首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vivo role of the liver in lipoprotein homeostasis in the preruminant calf, a functional monogastric, has been evaluated. To this end, the hydrodynamic and physicochemical properties, density distribution, apolipoprotein content, and flow rates of the various lipoprotein particle species were determined in the hepatic afferent (portal vein and hepatic artery) and efferent (hepatic vein) vessels in fasting, 3-week-old male preruminant calves. Plasma lipoprotein profiles were established by physicochemical analyses of a series of subfractions isolated by isopycnic density gradient ultracentrifugation. Triglyceride-rich very low density lipoproteins (VLDL) (d less than 1.018 g/ml) were minor plasma constituents (approximately 1% or less of total d less than 1.180 g/ml lipoproteins). The major apolipoproteins of VLDL were apoB-like species, while the complement of minor components included bovine apoA-I and apoC-like peptides. Particles with diameters (193-207 A) typical of low density lipoproteins (LDL) were present over the density interval 1.026-1.076 g/ml; however, only LDL of d 1.026-1.046 g/ml were present as a unique and homogeneous size subspecies, containing the two apoB-like species as major protein components in addition to elevated cholesteryl ester contents. LDL represented approximately 10% of total d less than 1.180 g/ml lipoproteins in fasting plasma from all three hepatic vessels. Overlap in the density distribution of particles with the diameters of LDL and of high density lipoproteins (HDL) occurred in the density range from 1.046 to 1.076 g/ml; these HDL particles were 130-150 A in diameter. HDL were the major plasma particles (approximately 90% of total d less than 1.180 g/ml substances) and presented as two distinct populations which we have termed light (HDLL) and heavy (HDLH) HDL. Light HDL (d 1.060-1.091 g/ml) ranged in size from 120 to 140 A, and were distinguished by their high cholesteryl ester (29-33%) and low triglyceride (1-3%) contents; apoA-I was the principal apolipoprotein. Small amounts of apolipoproteins with Mr less than 60,000, including apoC-like peptides, were also present. Heavy HDL (d 1.091-1.180 g/ml) accounted for almost half (47%) of total calf HDL, and like HDLL, were also enriched in cholesteryl ester and apoA-I; they ranged in size from 93 to 120 A. The protein moiety of HDLH was distinct in its possession of an apoA-IV-like protein (Mr 42,000). Blood flow rates were determined by electromagnetic flowmetry, thereby permitting determination of net lipoprotein balance across the liver. VLDL were efficiently removed during passage through the liver (net uptake 1.06 mg/min per kg body weight).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The lipid transport system of 3-month-old male C57BL/6J obese (ob/ob) mice was investigated. Serum lipoproteins were separated by density gradient ultracentrifugation and characterized by their chemical and electrophoretic properties as well as their relative apolipoprotein contents, defined according to molecular weight and charge. Obese, ob/ob mice exhibited a marked hyperlipoproteinemia resulting from large increases in low-density lipoproteins (LDL, d 1.021-1.058 g/ml) and high-density lipoproteins (HDL, d 1.058-1.137 g/ml), particularly, the HDL2 subclass (d 1.058-1.109 g/ml). This increase in lipoproteins was entirely responsible for their hypercholesterolemia and hyperphospholipidemia. By contrast, these obese mice had a net decrease in very-low-density lipoproteins (VLDL, d less than 1.016 g/ml) and intermediate-density lipoproteins (IDL, d 1.016-1.021 g/ml), which accounted for their moderate hypotriglyceridemia. The chemical composition of heterogeneous light LDL (d 1.021-1.040 g/ml and dense LDL (d 1.040-1.058 g/ml) overlapped by HDL-like particles was highly modified. These modifications consisted of increases in the percentages of cholesteryl ester and phospholipid and decreases in that of triacylglycerol. There were also marked changes in the relative values of the apolipoproteins of VLDL, but principally, IDL and LDL. IDL and light LDL were poorer in apolipoproteins BH (Mr 340,000-320,000) and eventually in apolipoprotein BL (Mr 220,000-200,000) and enriched in apolipoproteins E (Mr 37,000-35,000) and C-A-II (Mr approximately equal to 12,000). A similar and very significant change occurred in VLDL for both the apolipoproteins BL and C-A-II. Dense LDL, mainly poorer in apolipoprotein BH and enriched in apolipoprotein A-I (Mr 28,000-27,000), closely resembled HDL2 in all the groups, and were enriched in apolipoproteins C-A-II in only the obese mice. We suggest that ob/ob mice are probably protected against atheromata because of the low VLDL and IDL levels, and the increase in HDL2.  相似文献   

3.
