnormal lymphatic vessel development in neuropilin 2 mutant mice   总被引:40,自引:0,他引:40  
Neuropilin 2 is a receptor for class III semaphorins and for certain members of the vascular endothelial growth factor family. Targeted inactivation of the neuropilin 2 gene (Nrp2) has previously shown its role in neural development. We report that neuropilin 2 expression in the vascular system is restricted to veins and lymphatic vessels. Homozygous Nrp2 mutants show absence or severe reduction of small lymphatic vessels and capillaries during development. This correlated with a reduction of DNA synthesis in the lymphatic endothelial cells of the mutants. Arteries, veins and larger, collecting lymphatic vessels developed normally, suggesting that neuropilin 2 is selectively required for the formation of small lymphatic vessels and capillaries.  相似文献   

7.
Dunworth WP  Fritz-Six KL  Caron KM 《Peptides》2008,29(12):2243-2249
The lymphatic vascular system functions to maintain fluid homeostasis by removing fluid from the interstitial space and returning it to venous circulation. This process is dependent upon the maintenance and modulation of a semi-permeable barrier between lymphatic endothelial cells of the lymphatic capillaries. However, our understanding of the lymphatic endothelial barrier and the molecular mechanisms that govern its function remains limited. Adrenomedullin (AM) is a 52 amino acid secreted peptide which has a wide range of effects on cardiovascular physiology and is required for the normal development of the lymphatic vascular system. Here, we report that AM can also modulate lymphatic permeability in cultured dermal microlymphatic endothelial cells (HMVEC-dLy). AM stimulation caused a reorganization of the tight junction protein ZO-1 and the adherens protein VE-cadherin at the plasma membrane, effectively tightening the endothelial barrier. Stabilization of the lymphatic endothelial barrier by AM occurred independently of changes in junctional protein gene expression and AM−/− endothelial cells showed no differences in the gene expression of junctional proteins compared to wildtype endothelial cells. Nevertheless, local administration of AM in the mouse tail decreased the rate of lymph uptake from the interstitial space into the lymphatic capillaries. Together, these data reveal a previously unrecognized role for AM in controlling lymphatic endothelial permeability and lymphatic flow through reorganization of junctional proteins.  相似文献   

8.
An electron microscopic study of the fine blood vessels in the skin and muscle of 25 newborn rats (sucklings, and therefore subject to physiologic lipemia) has shown that blood-borne lipid particles may leave the lumen of these vessels by two pathways, intercellular and intracellular. (a) An intercellular pathway: Some capillaries, venous capillaries and venules contain intramural, extracellular deposits of lipid which is presumably hematogenous. In some animals these deposits are quite numerous; available evidence suggests that they are a consequence of intercellular gaps, too small or too transient to be observed except in rare instances. Plasma apparently escapes through these gaps and filters across the basement membrane, while lipid particles are retained, usually in sufficient number to fill the small defect; some lipid particles are then taken up by endothelial cells and pericytes, while a few escape and are incorporated into free phagocytes. These focal defects, though few in number, may explain the apparent incapacity of blood vessels of newborn rats to leak any further after a local injection of histamine. Discontinuities in the endothelium were found also in the renal glomerulus, sometimes accompanied by extensive interstitial accumulations of lipid particles. Similar intercellular gaps are known to exist in other types of immature endothelia. (b) An intracellular pathway: This is best demonstrated in the capillaries, venous capillaries and venules which supply the developing subcutaneous adipose tissue. Here the lipid particles adhere in large numbers to the endothelial surface; the morphologic evidence suggests that they are also taken up into the endothelium through phagocytosis by "flaps," or into pockets or crevices. The lipid is apparently metabolized in the vascular wall; some is found in the multivesicular bodies. There was no evidence of active transport by vesicles or vacuoles. Neither pathway was demonstrable in the adult.  相似文献   

9.
Summary Anesthetized vervets were given intravenous injections of horseradish peroxidase. Subsequent studies of iris capillaries with the electron microscope showed peroxidase reaction product within the lumen of the vessels and in endothelial vesicles, but no peroxidase had penetrated the vascular endothelium. The normal ultrastructure of the vascular wall was retained.  相似文献   

