首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Oxygen absorption enhancement in a sodium sulfite solution was studied in the absence and presence of copper catalyst both for absorption across the liquid surface in a stirred cell and for absorption from individual bubbles rising through a turbulent liquid. The enhancement factor was determined from the ratio of oxygen and argon mass transfer coefficients, measured under identical experimental conditions in the same batch of liquid. It has been found that the oxygen absorption is not chemically enhanced, as long as the mass transfer coefficient, kL0, is high enough, i.e., higher than the value 1.4 × 10?4 m sec?1 for the sulfite solution we used. An analysis of our data as well as literature data indicates that the sulfite system is poorly suited for studies of the volumetric mass transfer coefficient of physical absorption (kL0a) in fermentors, inasmuch as oxygen absorption can be chemically enhanced while the degree of enhancement depends on the operating conditions of batch aeration, as well as on the concentration of trace impurities with catalytic effects upon the sulfite solution used.  相似文献   

2.
This paper considers techniques of measurement of the curves of oxygen consumption by microorganisms. The widely applied method of obtaining the value of the critical oxygen concentration (COC) using these curves has been analysed. The experimental conditions necessary for the adequate measurement of the culture respiration rate in a fermenter have been found. It has been shown that in the case when the respiration rate within the considered range of pO2 is determined by one and the same enzyme, the COC value is not an apropriate characteristic of the mode of the respiration rate dependence on oxygen concentration.  相似文献   

3.
Summary Cultures of Rhizobium trifolii, Rh. leguminosarum, Rh. meliloti and Rh. japonicum were grown in the Novy-Soule type of respiration apparatus and the oxygen consumed, CO 2 produced and glucose fermented determined. From these data the respiratory quotient, the percentage of glucose used, and the carbon of the glucose used that appeared as CO2-carbon were calculated. Since very little acids or neutral products are formed by these organisms, the carbohydrate destroyed and not appearing as CO2 is a measure of gum production by the organisms.With Rh. trifolii, Rh. leguminosarum and Rh. meliloti, the glucose used, the rate of respiration, and to some extent the glucose that appeared as CO2, increase with increasing p O2. About 60 to 80 per cent of the carbon in the glucose utilized appears in the CO2 produced. All of these cultures had an R. Q. close to unity which was independent of the p O2. The respiratory quotient of Rh. leguminosarum was inclined to be erratic.With Rh. japonicum, the rate of respiration, total oxygen consumed, and total CO2 produced were much lower than the values observed for the other cultures, Also the glucose used increased with decreasing p O2. The apparatus used was not sufficiently sensitive to detect marked differences in the rate of respiration under the various tensions of oxygen with this organism, but there appeared to be a small increase in the rate of respiration with the higher tensions of oxygen.With all organisms, excellent fermentation of glucose with a high conversion into CO2 was observed under low tensions of oxygen (five per cent or less), provided the absolute quantity of this gas was present in excess of the requirements of the organisms.Herman Frasch Foundation in Agricultural Chemistry Paper No. 66.  相似文献   

4.
A new correlation is given for the prediction of the volumetric coefficient for mass transfer (KLa) in stirred tanks from dispersed gas bubbles to basal salt solutions of ionic strengths representative of fermentation media. The correlation includes the effects of both the operating parameters (agitation power per unit volume and gas superficial velocity) and the physicochemical properties of the system: interfacial tension, viscosity, density, diffusion, coefficient and, in particular, ionic strength. The effect of the latter was found to be most significant in the Newtonian systems of water-like viscosity investigated; no previous correlations have included the effect of ionic strength. KLa values were determined by using a dissolved oxygen probe to monitor the steady-state oxygen tension in continuous flow experiments, and/or the rate of change of oxygen tension in unsteady-state semibatch experiments. In the latter cases, results were computed by a nonlinear, least squares computer program which fitted the experimental data to a model of probe transient response characteristics. The general applicability of the model and the computational procedure was verified by comparing the results to those obtained with the same electrolyte solution in the steady-state mode. The experiments were run over a wide range of agitation power inputs, including those typical of both soluble- and insoluble-substrate fermentations. The correlation appears to be valid for both oxygen mass transfer with and without homogeneous chemical reaction in the liquid phase; in the former case, for example, sulfite oxidation, knowledge of the chemical reaction enhancement factor is required. In addition to predicting oxygen transfer capabilities, the correlation may be used for other sparingly soluble gases of interest in fermentation systems, such as methane, hydrogen, and carbon dioxide.  相似文献   