Murine lipoproteins were separated into nine subfractions by a density gradient ultracentrifugal procedure. They were characterized by electrophoretic, immunological, chemical, and morphological analyses, and their protein moieties were defined according to charge, molecular weight, and isoelectric point. HDL predominated (approximately 500 mg/dl serum), the mode of its distribution being situated in the d 1.09-1.10 g/ml (F 1.21 approximately 4) region. Chemical analysis showed subfractions of d 1.085-1.136 g/ml to resemble human HDL3 closely, including the presence of apoA-I (Mr 25,000-27,000) as their major apolipoprotein. An apoA-II-like protein, of Mr 8400 (in monomeric form), was also tentatively identified. In electrophoretic mobility and chemical composition, the d 1.060-1.085 g/ml subfraction (approximately 10% of total HDL) was distinct and akin to human HDL2. ApoA-I represented approximately 60% of its complement of low molecular weight apoproteins. The density range used for separation of human HDL2 (d 1.066-1.100 g/ml) by gradient ultracentrifugation is inadequate in the mouse, and the d 1.060-1.085 g/ml interval is more appropriate. The 1.063 g/ml boundary for separation of mouse LDL from HDL was unsuitable. Immunological and electrophoretic studies revealed that alpha-migrating lipoproteins were present in the d 1.046-1.060 g/ml range, a finding consistent with their enrichment in apoA-I; apoE-, apoA-II-, and apoC-like proteins were also detected. These findings indicate the presence of HDL1 particles. Murine apoA-I and apoB-like proteins of higher (apoBH) and lower (apoBL) molecular weight were constituents of the d 1.033-1.046 g/ml fraction. Alternative techniques, such as electrophoresis in starch block, are therefore a prequisite for separation of apoB from alpha-migrating, apoA-I-containing lipoproteins in the low density range in mouse serum. The LDL class (d 1.023-1.060 g/ml) amounted to only approximately 20% of the total murine lipoproteins of d less than 1.188 g/ml (65-70 mg/dl serum). Particles were richer In triglyceride, larger in diameter (mean 244 A), and more heterogeneous than typical of man. VLDL (40-80 mg/dl serum) was triglyceride-rich (66% by weight) and similarly heterogeneous in size (mean diameter 494 A; range 270-750 A). ApoBH and apoBL were prominent in murine VLDL, and cross-reacted with an antiserum to human apoB. ApoE- and apoA-I-like proteins were also detectable in apoVLDL, as was a protein of 70,000-75,000 mol wt. The presence of murine apolipoproteins analogous to human apoB and apoE was confirmed by the immunological cross-reactivities of VLDL and LDL with monospecific antisera to the human proteins. The marked similarity of lipoprotein and apolipoprotein profile in the mouse and rat is notable. Since murine VLDL contains apoE and apoBL, this resemblance may extend to the metabolism of chylomicron remnants and hepatic VLDL in the two species.  相似文献   

4.
5.
