首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The vaccinia virus proteins A30 and G7 are known to play essential roles in early morphogenesis, acting prior to the formation of immature virions. Their repression or inactivation results in the accumulation of large virosomes, detached membrane crescents, and empty immature virions. We have undertaken further study of these proteins to place them within the context of the F10 kinase, the A14 membrane protein, and the H5 phosphoprotein, which have been the focus of previous studies within our laboratory. Here we confirm that both A30 and G7 undergo F10 kinase-dependent phosphorylation in vivo and recapitulate that modification of A30 in vitro. Although the detached crescents observed upon loss of A30 or G7 echo those seen upon repression of A14, no interaction between A30/G7 and A14 could be detected. We did, however, determine that the A30 and G7 proteins are unstable during nonpermissive tsH5 infections, suggesting that the loss of A30/G7 is the underlying cause for the formation of lacy or curdled virosomes. We also determined that the temperature-sensitive phenotype of the Cts11 virus is due to mutations in two codons of the G7L gene. Phenotypic analysis of nonpermissive Cts11 infections indicated that these amino acid substitutions compromise G7 function without impairing the stability of either G7 or A30. Utilizing Cts11 in conjunction with a rifampin release assay, we determined that G7 acts at multiple stages of virion morphogenesis that can be distinguished both by ultrastructural analysis and by monitoring the phosphorylation status of several viral proteins that undergo F10-mediated phosphorylation.  相似文献   

2.
The role of carbohydrate in the morphogenesis of vesicular stomatitis virus was studied, using the antibiotic tunicamycin to inhibit glycosylation. It has been reported previously (Gibson et al., J. Biol. Chem. 254:3600-3607, 1979) that the San Juan strain of vesicular stomatitis virus requires carbohydrate for efficient migration of the glycoprotein (G) to the cell surface and for virion formation, whereas the prototype or Orsay strain of vesicular stomatitis virus is less stringent in its carbohydrate requirement at 30 degrees C. However, there are many differences between the two strains. We found that mutational changes within the G protein of the same strain of virus (prototype or Orsay) alters the requirement for carbohydrate at 30 degrees C. Group V or G protein mutants tsO45 and tsO44, like their prototype parent, did not require carbohydrate for efficient morphogenesis. In contrast, the G protein of another group V mutant, tsO110, was totally dependent upon carbohydrate addition for migration to the cell surface. Furthermore, no tsO110 particles were released in the absence of glycosylation. The wild-type prototype strain did require carbohydrate at 39.5 degrees C for insertion of the G protein into the plasma membrane and virion formation. However, a pseudorevertant of tsO44 (tsO44R), unlike the prototype parent, no longer exhibited this temperature-sensitive requirement for carbohydrate. At 39.5 degrees C in the presence of tunicamycin, tsO44R-infected cells released normal yields of particles and the unglycosylated G reached the cell surface very efficiently. In contrast to tsO110, which absolutely requires carbohydrate, mutational change in the tsO44R G protein has eliminated the requirement for carbohydrate. Thus, simple mutational changes, as opposed to many changes in the molecule, are sufficient to alter the carbohydrate requirement.  相似文献   

3.
The vaccinia virus A30L protein is required for the association of electron-dense, granular, proteinaceous material with the concave surfaces of crescent membranes, an early step in viral morphogenesis. For the identification of additional proteins involved in this process, we used an antibody to the A30L protein, or to an epitope appended to its C terminus, to capture complexes from infected cells. A prominent 42-kDa protein was resolved and identified by mass spectrometry as the vaccinia virus G7L protein. This previously uncharacterized protein was expressed late in infection and was associated with immature virions and the cores of mature particles. In order to study the role of the G7L protein, a conditional lethal mutant was made by replacing the G7L gene with an inducible copy. Expression of G7L and formation of infectious virus was dependent on the addition of inducer. Under nonpermissive conditions, morphogenesis was blocked and viral crescent membranes and immature virions containing tubular elements were separated from the electron-dense granular viroplasm, which accumulated in large spherical masses. This phenotype was identical to that previously obtained with an inducible, conditional lethal A30L mutant. Additional in vivo and in vitro experiments provided evidence for the direct interaction of the A30L and G7L proteins and demonstrated that the stability of each one was dependent on its association with the other.  相似文献   