5.
Summary The effect of various NaCl concentrations on respiration and fermentation rates in cells with or without added glucose as exogenous substrate as well as on respiratory quotients was determined for Debaryomyces hansenii, Saccharomyces cerevisiae, Cryptococcus albidus, and Candida zeylanoides, all yeasts isolated from marine environment. A given strain had about the same respiratory and fermentatory intensity at 0% and 4% NaCl (w/v). A further increase considerably reduced the oxygen uptake or CO2-evolution. D. hansenii was the most NaCl tolerant yeast tested, giving about 10% activity still at a concentration of 24% NaCl, whether the activities of whole cells or cell homogenates were determined. For S. cerevisiae or Cr. albidus the respiratory activity was reduced to about the same degree at 16% NaCl for whole cells, at 12% NaCl for homogenates of Cr. albidus. A somewhat higher NaCl concentration was evidently tolerated for respiration and fermentation than for growth, very obvious in the case of C. zeylanoides.The minimum values for water activity (a w) permitting 10% respiration activity were higher when produced by electrolytes (NaCl, KCl, or Na2SO4), lower when due to sugars (metabolizable glucose or non-metabolizable lactose) and lowest when due to glycerol. The a w per se was evidently not solely decisive for the limitation of respiration activity.Attempts were made to assess an effect of high NaCl concentrations on the glucose uptake.The potassium content was higher in cells of the highly halotolerant D. hansenii than in those of the other yeasts and decreased with the increase in external, consequently in internal, Na+ concentration. The decrease in K+ content can presumably only proceed to a certain extent, below which the ability for growth and respiration was lost.  相似文献   

6.
This paper approaches the problem of oxygen mass transfer. This transfer is in antibiotic biosynthesis liquids produced by microorganisms belonging to the actinomycete and fungi classes, which exhibit a shear thinning non-Newtonian rheological behaviour. The volumetric oxygen mass transfer coefficients in these liquids (kL ab) change during biosynthesis processes. The change is mainly due to rheological parameter modifications, such as increasing the consistency index (K) and decreasing the flow behaviour index (n). The values of kL ab were 3.0–6.5 times lower than those recorded in water, and their decreasing depended on the kL a values obtained without biological liquid and on the nature of fermentation broths, as well. Starting from experimental data, two correlations were established between kL ab and P/VSG and P/VSG, N, respectively. These correlations contain a dimensionless factor (ηamg), which takes into account the rheological properties of the liquid phase and offers the possibility for a fast and sufficiently accurate estimation of kL ab. The empirical correlations developed in the paper correspond reasonably well with the relatively wide variety of experimental data, as in the model proposed by PEREZ and SANDALL , and allow for the comparison of the fermentation batches of the same or different microorganisms; also, they may be applied to the workings of design, scale-up, control and monitoring of bioreactors.  相似文献   

7.
Use of the glucose oxidase system to measure oxygen transfer rates   总被引:1,自引:0,他引:1  
This investigation used the glucose oxidase system to simulate oxygen transfer rate in fermentation broths. It was demonstrated that the fungal preparation contained sufficient lactonase activity so that D -glucono-δ-lactone did not accumulate and that the rate of production of gluconic acid was proportional to the oxygen uptake rate. Enzyme concentrations of 1.5–2 g/1 were found adequate to determine oxygen absorption rates in shake flasks while maintaining the dissolved oxygen concentration of low levels. The apparent Michaelis constant for oxygen, Km(O2), was found to be 27% saturation with air; this value along with experimentally determined uptake rates could be used to calculate dissolved oxygen concentration in lieu of using a dissolved oxygen probe. Enzyme concentrations of 5 g/l were sufficient to give linear acid production and low dissolved oxygen concentrations in a bench-scale fermenter with no foaming or enzyme deactivation. The method is considered more valid and easier to employ than previously utilized techniques such as sulfite oxidation. Extension of the system to evaluating aeration effectiveness and scaleup of fermentation equipment is discussed.  相似文献   