The fractionation and physicochemical characterization of the complex molecular components composing the plasma lipoprotein spectrum in the goose, a potential model of liver steatosis, are described. Twenty lipoprotein subfractions (d less than 1.222 g/ml) were separated by isopycnic density gradient ultracentrifugation, and characterized according to their chemical composition, particle size and particle heterogeneity, electrophoretic mobility, and apolipoprotein content. Analytical ultracentrifugal analyses showed high density lipoproteins (HDL) to predominate (approximately 450 mg/dl plasma), the peak of its distribution occurring at d approximately 1.090 g/ml (F1.21 approximately 2.5). The HDL class displayed marked density heterogeneity, HDL1-like particles being detected up to a lower density limit of approximately 1.020 g/ml, particle size decreasing progressively from 17-19 nm at d 1.024-1.028 g/ml to 10.5-12 nm (d 1.055-1.065 g/ml), and then remaining constant (approximately 9 nm) at densities greater than 1.065 g/ml. HDL subfractions displayed multiple size species; five subspecies were present over the range d 1.103-1.183 g/ml with diameters of 10.5, 9.9, 9.0, 8.2, and 7.5 nm, four in the range d 1.090-1.103 g/ml (diameters 10.5, 9.9, 9.0, and 8.2 nm) and three over the range d 1.076-1.090 g/ml (diameters 10.5, 9.9, and 9.0 nm). ApoA-I (Mr 25,000-27,000) was the major apolipoprotein in all goose HDL subfractions, while the minor components (apparent Mr 100,000, 91,000, 64,000, 58,000, approximately 42,000, 18,000 and apoC-like proteins) showed marked quantitative and qualitative variation across this density range (i.e., 1.055-1.165 g/ml). The d 1.063 g/ml boundary for separation of goose low density lipoproteins (LDL) from HDL was inappropriate, since HDL-like particles were present in the density interval 1.024-1.063 g/ml, while particles enriched in apoB (Mr approximately 540,000) and resembling LDL in size (approximately 20.5 nm) were detected up to a density of approximately 1.076 g/ml. Goose LDL itself was a major component of the profile (90-172 mg/dl) with a single peak of high flotation rate (Sf approximately 10.5). The physicochemical properties and apolipoprotein content of intermediate density lipoproteins (IDL) and LDL varied but little over the range d 1.013-1.040 g/ml, presenting as two particle species (diameters 20.5 and 21 nm) of essentially constant chemical composition; LDL (d 1.019-1.040 g/ml) were separated from HDL1 by gel filtration chromatography and appeared to contain primarily apoB with lesser amounts of apoA-I.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The apolipoproteins of trout plasma lipoproteins have been characterized by sodium dodecyl sulfate-glycerol polyacrylamide gel electrophoresis. The high density lipoproteins (HDL) (1.085 less than d less than 1.21 g/ml) contain four apolipoproteins, two major species with Mr 25,000 (apoA-I-like) and Mr 13,000 (apoA-II-like) and two minor species (Mr 55,000 and 40,500). The very low density (d less than 1.015 g/ml) and low density lipoproteins (1.015 less than d less than 1.085 g/ml) contain two high Mr apolipoproteins (apoB-like) with Mr 260,000 and 240,000 (the smaller is the preponderant species in low density lipoproteins), as well as a third apolipoprotein with Mr 76,000. Type A apolipoproteins are present in the very low density lipoproteins, as are a group of apolipoproteins with Mr 9,000-11,000 (apoC-like). Egg yolk proteins appear in the plasma of females about 30 days after natural ovulation or after that induced by salmon gonadotropin and during massive intraovarian atresias, either spontaneous or induced by 17 alpha,20 beta-dihydroxy-4-pregnen-3-one. Two egg yolk proteins intimately associated with HDL have been identified. They may account for as much as 35% of total plasma proteins. Lipovitellin (Mr 112,000) is composed of two subunits in a 1:1 molar ratio (lipovitellin 1 with Mr 92,000 and lipovitellin 2 with Mr 20,000) and is present as a dimer with another yolk protein (Mr 10,000). These results show that resorption of the yolk during follicular atresia in an oviparous vertebrate is correlated with the presence of egg yolk proteins combined with HDL in the plasma.  相似文献   

7.