10.
 Lymphatic capillaries are distributed throughout the body of lepidosirenid and protopterid Dipnoi, except in the central nervous system. They form small, interconnected units which are individually evacuated into nearby blood capillaries by lymphatic micropumps. The number of lymphatic micropumps varies considerably in different parts of the body. In fin areas, 30–50 per mm3 tissue may be considered normal in Protopterus annectens, but up to 105 per mm3 have been counted in an anterior fin of Lepidosiren paradoxa. Lymphatic capillaries are formed by thin endothelial cells with fine processes into the surrounding interstitial space. Occasionally there is a faint, discontinuous basal lamina. Pericytes, however, are completely absent. Microfibrils establish contact between endothelial cells and surrounding connective tissue fibers. The lymphatic micropumps are essentially spherical, contractile organs of 35–55 μm in diameter. Their central lumen is lined by extensions of a single endothelial cell. Additional endothelial cells form inflow and outflow valves. The endothelial layer is surrounded by a single large, highly specialized muscle cell. This spherical muscle cell has many perforations, allowing the passage of thin outward processes of the endothelial cell which form part of the suspension apparatus of the lymphatic micropump. The muscle cell establishes a specialized end-to-end contact between opposing parts of its own cell membrane. This contact is very similar to an intercalated disc in vertebrate heart muscle. Each lymphatic micropump is suspended within a cell-free tissue area by microfibrils which radiate from the lymphatic micropump into the surrounding connective tissue. The microfibrils are occasionally reinforced by single collagen fibers. The cell-free area around each lymphatic micropump appears as a bright halo in both light and electron micrographs. No type of lymphatic vessel other than lymphatic capillaries could be detected in the Dipnoi studied. Lepidosireniform Dipnoi are the only Vertebrata besides the Tetrapoda in which lymphatic vessels and characteristic lymphatic pumps have been documented. In addition, these Dipnoi and all Tetrapoda share the same overall design of blood circulation, which is not divided into a primary and a secondary system of vessels, as it is in Actinopterygii, Chondrichthyes, and Agnatha. Since there are primary and secondary blood vessels in the gills of Latimeria chalumnae, while the existence of lymphatic vessels has not been confirmed, general angioarchitecture should be taken into account as an important character when phylogenetic relationships among extant Sarcopterygii are discussed. Accepted: 7 October 1997  相似文献   

11.
Lymphatic capillary drainage of interstitial fluid under both steady-state and inflammatory conditions is important for tissue fluid balance, cancer metastasis, and immunity. Lymphatic drainage function is critically coupled to the fluid mechanical properties of the interstitium, yet this coupling is poorly understood. Here we sought to effectively model the lymphatic-interstitial fluid coupling and ask why the lymphatic capillary network often appears with roughly a hexagonal architecture. We use homogenization method, which allows tissue-scale lymph flow to be integrated with the microstructural details of the lymphatic capillaries, thus gaining insight into the functionality of lymphatic anatomy. We first describe flow in lymphatic capillaries using the Navier-Stokes equations and flow through the interstitium using Darcy's law. We then use multiscale homogenization to derive macroscale equations describing lymphatic drainage, with the mouse tail skin as a basis. We find that the limiting resistance for fluid drainage is that from the interstitium into the capillaries rather than within the capillaries. We also find that between hexagonal, square, and parallel tube configurations of lymphatic capillary networks, the hexagonal structure is the most efficient architecture for coupled interstitial and capillary fluid transport; that is, it clears the most interstitial fluid for a given network density and baseline interstitial fluid pressure. Thus, using homogenization theory, one can assess how vessel microstructure influences the macroscale fluid drainage by the lymphatics and demonstrate why the hexagonal network of dermal lymphatic capillaries is optimal for interstitial tissue fluid clearance.  相似文献   

12.
Lymphangiogenesis results in the formation of a vascular network distinct from arteries and veins that serves to drain interstitial fluid from surrounding tissues and plays a pivotal role in the immune defense of vertebrates as well as in the progression of cancer and other diseases . In mammals, lymph vessels are lined by endothelial cells possibly sprouting from embryonic veins, and their development appears to be critically dependent on the function of PROX1 and VEGFC signaling . The existence of a lymphatic system in teleosts has been a matter of debate for decades. Here we show on the morphological, molecular, and functional levels that zebrafish embryos develop a lymphatic vasculature that serves to retrieve components of the interstitium to the lymph system. We demonstrate the existence of vessels that are molecularly and functionally distinct from blood vessels and show that the development of these vessels depends on Vegfc and VEGFR-3/Flt4 signaling. These findings imply that the molecular components controlling lymphangiogenesis in zebrafish and mammals are conserved and that the zebrafish lymphatic system develops early enough to allow in vivo observations, lineage tracing, and genetic as well as pharmacological screens.  相似文献   