8.
9.
Desulfovibrio species are representatives of microorganisms at the boundary between anaerobic and aerobic lifestyles, since they contain the enzymatic systems required for both sulfate and oxygen reduction. However, the latter has been shown to be solely a protective mechanism. By implementing the oxygen-driven experimental evolution of Desulfovibrio vulgaris Hildenborough, we have obtained strains that have evolved to grow with energy derived from oxidative phosphorylation linked to oxygen reduction. We show that a few mutations are sufficient for the emergence of this phenotype and reveal two routes of evolution primarily involving either inactivation or overexpression of the gene encoding heterodisulfide reductase. We propose that the oxygen respiration for energy conservation that sustains the growth of the O2-evolved strains is associated with a rearrangement of metabolite fluxes, especially NAD+/NADH, leading to an optimized O2 reduction. These evolved strains are the first sulfate-reducing bacteria that exhibit a demonstrated oxygen respiratory process that enables growth.  相似文献   

10.
The overall oxygen mass transfer coefficient (KLa) is often used as scale-up factor of fermentation systems. In fermenter scale-up, it is desired to achieve the same KLa values at the larger scale than the one that was obtained at a smaller scale during the development stage. It is therefore important to be able to measure KLa in situ during fermentation and to also determine the action to be taken to maintain its value at its design set point. These objectives can be obtained by measuring KLa using the dynamic method and enhancing the KLa information by immediately conducting a series of changes in agitation speed and/or aeration rate to determine the influence of these variables on KLa. This enhanced dynamic method is demonstrated with two filamentous microorganisms: Trichoderma reesei for the production of cellulase and Aspergillus niger for the production of citric acid. Two different types of bioreactor were used: a reciprocating plate bioreactor and a stirred (Rushton) bioreactor. It is shown that the proposed method can provide a simple way to measure the local variation of KLa and to adjust its value to its set point during the course of fermentation.  相似文献   

11.
Summary The heat evolution of aerobic batch cultures of growing yeast (Saccharomyces cerevisiae) in glucose media was investigated by a combination of a flow-microcalorimeter with a fermentor vessel. The course of heat production, cell production and the rate of oxygen consumption were qualitatively the same for all glucose concentrations between 10 mM and 100 mM. Under optimal aerobic conditions a triphasic growth was observed due to the fermentation of glucose to ethanol, respiration of ethanol to CO2 and acetate, and respiration of acetate to C02. Energy and carbon were found to be in balance for all glucose concentrations.  相似文献   

12.
Lactococcus lactis, a lactic acid bacterium with a typical fermentative metabolism, can also use oxygen as an extracellular electron acceptor. Here we demonstrate, for the first time, that L. lactis blocked in NAD+ regeneration can use the alternative electron acceptor ferricyanide to support growth. By electrochemical analysis and characterization of strains carrying mutations in the respiratory chain, we pinpoint the essential role of the NADH dehydrogenase and 2-amino-3-carboxy-1,4-naphtoquinone in extracellular electron transfer (EET) and uncover the underlying pathway systematically. Ferricyanide respiration has unexpected effects on L. lactis, e.g., we find that morphology is altered from the normal coccoid to a more rod shaped appearance, and that acid resistance is increased. Using adaptive laboratory evolution (ALE), we successfully enhance the capacity for EET. Whole-genome sequencing reveals the underlying reason for the observed enhanced EET capacity to be a late-stage blocking of menaquinone biosynthesis. The perspectives of the study are numerous, especially within food fermentation and microbiome engineering, where EET can help relieve oxidative stress, promote growth of oxygen sensitive microorganisms and play critical roles in shaping microbial communities.  相似文献   