4.
Chiu WL  Chang W 《Journal of virology》2002,76(19):9575-9587
Vaccinia virus, a member of the poxvirus family, contains a conserved J1R open reading frame that encodes a late protein of 17.8 kDa. The 18-kDa J1R protein is associated mainly with the membrane fraction of intracellular mature virus particles. This study examines the biological function of J1R protein in the vaccinia virus life cycle. A recombinant vaccinia virus was constructed to conditionally express J1R protein in an isopropyl-beta-D-galactopyranoside (IPTG)-inducible manner. When J1R is not expressed during vaccinia virus infection, the virus titer is reduced approximately 100-fold. In contrast, J1R protein is not required for viral gene expression, as indicated by protein pulse-labeling. J1R protein is also not required for DNA processing, as the resolution of the concatemer junctions of replicated viral DNA was detected without IPTG. A deficiency of J1R protein caused a severe delay in the processing of p4a and p4b into mature core proteins 4a and 4b, indicating that J1R protein participates in virion morphogenesis. Infected cells grown in the absence of IPTG contained very few intracellular mature virions in the cytoplasm, and enlarged viroplasm structures accumulated with viral crescents attached at the periphery. Abundant intermediate membrane structures of abnormal shapes were observed, and many immature virions were either empty or partially filled, indicating that J1R protein is important for DNA packaging into immature virions. J1R protein also coimmunoprecipited with A45R protein in infected cells. In summary, these results indicate that vaccinia virus J1R is a membrane protein that is required for virus growth and plaque formation. J1R protein interacts with A45R protein and performs an important role during immature virion formation in cultured cells.  相似文献   

5.
Vaccinia virus l1 protein is required for cell entry and membrane fusion   总被引:1,自引:1,他引:0  
Genetic and biochemical studies have provided evidence for an entry/fusion complex (EFC) comprised of at least eight viral proteins (A16, A21, A28, G3, G9, H2, J5, and L5) that together with an associated protein (F9) participates in entry of vaccinia virus (VACV) into cells. The genes encoding these proteins are conserved in all poxviruses, are expressed late in infection, and are components of the mature virion membrane but are not required for viral morphogenesis. In addition, all but one component has intramolecular disulfides that are formed by the poxvirus cytoplasmic redox system. The L1 protein has each of the characteristics enumerated above except that it has been reported to be essential for virus assembly. To further investigate the role of L1, we constructed a recombinant VACV (vL1Ri) that inducibly expresses L1. In the absence of inducer, L1 synthesis was repressed and vL1Ri was unable to form plaques or produce infectious progeny. Unexpectedly, assembly and morphogenesis appeared normal and the noninfectious virus particles were indistinguishable from wild-type VACV as determined by transmission electron microscopy and analysis of the component polypeptides. Notably, the L1-deficient virions were able to attach to cells but the cores failed to penetrate into the cytoplasm. In addition, cells infected with vL1Ri in the absence of inducer did not form syncytia following brief low-pH treatment even though extracellular virus was produced. Coimmunoprecipitation experiments demonstrated that L1 interacted with the EFC and indirectly with F9, suggesting that L1 is an additional component of the viral entry apparatus.  相似文献   