We have recently evaluated the in vivo role of the liver in lipoprotein homeostasis in the preruminant calf (Bauchart, D., D. Durand, P. M. Laplaud, P. Forgez, S. Goulinet, and M. J. Chapman, 1989. J. Lipid Res. 30: 1499-1514). We now present the partial characterization of lipoprotein particles in postprandial intestinal lymph at peak lipid absorption (i.e., 10 h after a meal) in the preruminant calf fed a curdled milk replacer. Intestinal lymph from four male preruminant calves was analyzed for its content of lipids and fractionated by sequential and density gradient ultracentrifugation into chylomicrons (Sf greater than 400), very low density lipoproteins (VLDL) (Sf less than 400; d less than 1.006 g/ml), and a series of lipoprotein subfractions with d greater than 1.006 g/ml. Postprandial lymph contained predominantly triglycerides (1099 +/- 611 mg/100 ml), with lesser amounts of phospholipids (197 +/- 107 mg/100 ml) and cholesterol (52 +/- 30 mg/100 ml). The most abundant particles were triglyceride-rich chylomicrons and VLDL which accounted for approximately 76% and approximately 19%, respectively, of total d less than 1.21 g/ml lipoproteins. As judged by negative stain electron microscopy, chylomicron particle diameters ranged from 650 to 2400 A, while VLDL were smaller and distributed over a distinct size range (340-860 A). These two lipoprotein classes each presented protein components with Mr comparable to those of human apoB-48, apoA-I, and C apoproteins, together with an Mr 52,000 protein resembling human beta 2-glycoprotein-I. In addition, VLDL exhibited a polypeptide with Mr approximately 61,000. Lymph lipoproteins with d greater than 1.006 g/ml consisted primarily (approximately 81% of total) of particles distributed over the 1.053-1.119 g/ml density range. Electrophoretic analysis of the latter lipoprotein fraction showed it to be heterogeneous, including particles with the migration characteristics of low and of high density lipoproteins, respectively. Subfractions in the d 1.053-1.076 g/ml range were dominated by particles with Stokes diameters typical of high density lipoproteins (HDL), but also contained three different populations of low density lipoprotein-like particles. The high molecular weight apolipoproteins in these same cholesteryl ester-rich (greater than 30% of lipoprotein mass) subfractions comprised components with Mr resembling those of human apoB-100 and apoB-48, respectively, and with the latter protein predominating to a varying degree. A counterpart to human apoA-I was the major protein component over the entire density range from d 1.053 to 1.119 g/ml.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The relation of coronary artery disease to plasma lipoproteins was examined in 104 men aged 35-65 years undergoing coronary angiography for suspected myocardial ischaemia. A score reflecting the number, degree, and length of stenoses in seven major coronary arteries was assigned to each angiogram. Lipid concentrations in lipoprotein subfractions were measured after preparative ultracentrifugation; plasma apolipoprotein concentrations were measured by electroimmunoassay. Men with high coronary scores tended to have lower plasma high-density lipoprotein (HDL) cholesterol concentrations and higher low-density lipoprotein (density 1.019-1.063 g/ml) cholesterol concentrations than subjects of similar age with low coronary scores (p approximately equal to 0.1). The strongest relation, however, was with the cholesterol concentration in the HDL2 subfraction (density 1.063-1.125 g/ml) of HDL, which averaged 44% lower in the severely affected patients (p less than 0.005). No associations were found between the coronary score and HDL3 cholesterol, the cholesterol content of lipoproteins of density less than 1.019 g/ml, plasma triglyceride, or the concentrations of apolipoproteins AI, AII, and E. The high coronary scores associated with low HDL2 concentrations reflected an increase in the number of both partial and complete stenoses distributed throughout the coronary tree. In contrast the sizes of the lesions and the proportion producing complete occlusion were unrelated to HDL2.  相似文献   

9.
1. Equine lipoproteins were isolated from plasma by density gradient ultracentrifugation and apolipoprotein composition determined by SDS-polyacrylamide gel electrophoresis. 2. VLDL and IDL were present at low concentration (0.2 mg/ml). Two apoB components of Mr corresponding to human apoB-100 and one apoB-48-like component were represented in VLDL fraction. 3. LDL-1 and LDL-2 subfractions have displayed an almost equal concentration (0.4 mg/ml). Two apoB-100-like components were the major apolipoproteins in each fraction. Small amounts of apoB-48-like component were detectable in LDL-1 and LDL-2. 4. HDL-2 represented a major class of equine lipoproteins (1.8 mg/ml). ApoA-1-like component was the dominant protein in HDL-1, HDL-2 and HDL-3. Dimeric apoA-II-like components were slightly represented in HDL subfractions. 5. HDL-3 displayed the same apolipoprotein pattern as HDL-1 and HDL-2, but two further minor proteins of Mr 20,000 and 14,000 were detected. 6. VHDL represented a minor class of lipoprotein (0.2 mg/ml). ApoA-I-like component was the major apolipoprotein of VHDL. Small amounts of apoA-IV-like, apoE-like, and Mr 55,000 protein were detectable. 7. ApoC-like of Mr lower than 10,000 was represented in all equine lipoprotein classes.  相似文献   

10.