13.
Surgery or radiation therapy of metastatic cancer often damages lymph nodes, leading to secondary lymphedema. Here we show, using a newly established mouse model, that collecting lymphatic vessels can be regenerated and fused to lymph node transplants after lymph node removal. Treatment of lymph node-excised mice with adenovirally delivered vascular endothelial growth factor-C (VEGF-C) or VEGF-D induced robust growth of the lymphatic capillaries, which gradually underwent intrinsic remodeling, differentiation and maturation into functional collecting lymphatic vessels, including the formation of uniform endothelial cell-cell junctions and intraluminal valves. The vessels also reacquired pericyte contacts, which downregulated lymphatic capillary markers during vessel maturation. Growth factor therapy improved the outcome of lymph node transplantation, including functional reconstitution of the immunological barrier against tumor metastasis. These results show that growth factor-induced maturation of lymphatic vessels is possible in adult mice and provide a basis for future therapy of lymphedema.  相似文献   

14.
The physiological processes involved in tissue development and regeneration also include the parallel formation of blood and lymphatic vessel circulations which involves their growth, maturation and remodelling. Both vascular systems are also frequently involved in the development and progression of pathological conditions in tissues and organs. The blood vascular system circulates oxygenated blood and nutrients at appropriate physiological levels for tissue survival, and efficiently removes all waste products including carbon dioxide. This continuous network consists of the heart, aorta, arteries, arterioles, capillaries, post-capillary venules, venules, veins and vena cava. This system exists in an interstitial environment together with the lymphatic vascular system, including lymph nodes, which aids maintenance of body fluid balance and immune surveillance. To understand the process of vascular development, vascular network stability, remodelling and/or regression in any research model under any experimental conditions, it is necessary to clearly and unequivocally identify and quantify all elements of the vascular network. By utilising stereological methods in combination with cellular markers for different vascular cell components, it is possible to estimate parameters such as surface density and surface area of blood vessels, length density and length of blood vessels as well as absolute vascular volume. This review examines the current strategies used to visualise blood vessels and lymphatic vessels in two- and three-dimensions and the basic principles of vascular stereology used to quantify vascular network parameters.  相似文献   

15.
The mechanism for interstitial fluid uptake into the lymphatics remains speculative and unresolved. A system of intralymphatic valves exists that prevents reflow along the length of the lymphatic channels. However, these valves are not sufficient to provide unidirectional flow at the level of the initial lymphatics. We investigate here the hypothesis that initial lymphatics have a second, separate valve system that permits fluid to enter from the interstitium into the initial lymph channels but prevents escape back out into the tissue. The transport of fluorescent microspheres (0.31 microm) across endothelium of initial lymphatics in rat cremaster muscle was investigated with micropipette manipulation techniques. The results indicate that microspheres can readily pass from the interstitium across the endothelium into the lumen of the initial lymphatics. Once inside the lymphatic lumen, the microspheres cannot be forced out of the lumen even after elevation of the lymphatic pressure by outflow obstruction. Reaspiration of the microspheres inside the lymphatic lumen with a micropipette is blocked by the lymphatic endothelium. This blockade exists whether the aspiration is carried out at the microsphere entry site or anywhere along the initial lymphatics. Nevertheless, puncture of the initial lymphatic endothelium with the micropipette leads to rapid aspiration of intralymphatic microspheres. Investigation of lymphatic endothelial sections fixed during lymph pumping shows open interendothelial junctions not found in resting initial lymphatics. These results suggest that initial lymphatics have a (primary) valve system at the level of the endothelium. In conjunction with the classical (secondary) intralymphatic valves, the primary valves provide the mechanism that facilitates the unidirectional flow during periodic compression and expansion of initial lymphatics.  相似文献   

16.
The purpose of this study was to describe the morphology of the whole lymphatic way: from capillaries to thoracic duct including cisterna chili using scanning electron microscopy and Evan's technique. We observed the lymph vascular wall that is: the endothelial surface, the muscular layer and the adventitial one. All these vessels were covered by an endothelial surface, with raised nuclei and long cell axes oriented parallel to the direction of flow. The borders between adjacent endothelial cell were often seen and open junctions were noted in lymphatic capillaries. The technique we used, permitted the removal of connective tissue by HC1 hydrolysis, so that smooth muscle cells could be examined. The latter showed a great variety of aspects and a very irregular course. The adventitial layer was thin in capillaries and became complex in thoracic duct where collagen fibers and connective elements were seen.  相似文献   