6.
7.
Unger B  Traktman P 《Journal of virology》2004,78(16):8885-8901
The 70-amino-acid A13L protein is a component of the vaccinia virus membrane. We demonstrate here that the protein is expressed at late times of infection, undergoes phosphorylation at a serine residue(s), and becomes encapsidated in a monomeric form. Phosphorylation is dependent on Ser40, which lies within the proline-rich motif SPPP. Because phosphorylation of the A13 protein is only minimally affected by disruption of the viral F10 kinase or H1 phosphatase, a cellular kinase is likely to be involved. We generated an inducible recombinant in which A13 protein expression is dependent upon the inclusion of tetracycline in the culture medium. Repression of the A13L protein spares the biochemical progression of the viral life cycle but arrests virion morphogenesis. Virion assembly progresses through the formation of immature virions (IVs); however, these virions do not acquire nucleoids, and DNA crystalloids accumulate in the cytoplasm. Further development into intracellular mature virions is blocked, causing a 1,000-fold decrease in the infectious virus yield relative to that obtained in the presence of the inducer. We also determined that the temperature-sensitive phenotype of the viral mutant Cts40 is due to a nucleotide transition within the A13L gene that causes a Thr(48)-->Ile substitution. This substitution disrupts the function of the A13 protein but does not cause thermolability of the protein; at the nonpermissive temperature, virion morphogenesis arrests at the stage of IV formation. The A13L protein, therefore, is part of a newly recognized group of membrane proteins that are dispensable for the early biogenesis of the virion membrane but are essential for virion maturation.  相似文献   

8.
Earlier studies have shown that wild-type infected-cell protein 0 (ICP0), a key herpes simplex virus regulatory protein, translocates from the nucleus to the cytoplasm of human embryonic lung (HEL) fibroblasts within several hours after infection (Y. Kawaguchi, R. Bruni, and B. Roizman, J. Virol. 71:1019-1024, 1997). Translocation of ICP0 was also observed in cells infected with the d120 mutant, in which both copies of the gene encoding ICP4, the major regulatory protein, had been deleted (V. Galvan, R. Brandimarti, J. Munger, and B. Roizman, J. Virol. 74:1931-1938, 2000). Furthermore, a mutant (R7914) carrying the D199A substitution in ICP0 does not bind or stabilize cyclin D3 and is retained in the nucleus (C. Van Sant, P. Lopez, S. J. Advani, and B. Roizman, J. Virol. 75:1888-1898, 2001). Studies designed to elucidate the requirements for the translocation of ICP0 between cellular compartments revealed the following. (i) Translocation of ICP0 to the cytoplasm in productive infection maps to the D199 amino acid, inasmuch as wild-type ICP0 delivered in trans to cells infected with an ICP0 null mutant was translocated to the cytoplasm whereas the D199A-substituted mutant ICP0 was not. (ii) Translocation of wild-type ICP0 requires a function expressed late in infection, inasmuch as phosphonoacetate blocked the translocation of ICP0 in wild-type virus-infected cells but not in d120 mutant-infected cells. Moreover, whereas in d120 mutant-infected cells ICP0 was translocated rapidly from the cytoplasm to the nucleus at approximately 5 h after infection, the translocation of ICP0 in wild-type virus-infected cells extended from 5 to at least 9 h after infection. (iii) In wild-type virus-infected cells, the MG132 proteasomal inhibitor blocked the translocation of ICP0 to the cytoplasm early in infection, but when added late in infection, it caused ICP0 to be relocated back to the nucleus from the cytoplasm. (iv) MG132 blocked the translocation of ICP0 in d120 mutant-infected cells early in infection but had no effect on the ICP0 aggregated in vesicle-like structures late in infection. However, in d120 mutant-infected cells treated with MG132 at late times, proteasomes formed a shell-like structure around the aggregated ICP0. These structures were not seen in wild-type virus or R7914 mutant-infected cells. The results indicate the following. (i) In the absence of beta or gamma protein synthesis, ICP0 dynamically associates with proteasomes and is translocated to the cytoplasm. (ii) In cells productively infected beyond alpha gene expression, ICP0 is retained in the nucleus until after the onset of viral DNA synthesis and the synthesis of gamma2 proteins. (iii) Late in infection, ICP0 is actively sequestered in the cytoplasm by a process mediated by proteasomes, inasmuch as interference with proteasomal function causes rapid relocation of ICP0 to the nucleus.  相似文献   