The exposure of apolipoproteins at the surface of human plasma high density lipoproteins (HDL) was assessed by their accessibility to agarose-immobilized forms of trypsin and chymotrypsin. Proteolysis of lipid-free apolipoproteins and the lipoprotein subfractions HDL2 (d = 1.08--1.125 g/ml) and HDL3 (d = 1.125--1.195 g/ml) that differ in lipid-to-protein ratio was compared by polyacrylamide gel electrophoresis and isoelectric focusing of the apolipoproteins and peptide fragments and by quantitation of the various carboxyl-terminal groups formed. Gel filtration of the proteolyzed lipoproteins on Sephadex G-150 column indicated that more than 90% of the apolipoproteins and peptides remain associated with lipoprotein complexes. Proteolysis of lipoproteins occurred more slowly and with less fragmentation of the lipoproteins and apolipoproteins than proteolysis of thelipid-free apolipoproteins or the proteolysis of lipoproteins by soluble proteases reported by other investigators. The difference in lipid content of HDL2 and HDL3 made little difference in their proteolysis. Proteolysis of the lipoproteins by agarose-trypsin was more rapid at 37 degrees C than at 22 degrees C, but the proteolytic products were similar and differed from the products from the lipid free proteins. Peptide fragments from lipoproteins were larger than those from lipid-free proteins, which suggests masking of potentially cleavable groups by lipid. The amounts (mol/g protein) of new carboxyl-terminal tyrosine and phenylalanine released by agarose -chymotrypsin were much greater from the lipid-free proteins, but about 3/4 of the tryptophan residues were inacessible in both lipoproteins and lipid-free proteins. In agarose-trypsin digestion, lysine residues were slightly more masked than arginine in the absence of lipids and much more so in the lipoproteins. However, in the lipoproteins apoA-II, which contains lysine but no arginine, was cleaved more rapidly and extensively by agarose-trypsin than apoA-I.  相似文献   

11.
The purpose of this experiment was to characterize the high density lipoproteins (HDL) as a function of hydrated density. HDL was subfractionated on the basis of hydrated density by CsCl density gradient centrifugation of whole serum or the d 1.063-1.25 g/ml HDL fraction isolated from three men and three women. Apolipoprotein A-I and A-II quantitation by radial immunodiffusion showed that the A-I/A-II ratio varied with the lipoprotein hydrated density. The A-I/A-II molar ratio of HDL lipoproteins banding between d 1.106 and 1.150 g/ml was nearly constant at 2.2 +/- 0.2. In the density range 1.151-1.25 g/ml the A-I/A-II ratio increased as the density increased. On the other hand, in the density range between 1.077 and 1.105 the A-I/A-II ratio increased as the density decreased, ranging from 2.8 +/- 0.5 for the d 1.093-1.105 g/ml fraction to 5.6 +/- 1.3 for the d 1.077-1.082 g/ml fraction. The d 1.063-1.076 g/ml fraction and the d 1.077-1.082 g/ml fractions had comparable A-I/A-II ratios. Serum and the d 1.063-1.25 g/ml HDL fraction exhibited similar trends. The cholesterol/(A-I + A-II) ratio decreased as the density increased in all 12 samples (six serum and six HDL) examined. Gradient gel electrophoresis of the density gradient fractions showed that as the density increased from 1.063 to 1.200 g/ml the apparent molecular weight decreased from 3.9 x 10(5) to 1.1 x 10(5). HDL subfractions with the same hydrated densities had comparable molecular weights and A-I/A-II and cholesterol/(A-I + A-II) ratios when isolated from men or women. HDL contains subpopulations that differ in the A-I/A-II molar ratio.-Cheung, M. C., and J. J. Albers. Distribution of cholesterol and apolipoprotein A-I and A-II in human high density lipoprotein subfractions separated by CsCl equilibrium gradient centrifugation: evidence for HDL subpopulations with differing A-I/A-II molar ratios.  相似文献   

12.