17.
The thinnest areas of the capillaries of the choroid plexus and ciliary processes in the eye of the rabbit are characterized by the presence of fenestrae. When various colloidal particles opaque to the electron beam (thorotrast, gold sol, and saccharated iron oxide) were injected into the blood stream, none were found in fenestrae or in areas that might suggest their having passed through fenestrae. The passage of marker particles from the lumen to the surrounding connective tissue does take place on occasion in the areas of thicker walls in the capillaries and venules rather than in the attenuated and fenestrated endothelial walls. The pathway taken by these markers may be either through the cytoplasm of the endothelial cells via membrane-bounded vesicles and vacuoles or through the intercellular spaces of the vessels. An altered aqueous humor (cloudy and plasmoid) was produced by endotoxin injection or by making a draining fistula in rabbit cornea. Both methods gave rise to the same changes in the blood vessels of the ciliary processes. Under such conditions of inflammation the passage of colloidal particles through the thicker walls of the capillaries and venules was greatly increased and occurred primarily as an intercellular passage between the endothelial cells. The attenuated and fenestrated areas of the endothelium of the small capillaries remained unchanged with no particles passing through them. These results on the altered vessels of the ciliary processes parallel those of Majno and Palade (26) on the rat cremaster muscle.  相似文献   

18.
The dynamics of exogenic peroxidase transfer from blood into the roots of the rabbit mesenteric lymphatic system have been studied by means of electron microscopic methods in combination with the trasser technique. Light optic identification of the vascular segments and selection of samples for electron microscopic analysis make it possible to reveal certain differences in the pathways of protein transport via the walls of the blood capillaries and venules. The vesicular transport is the only means for peroxidase to be transferred via the walls of the mesenteric blood capillaries. The time for transendothelial transfer of the marker is more than 10 min. In the venules the vesicular transport of protein does not differ from that in the capillaries, however, the predominant leakage of peroxidase from blood into the interstitium is performed through open interendothelial contacts. The hemato-interstitial transport via the intercellular clefts takes less than 3 min. For transferring protein from the interstitium into the lumen of the lymphatic capillaries and postcapillaries, the vesicular mechanism is used, and to a less extent--the open intercellular contacts. A suggestion is made that the term "open contact" should be understood in functional meaning and this means should be considered as an intercellular pathway for transporting molecules of a definite size.  相似文献   

19.
The ultrastructure of the phyllobranchiate type gill of the shrimp, Caridina japonica, was studied. The most characteristic feature of the open circulatory system of Cardina is the vascular lumen of the gill capillaries which is considered to be the interstitial space. The following observations substantiate this view: (1) a thin fibrous layer forms the innermost structure of the walls of gill capillaries and is in direct contact with the blood stream; (2) filaments in the fibrous layer are assumed to correspond to the reticular fibers in the interstitial space of the alveolar wall of mammals; (3) the absence of the endothelium as well as the endothelial basal lamina which are the essential structural components of the closed circulatory system in vertebrates. The gill epithelium contains intermediate, septate and tight junctions. The first two form a junctional complex near the apical cell border and may function as a permeability barrier by occluding the intercellular space as well as functioning in electrical coupling and cellular adhesion. The tight junction is spot-like and may serve no role in the function of the permeability barrier.  相似文献   

20.
Genesis and pathogenesis of lymphatic vessels   总被引:1,自引:0,他引:1  
The lymphatic system is generally regarded as supplementary to the blood vascular system, in that it transports interstitial fluid, macromolecules, and immune cells back into the blood. However, in insects, the open hemolymphatic (or lymphohematic) system ensures the circulation of immune cells and interstitial fluid through the body. The Drosophila homolog of the mammalian vascular endothelial growth factor receptor (VEGFR) gene family is expressed in hemocytes, suggesting a close relationship to the endothelium that develops later in phylogeny. Lymph hearts are typical organs for the propulsion of lymph in lower vertebrates and are still transiently present in birds. The lymphatic endothelial marker VEGFR-3 is transiently expressed in embryonic blood vessels and is crucial for their development. We therefore regard the question of whether the blood vascular system or the lymphatic system is primary or secondary as open. Future molecular comparisons should be performed without any bias based on the current prevalence of the blood vascular system over the lymphatic system. Here, we give an overview of the structure, function, and development of the lymphatics, with special emphasis on the recently discovered lymphangiogenic growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号