9.
10.
11.
Phosphorylation of the polyomavirus major capsid protein VP1 was examined after in vivo 32P labeling of virus-infected cells. Two phosphorylated peptide fragments of VP1 were identified by protease digestion, high-performance liquid chromatography purification, mass spectrometry, and N-terminal sequencing. The peptides from residues 58 to 78 and residues 153 to 173 were phosphorylated on threonine. Site-directed mutations were introduced at these threonine sites, and mutant viruses were reconstructed. A threonine-to-glycine change at residue 63 (mutant G63) and a threonine-to-alanine change at residue 156 (mutant A156) resulted in viruses defective in phosphorylation of the respective peptides after in vivo labeling. Growth of the mutant G63 virus was similar to that of the wild-type virus, but the mutant A156 was inefficient in assembly of 240S viral particles. Polyomavirus nontransforming host range (hr-t) mutants are defective in VP1 threonine phosphorylation when grown in nonpermissive cells (R. L. Garcea, K. Ballmer-Hofer, and T. L. Benjamin, J. Virol. 54:311-316, 1985). Proteolytic mapping of VP1 peptides after in vivo labeling from hr-t mutant virus infections demonstrated that both residues T-63 and T-156 were affected. These results suggest that the block in virion assembly in hr-t mutant viruses is associated with a defect in phosphorylation of threonine 156.  相似文献   

12.
Husain M  Moss B 《Journal of virology》2002,76(15):7777-7789
Intracellular mature vaccinia virions are wrapped by cisternae, derived from virus-modified trans-Golgi or endosomal membranes, and then transported via microtubules to the cell periphery. Two viral proteins, encoded by the F13L and B5R open reading frames, are essential for the membrane-wrapping step. Previous transfection studies indicated that F13L induces the formation of post-Golgi vesicles that incorporate the B5R protein and that this activity depends on an intact F13L phospholipase motif. Here we show that the F13L protein has a general effect on the trafficking of integral membrane proteins from the Golgi apparatus, as both the vaccinia virus A36R protein and the vesicular stomatitis virus G protein also colocalized with the F13L protein in vesicles. In addition, increased expression of cellular phospholipase D, which has a similar phospholipase motif as, but little amino acid sequence identity with, F13L, induced post-Golgi vesicles that contained B5R and A36R proteins. Butanol-1, which prevents the formation of phosphatidic acid by phospholipase D and specifically inhibits phospholipase D-mediated vesicle formation, also inhibited F13L-induced vesicle formation, whereas secondary and tertiary alcohols had no effect. Moreover, inhibition of phospholipase activity by butanol-1 also reduced plaque size and decreased the formation of extracellular vaccinia virus without affecting the yield of intracellular mature virus. Phospholipase D, however, could not complement a vaccinia virus F13L deletion mutant, indicating that F13L has additional virus-specific properties. Taken together, these data support an important role for F13L in inducing the formation of vesicle precursors of the vaccinia virus membrane via phospholipase activity or activation.  相似文献   

13.
M A Whitt  P Zagouras  B Crise    J K Rose 《Journal of virology》1990,64(10):4907-4913
We have recently described an assay in which a temperature-sensitive mutant of vesicular stomatitis virus (VSV; mutant tsO45), encoding a glycoprotein that is not transported to the cell surface, can be rescued by expression of wild-type VSV glycoproteins from cDNA (M. Whitt, L. Chong, and J. Rose, J. Virol. 63:3569-3578, 1989). Here we examined the ability of mutant G proteins to rescue tsO45. We found that one mutant protein (QN-1) having an additional N-linked oligosaccharide at amino acid 117 in the extracellular domain was incorporated into VSV virions but that the virions containing this glycoprotein were not infectious. Further analysis showed that virus particles containing the mutant protein would bind to cells and were endocytosed with kinetics identical to those of virions rescued with wild-type G protein. We also found that QN-1 lacked the normal membrane fusion activity characteristic of wild-type G protein. The absence of fusion activity appears to explain lack of particle infectivity. The proximity of the new glycosylation site to a sequence of 19 uncharged amino acids (residues 118 to 136) that is conserved in the glycoproteins of the two VSV serotypes suggests that this region may be involved in membrane fusion. The mutant glycoprotein also interferes strongly with rescue of virus by wild-type G protein. The strong interference may result from formation of heterotrimers that lack fusion activity.  相似文献   