Lipoprotein synthesis by the colonic adenocarcinoma cell line Caco-2 was investigated to assess the utility of this cell line as a model for the in vitro study of human intestinal lipid metabolism. Electron micrographic analysis of conditioned medium revealed that under basal conditions of culture post-confluent Caco-2 cells synthesize and secrete lipoprotein particles. Lipoproteins of density (d) less than 1.063 g/ml consist of a heterogeneous population of particles (diameter from 10 to 90 nm). This fraction consists of very low density lipoproteins (d less than 1.006 g/ml) and low density lipoproteins (d = 1.019-1.063 g/ml). Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of [35S]methionine-labeled Caco-2 lipoproteins revealed that very low density lipoproteins contain apolipoprotein E (apoE) and C apolipoproteins, while low density lipoproteins contained apoB-100, apoE, apoA-I, and C apolipoproteins. The 1.063-1.21 g/ml density fraction contained two morphological entities, discoidal (diameter 15.6 +/- 3.9 nm) and round high density lipoprotein particles (diameter 10.2 +/- 2.3 nm). The high density lipoproteins contained apoA-I, apoB-100, apoB-48, apoE, and the C apolipoproteins. Using isoelectric focusing polyacrylamide gel electrophoresis newly secreted apoA-I was identified as pro-apoA-I. ApoE and apoC-III released by Caco-2 cells were highly sialylated. mRNA species for apoA-I, apoC-III, and apoE, but not apoA-IV were identified by Northern blot analysis. ApoA-I, apoB, and apoE were visualized in Caco-2 cells by immunolocalization analysis. This intestinal cell line may be useful for in vitro studies of nutritional and hormonal regulation of lipoprotein synthesis.  相似文献   

13.
1. Plasma lipoproteins from six thoroughbred horses were separated by density gradient ultracentrifugation. For each sample, lipoprotein bands were visualized by means of a prestained plasma control and characterized by electrophoretic, chemical and morphological analysis. 2. Very low density lipoproteins (VLDL) were isolated at d less than 1.018 g/ml. 3. Two clearly resolved bands were detected in the low density lipoprotein fraction (LDL). The density limits were evaluated as follows: LDL1(1.028 less than d less than 1.045 g/ml) and LDL2(1.045 less than d less than 1.070 g/ml). Marked differences were observed in the chemical composition and particle size of LDL1 and LDL2 fractions. 4. High density lipoprotein fraction (HDL) was usually isolated as a single band, distributed over the range 1.075 less than d less than 1.180 g/ml. However, chemical composition and particle size revealed heterogeneity in HDL subfractions. 5. The density limit of LDL and HDL bands varied in each animal, indicating differences in equine lipoprotein distribution.  相似文献   

14.
The concentration of cholesterol, apolipoproteins A-I, B, and E has been determined in lymphedema fluid from nine patients with chronic primary lymphedema. The concentrations were: 38.14 +/- 21.06 mg/dl for cholesterol, 15.6 +/- 6.17 mg/dl for apolipoprotein A-I, 7.5 +/- 2.8 mg/dl for apolipoprotein B, and 1.87 +/- 0.50 mg/dl for apolipoprotein E. These values represent 23%, 12%, 6%, and 38% of plasma concentrations, respectively. The ratio of esterified to unesterified cholesterol in lymphedema fluid was 1.46 +/- 0.45. Lipoproteins of lymphedema fluid were fractionated according to particle size by gradient gel electrophoresis and by exclusion chromatography. Gradient gel electrophoresis showed that a majority of high density lipoproteins (HDL) of lymphedema fluid were larger than ferritin (mol wt 440,000) and smaller than low density lipoproteins (LDL); several discrete subpopulations could be seen with the large HDL region. Fractionation by exclusion chromatography showed that more than 25% of apolipoprotein A-I and all of apolipoprotein E in lymphedema fluid was associated with particles larger than plasma HDL2. Apolipoprotein A-I also eluted in fractions that contained particles the size of or smaller than albumin. Isolation of lipoproteins by sequential ultracentrifugation showed that less than 25% of lymphedema fluid cholesterol was associated with apolipoprotein B. The majority of apolipoprotein A-containing lipoproteins of lymphedema fluid were less dense than those in plasma. Ultracentrifugally separated fractions of lipoproteins were examined by electron microscopy. The fraction d less than 1.019 g/ml contained little material, while fraction d 1.019-1.063 g/ml contained two types of particles: round particles 17-26 nm in diameter and square-packing particles 13-17 nm on a side. Fractions d 1.063-1.085 g/ml had extensive arrays of square-packing particles 13-14 nm in size. Fractions d 1.085-1.11 g/ml and fractions d 1.11-1.21 g/ml contained round HDL, 12-13 nm diameter and 10 nm diameter, respectively. Discoidal particles were observed infrequently.  相似文献   

15.