13.
A multi-objective optimization formulation that reflects the multi-substrate optimization in a multi-product fermentation is proposed in this work. This formulation includes the application of ε-constraint to generate the trade-off solution for the enhancement of one selective product in a multi-product fermentation, with simultaneous minimization of the other product within a threshold limit. The formulation has been applied to the fed-batch fermentation of Aspergillus niger that produces a number of enzymes during the course of fermentation, and of these, catalase and protease enzyme expression have been chosen as the enzymes of interest. Also, this proposed formulation has been applied in the environment of three control variables, i.e. the feed rates of sucrose, nitrogen source and oxygen and a set of trade-off solutions have been generated to develop the pareto-optimal curve. We have developed and experimentally evaluated the optimal control profiles for multiple substrate feed additions in the fed-batch fermentation of A. niger to maximize catalase expression along with protease expression within a threshold limit and vice versa. An increase of about 70% final catalase and 31% final protease compared to conventional fed-batch cultivation were obtained. Novel methods of oxygen supply through liquid-phase H2O2 addition have been used with a view to overcome limitations of aeration due to high gas–liquid transport resistance. The multi-objective optimization problem involved linearly appearing control variables and the decision space is constrained by state and end point constraints. The proposed multi-objective optimization is solved by differential evolution algorithm, a relatively superior population-based stochastic optimization strategy.  相似文献   

14.
Azospirillum brasilense and Arthrobacter giacomelloi were grown together in batch culture under different oxygen pressures. The response to oxygen of growth, nitrogenase activity and respiration rate was determined. The two microorganisms were found to be able to coexist all over the range of partial oxygen pressures examined, that is from 0.004–0.20 bar. Nitrogenase activity by mixed culture of A. brasilense and A. giacomelloi always appeared higher than that of A. brasilense pure culture. Low respiratory activity at partial oxygen pressures higher than 0.02 bar by both pure and mixed cultures seemed not to account for the high nitrogenase activity and improved oxygen tolerance of the mixed culture.Abbreviations pO2 partial oxygen pressure  相似文献   

15.
It remains a challenge to quantify and assess the importance of the direct plant below-ground flux of photosynthate carbon (C) to soil microorganisms, especially in forests because of the size of the plants and the great spatial heterogeneity of soils. We studied the importance of labile C inputs from trees on the respiratory activity of soil microorganisms by comparing the response of plots with and without girdled pine trees (Pinus sylvestris L.) to additions of C4-sucrose, thus enabling us to differentiate between utilization of endogenous C3-soil C sources and exogenous C4-sucrose. In both girdled and non-girdled plots the respiration rate after sucrose application, i.e. substrate induced respiration measured in the field, was on average ca. double that of basal respiration rate measured in the field. However, the C4-sucrose-induced increase in respiration of endogenous C3-C was significantly higher in non-girdled plots. Expression of C3-respiration as a percentage of induced respiration in the field showed that in girdled plots, C3-respiration decreased after sucrose addition and, consequently, the induced respiration in the field was totally C4-C based. A previous laboratory experiment found no increase in total respiration rate when C4-sucrose was added to the soil substrate of non-mycorrhizal and ectomycorrhizal pine plants. Hence, we see no reason to attribute the increased respiration to (mycorrhizal) roots. Thus, our results indicate that despite the alleged C limitation of the soil microorganisms there is a fraction of SOM, or C within the microbial biomass that is available to microbial metabolism if their C limitation is relieved by the supply of labile C. This fraction corresponds to roughly 10–20% of biomass C of the heterotrophic organisms and seems to become exhausted in the long-term absence of supply of photosynthate to roots.  相似文献   

16.
The calculation and scale-up of fermentation processes need kLa as one of the most important engineering data. There are two methods to determine kLa depending on power input, aeration rate and the properties of the fermentation broth: static with a balance between air supply and exit, dynamic gassing out with following the changes of dissolved oxygen concentration during periods of air off and a following air on. Within early intervals of fermentation time the data from both methods agree well, while for later time intervals the dynamic method always gives much lower values for kLa than static. The only explanations for this phenomenon are quick changes in the oxygen metabolism or an enzymatic storage of oxygen. For both gassing out and saturation period it is possible to calculate the same absolute amounts of this additional oxygen.  相似文献   