14.
Wild-type Sendai virus buds at the apical plasma membrane domain of polarized epithelial MDCK cells, whereas a pantropic mutant, F1-R, buds at both the apical and basolateral domains. In F1-R-infected cells, polarized protein transport and the microtubule network are impaired. It has been suggested that the mutated F and/or M proteins in F1-R are responsible for these changes (M. Tashiro, J. T. Seto, H.-D. Klenk, and R. Rott, J. Virol. 67:5902-5910, 1993). To clarify which gene or mutation(s) was responsible for the microtubule disruption which leads to altered budding of F1-R, MDCK cell lines containing the M gene of either the wild type or F1-R were established. When wild-type M protein was expressed at a level corresponding to that synthesized in virus-infected cells, cellular polarity and the integrity of the microtubules were affected to some extent. On the other hand, expression of the mutated F1-R M protein resulted in the formation of giant cells about 40 times larger than normal MDCK cells. Under these conditions, the effects on the microtubule network were enhanced. The microtubules were disrupted and polarized protein transport was impaired as indicated by the nonpolarized secretion of gp80, a host cell glycoprotein normally secreted from the apical domain, and bipolar budding of wild-type and F1-R Sendai viruses. The mutated F glycoprotein of F1-R was transported bipolarly in cells expressing the F1-R M protein, whereas it was transported predominantly to the apical domain when expressed alone or in cells coexpressing the wild-type M protein. These findings indicate that the M protein of F1-R is involved in the disruption of the microtubular network, leading to impairment of cellular polarity, bipolar transport of the F glycoprotein, and bipolar budding of the virus.  相似文献   

15.
构建汉滩病毒76—118N蛋白及其分别从N-端和C-端缺失的共6个突变体,在大肠杆菌BL-21中进行表达,并对其中一些蛋白进行了纯化。通过Western blot、酶联免疫吸附试验(ELISA)进行汉滩病毒N蛋白的抗原表位分析,N蛋白及6个缺失突变体都与组特异性抗体L13F3呈阳性反应,而缺失突变体与型特异性抗体AH30呈阴性反应。构建汉滩病毒76—118N蛋白及其6个缺失突变体的真核表达载体,并在COS-7细胞中进行表达。通过间接免疫荧光试验(IFA)进行汉滩病毒N蛋白的抗原表位分析,病人血清与真核表达的N蛋白及6个缺失突变体呈阳性反应。而仅有N蛋白及缺失N端1~30位氨基酸序列的NPN30与型特异性抗体AH30呈阳性反应。证实组特异性抗体L13F3结合的抗原表位位于N端1~30位氨基酸;而C端抗原表位对于型特异性抗体AH30与N蛋白的识别和结合具有重要意义,缺失N端100位氨基酸序列可能破坏羧基端构象型表位,也可以影响N蛋白与AH30的结合。  相似文献   