Lipoprotein cholesterol (C) supports the high rate of progesterone production by the human placenta as endogenous cholesterol synthesis is low. To study underlying mechanisms whereby lipoproteins, including high density lipoprotein-2 (HDL2), stimulate progesterone secretion, trophoblast cells were isolated from human term placentas and maintained in primary tissue culture. Lipoproteins were added at several concentrations and medium progesterone secretion was determined. HDL2 (d 1.063-1.125 g/ml) as well as low density lipoproteins (LDL) (d 1.019-1.063 g/ml) but not HDL3 (d 1.125-1.21 g/ml) stimulated progesterone secretion in a dose-dependent manner, with HDL2 cholesterol entering the cell and serving as substrate for progesterone synthesis. Conversely, LDL and HDL2 produced a significant decrease in [2-14C]acetate incorporation into cell cholesterol. Cholesterol-depleted lipoproteins did not stimulate progesterone secretion. The stimulating effect of LDL was abolished by apolipoprotein modification by cyclohexanedione or reductive methylation and by the addition of anti-LDL receptor antibody or 10 microM chloroquine to the medium. [14C]acetate conversion into cholesterol was accelerated by these procedures. However, HDL2 stimulation of progesterone secretion and reduction of [14C]acetate incorporation into cholesterol was not blocked by chemical modification of apolipoproteins, anti-LDL receptor antibody, or chloroquine. Treatment of HDL2 with tetranitromethane or dimethylsuberimidate also did not block the stimulation of progesterone. To determine whether the capacity of HDL2 to deliver cholesterol to the trophoblast cells was restricted to subfractions differing in apoE content, HDL2 was chromatographed on heparin-Sepharose and three fractions (A, B, and C) were obtained. Fraction A was poorest in apoE and free cholesterol, fraction B contained the majority of cholesterol, and fraction C was the richest in apoE and free cholesterol. When added to trophoblast cells, fraction A stimulated little progesterone secretion, fraction B stimulated moderately, and fraction C did so greatly. Modification of these subfractions with cyclohexanedione or reductive methylation did not inhibit these effects. In conclusion, HDL2 stimulated progesterone secretion in human trophoblast cell culture. Contrary to LDL, the HDL effect was not mediated by apolipoproteins or the LDL receptor pathway. The ability of HDL2 to stimulate progesterone secretion is consistent with the passive transfer of free cholesterol to the cell membrane from a physicochemically specific subfraction of HDL. This mechanism may be an auxiliary source of cholesterol for human steroidogenic cells.  相似文献   

16.
Gemfibrozil (Lopid) is a new plasma lipid-regulating drug that decreases very low and low density lipoprotein (VLD/LDL) and increases high density lipoprotein (HDL) concentrations in man. The present experiments tested the effects of gemfibrozil on plasma lipoproteins and apolipoproteins in rats fed high fat/high cholesterol diets. Compared to chow-fed rats, cholesterol feeding for 2 weeks (20% olive oil/2% cholesterol) produced the expected increases in VLDL and intermediate density lipoprotein (IDL) while lowering plasma HDL. This was documented by using three methods of lipoprotein isolation: sequential ultracentrifugation, density gradient ultracentrifugation, and agarose gel filtration. Gemfibrozil gavaged at 50 mg/kg per day for 2 weeks during cholesterol feeding prevented these changes such that lipoprotein patterns were similar to those in chow-fed animals. Whole plasma apoE and apoA-I concentrations were decreased and apoB increased due to cholesterol feeding as determined by electroimmunoassay, but again gemfibrozil treatment prevented these diet-induced alterations. Gradient polyacrylamide gel electrophoresis patterns of the total d less than 1.21 g/ml lipoprotein fractions reflected the changes in apolipoprotein concentrations and further demonstrated a greater increase of apoBl compared to apoBh in cholesterol-fed rats. Gemfibrozil lowered the concentration of both apoB variants and prevented the shift of apoE from HDL to lower density lipoproteins. Changes in the distribution of apoE were confirmed using agarose gel column chromatography followed by electroimmunoassay. These methods also revealed a shift of apoA-IV from HDL to the d greater than 1.21 g/ml, lipoprotein-free fraction with gemfibrozil treatment when blood was taken from fasted or postabsorptive animals. Since it was also noted that in chow-fed rats more apoA-IV was present in the d greater than 1.21 g/ml fraction in the postabsorptive or fed state compared to fasted animals, it could be postulated that the shift of apoA-IV into this fraction in gemfibrozil-treated rats is related to an accelerated clearance of chylomicrons. It is concluded that gemfibrozil largely prevents the accumulation of abnormal lipoproteins in this model of dyslipoproteinemia, and that apoE may play a critical role in this normalization process.  相似文献   

17.