17.
The reduction of polyphenols content in olive mill wastewater (OMW) is a major issue in olive oil manufacturing. Although researchers have pointed out the potential of white-rot fungus in dephenolizing OMW, the results available in the literature mainly concern pretreated (sterilized) OMW. This paper deals with the reduction of polyphenols content in untreated OMW by means of a white-rot fungus, Pleurotus ostreatus. Dephenolization was performed both in an airlift bioreactor and in aerated flasks. The process was carried out under controlled non-sterile conditions, with different operating configurations (batch, continuous, biomass recycling) representative of potential industrial operations. Total organic carbon, polyphenols concentration, phenol oxidase activity, dissolved oxygen concentration, oxygen consumption rate, and pH were measured during every run. Tests were carried out with or without added nutrients (potato starch and potato dextrose) and laccases inducers (i.e., CuSO4). OMW endogenous microorganisms were competing with P. ostreatus for oxygen during simultaneous fermentation. Dephenolization of raw OMW by P. ostreatus under single batch was as large as 70%. Dephenolization was still extensive even when biomass was recycled up to six times. OMW pre-aeration had to be provided under continuous operation to avoid oxygen consumption by endogenous microorganisms that might spoil the process. The role of laccases in the dephenolization process has been discussed. Dephenolization under batch conditions with biomass recycling and added nutrients proved to be the most effective configuration for OMW polyphenols reduction in industrial plants (42–68% for five cycles).  相似文献   

18.
Summary Rates of oxygen uptake and the oxygen demand during growth of Candida tropicalis on hexadecane and glucose were determined in batch experiments. Oxygen demand was 2.5 fold higher for the synthesis of one unit of cell mass from hydrocarbon than from glucose. On the other hand specific respiration is of the same order of magnitude for both substrates, e.g. 12 mmoles O2xh-1xg-1 (dry weight) and seems to be a constant of this organism. Higher rates of oxygen supply into the medium had no effect on the specific rates of respiration. Specific growth rates on hexadecane were 2.4 times lower than on glucose. It is concluded, that rates of synthesis of cell components are controlled by the overall capacity of the respiratory pathways.  相似文献   

19.
We compared the Q10 relationship for root‐derived respiration (including respiration due to the root, external mycorrhizal mycelium and rhizosphere microorganisms) with that of mainly external ectomycorrhizal mycelium and that of bulk soil microorganisms without any roots present. This was studied in a microcosm consisting of an ectomycorrhizal Pinus muricata seedling growing in a sandy soil, and where roots were allow to colonize one soil compartment, mycorrhizal mycelium another compartment, and the last compartment consisted of root‐ and mycorrhiza‐free soil. The respiration rate in the bulk soil compartment was 30 times lower than in the root compartment, while that in the mycorrhizal compartment was six times lower. There were no differences in Q10 (for 5–15°C) between the different compartments, indicating that there were no differences in the temperature relationship between root‐associated and non‐root‐associated organisms. Thus, there are no indications that different Q10 values should be used for different soil organism, bulk soil or rhizosphere‐associated microorganisms when modelling the effects of global climate change.  相似文献   

20.
Photosynthetic activity and growth physiology of Spirulina platensis (Nordstedt) Geitler cultures maintained at ultrahigh cell densities (i.e. above 100 mg chlorophyll-L?1) in a newly designed photobioreactor were investigated. Nitrogen (NaNO3) in standard Zarouk medium was characterized as a major nutrient-limiting factor in such cultures. The effect of ultrahigh cell density on photoinhibition of photosynthesis, as reflected by chlorophyll fluorescence and photosynthetic oxygen evolution, was studied: elevating the population density may arrest photoinhibition induced by high photon flux density, as well as low temperature. The relationship between incident irradiance and oxygen production rate was linear in situ for cultures at the optimal cell density, indicating that light limitation rather than light saturation or photoinhibition is the dominant condition outdoors in cultures of ultrahigh cell densities. In contrast with other reports, the extent of biomass loss at night due mainly to dark respiration was found to be relatively small when cell density was optimal, exerting only a minor effect on overall net productivity. Measurements of oxygen consumption at night revealed low rates of respiration, which may be explained by the low value of the volumetric mass transfer coefficient (KLa) of oxygen. Hence, reduced oxygen tension may play a role in preventing full expression of the respiratory potential in ultrahigh cell density cultures in which photoadaptive strategy may explain cell composition. Ultrahigh cell densities optimized with respect to the intensity of the light source, the length of the light path, and the extent of stirring represent the key for obtaining high output rates of cell mass and some natural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号