16.
Respiratory syncytial virus (RSV) produces three envelope glycoproteins, the attachment glycoprotein (G), the fusion (F) protein, and the small hydrophobic (SH) protein. It had been assumed, by analogy with other paramyxoviruses, that the G and F proteins would be required for the first two steps of viral entry, attachment and fusion. However, following repeated passage in cell culture, a viable mutant RSV that lacked both the G and SH genes was isolated (R. A. Karron, D. A. Buonagurio, A. F. Georgiu, S. S. Whitehead, J. E. Adamus, M. L. Clements-Mann, D. O. Harris, V. B. Randolph, S. A. Udem, B. R. Murphy, and M. S. Sidhu, Proc. Natl. Acad. Sci. USA 94:13,961--13,966, 1997). To explore the roles of the G, F, and SH proteins in virion assembly, function, and cytopathology, we have modified the full-length RSV cDNA and used it to rescue infectious RSV lacking the G and/or SH genes. The three resulting viruses and the parental virus all contain the green fluorescent protein (GFP) gene that serves to identify infected cells. We have used purified, radiolabeled virions to examine virus production and function, in conjunction with GFP to quantify infected cells. We found that the G protein enhances virion binding to target cells but plays no role in penetration after attachment. The G protein also enhances cell-to-cell fusion, presumably via cell-to-cell binding, and enhances virion assembly or release. The presence or absence of the G protein in virions has no obvious effect on the content of F protein or host cell proteins in the virion. In growth curve experiments, the viruses lacking the G protein produced viral titers that were at least 10-fold lower than titers of viruses containing the G protein. This reduction is due in large part to the less efficient release of virions and the lower infectivity of the released virions. In the absence of the G protein, virus expressing both the F and SH proteins displayed somewhat smaller plaques, lower fusion activity, and slower viral entry than the virus expressing the F protein alone, suggesting that the SH protein has a negative effect on virus fusion in cell culture.  相似文献   

17.
Herpes simplex virus 1 (HSV-1) glycoprotein K (gK) is expressed on virions and functions in entry, inasmuch as HSV-1(KOS) virions devoid of gK enter cells substantially slower than is the case for the parental KOS virus (T. P. Foster, G. V. Rybachuk, and K. G. Kousoulas, J. Virol. 75:12431-12438, 2001). Deletion of the amino-terminal 68-amino-acid (aa) portion of gK caused a reduction in efficiency and kinetics of virus entry similar to that of the gK-null virus in comparison to the HSV-1(F) parental virus. The UL20 membrane protein and gK were readily detected on double-gradient-purified virion preparations. Immuno-electron microscopy confirmed the presence of gK and UL20 on purified virions. Coimmunoprecipitation experiments using purified virions revealed that gK interacted with UL20, as has been shown in virus-infected cells (T. P. Foster, V. N. Chouljenko, and K. G. Kousoulas, J. Virol. 82:6310-6323, 2008). Scanning of the HSV-1(F) viral genome revealed the presence of a single putative tobacco etch virus (TEV) protease site within gD, while additional TEV predicted sites were found within the UL5 (helicase-primase helicase subunit), UL23 (thymidine kinase), UL25 (DNA packaging tegument protein), and UL52 (helicase-primase primase subunit) proteins. The recombinant virus gDΔTEV was engineered to eliminate the single predicted gD TEV protease site without appreciably affecting its replication characteristics. The mutant virus gK-V5-TEV was subsequently constructed by insertion of a gene sequence encoding a V5 epitope tag in frame with the TEV protease site immediately after gK amino acid 68. The gK-V5-TEV, R-gK-V5-TEV (revertant virus), and gDΔTEV viruses exhibited similar plaque morphologies and replication characteristics. Treatment of the gK-V5-TEV virions with TEV protease caused approximately 32 to 34% reduction of virus entry, while treatment of gDΔTEV virions caused slightly increased virus entry. These results provide direct evidence that the gK and UL20 proteins, which are genetically and functionally linked to gB-mediated virus-induced cell fusion, are structural components of virions and function in virus entry. Site-specific cleavage of viral glycoproteins on mature and fully infectious virions utilizing unique protease sites may serve as a generalizable method of uncoupling the roles of viral glycoproteins in virus entry and virion assembly.  相似文献   

18.
The effects of Newcastle disease virus (NDV) fusion (F) glycoprotein cleavage mutants on the cleavage and syncytium-forming activity of the wild-type F protein were examined. F protein cleavage mutants were made by altering amino acids in the furin recognition region (amino acids 112 to 116) in the F protein of a virulent strain of NDV. Four mutants were made: Q114P replaced the glutamine residue with proline; K115G replaced lysine with glycine; double mutant K115G, R113G replaced both a lysine and an arginine with glycine residues; and a triple mutant, R112G, K115G, F117L, replaced three amino acids to mimic the sequence found in avirulent strains of NDV. All mutants except Q114P were cleavage negative and fusion negative. However, addition of exogenous trypsin cleaved all mutant F proteins and activated fusion. As expected for an oligomeric protein, the fusion-negative mutants had a dominant negative phenotype: cotransfection of wild-type and mutant F protein cDNAs resulted in an inhibition of syncytium formation. The presence of the mutant F protein did not inhibit cleavage of the wild-type protein. Furthermore, evidence is presented that suggests that the mutant protein and the wild-type protein formed heterooligomers. By measuring the syncytium-forming activity of the wild-type protein at various ratios of expression of mutant and wild-type protein, results were obtained that are most consistent with the notion that the size of the functionally active NDV F protein in these assays is a single oligomer, likely a trimer. That a larger oligomer, containing a mix of both wild-type and mutant F proteins, has partial activity cannot, however, be ruled out.  相似文献   

19.
Human cytomegalovirus (HCMV) UL99 encodes a late tegument protein pp28 that is essential for envelopment and production of infectious virus. This protein is localized to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) in transfected cells but it localizes to the cytoplasmic assembly compartment (AC) in HCMV-infected cells. Trafficking of pp28 to the AC is required for the assembly of infectious virus. The N-terminal domain (aa 1–61) of pp28 is sufficient for trafficking and function of the wild type protein during viral infection. However, residues required for authentic pp28 trafficking with the exception of the acidic cluster in the N-terminal domain of pp28 remain undefined. Monitoring protein migration on SDS-PAGE, we found that pp28 is phosphorylated in the virus-infected cells and dephosphorylated in the viral particles. By generating substitution mutants of pp28, we showed that three serine residues (aa 41–43) and a tyrosine residue (aa 34) account for its phosphorylation. The mutant forms of pp28 were localized to the plasma membrane as well as the ERGIC in transfected cells. Likewise, these mutant proteins were localized to the plasma membrane as well as the AC in virus-infected cells. These results suggested that phosphorylation of pp28 contributes to its intracellular trafficking and efficient viral assembly and incorporation.  相似文献   

20.
The human cytomegalovirus (HCMV) major immediate-early (IE) proteins share an 85-amino-acid N-terminal domain specified by exons 2 and 3 of the major IE region, UL122-123. We have constructed IE Delta30-77, a recombinant virus that lacks the majority of IE exon 3 and consequently expresses smaller forms of both IE1 72- and IE2 86-kDa proteins. The mutant virus is viable but growth impaired at both high and low multiplicities of infection and exhibits a kinetic defect that is not rescued by growth in fibroblasts expressing IE1 72-kDa protein. The kinetics of mutant IE2 protein accumulation in IE Delta30-77 virus-infected cells are approximately normal compared to wild-type virus-infected cells, but the IE Delta30-77 virus is delayed in expression of early viral genes, including UL112-113 and UL44, and does not sustain expression of mutant IE1 protein as the infection progresses. Additionally, cells infected with IE Delta30-77 exhibit altered expression of cellular proteins compared to wild-type HCMV-infected cells. PML is not dispersed but is retained at ND10 sites following infection with IE Delta30-77 mutant virus. While the deletion mutant retains the ability to mediate the stabilization of cyclin B1, cdc6, and geminin in infected cells, its capacity to upregulate the expression of cyclin E has been reduced. These data indicate that the activity of one or both of the HCMV major IE proteins is required in vivo for the modulation of cell cycle proteins observed in cells infected with wild-type HCMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号