Rates of secretion of the arginine-rich and A-I apolipoproteins into perfusates of rat livers were measured by specific radioimmunoassays. Livers were perfused for 6 hr in a recirculating system in the presence or absence of 5,5'-dithionitrobenzoic acid, an inhibitor of lecithin-cholesterol acyltransferase. Arginine-rich apoprotein (ARP) was secreted at a constant or increasing hourly rate of about 40 micro g/g liver, whereas the rate of accumulation of apoprotein A-I decreased progressively from about 12 to less than 5 micro g/g liver. These rates were not affected by inhibition of lecithin-cholesterol acyltransferase. The distribution of these two apolipoproteins was also measured in ultracentrifugally separated lipoprotein fractions from perfusates and blood plasma. Apoprotein A-I was mainly in high density lipoproteins, with the remainder in proteins of density > 1.21 g/ml. The percent of apoprotein A-I in the latter fraction was lowest in plasma (5%); in perfusates it was greater when the enzyme inhibitor was present (33%) than in its absence (11%). By contrast much less ARP was in proteins of d > 1.21 g/ml in perfusates than in blood plasma. Discoidal high density lipoproteins, recovered from perfusates in which lecithin-cholesterol acyltransferase was inhibited, contained much more arginine-rich apoprotein than apoprotein A-I (ratio = 10:1). The ratio in spherical plasma HDL was 1:7 and that in perfusate high density lipoproteins obtained in the absence of enzyme inhibitor was intermediate (2:1). It is concluded that: 1) the arginine-rich apoprotein is a major apolipoprotein whereas apoprotein A-I is a minor apolipoprotein secreted by the perfused rat liver; 2) the properties of the high density lipoproteins produced in this system are remarkably similar to those found in humans with genetically determined deficiency of lecithin-cholesterol acyltransferase.  相似文献   

18.
Twenty-four top-level body builders [13 anabolic steroid users (A); 11 non-users (N)] and 11 performance-matched controls (C) were examined to determine the effect on lipids, lipoproteins and apolipoproteins of many years of body building with and without simultaneous intake of anabolic steroids and testosterone. After an overnight fast, triglycerides (TG), total cholesterol (TOTC), high density lipoprotein cholesterol (HDLC), low density lipoprotein cholesterol (LDLC), the HDLC subfractions HDL2C and HDL3C, as well as apolipoprotein A-I (Apo A-I), apolipoprotein A-II (Apo A-II) and apolipoprotein B (Apo B) were determined. Both A and N, compared to C, showed significantly lower HDLC and higher LDLC concentrations, with the differences between A and C clearly pronounced. In a subgroup of 6 body builders taking anabolic steroids at the time of the study, HDLC, HDL2C, HDL3C, Apo A-I and Apo A-II were all significantly lower and LDLC was significantly higher than in a second subgroup of 7 body builders who had discontinued their intake of anabolic steroids at least 4 weeks prior to the study. In some single cases HDLC was barely detectable (2-7 mg.dl-1). The TG and TOTC remained unchanged. The present findings suggest that many years of body building among top-level athletes have no beneficial effect on lipoproteins and apolipoproteins. Simultaneous use of anabolic steroids results in part in extreme alterations in lipoproteins and apolipoproteins, representing an atherogenic profile. After discontinuing the use of anabolic steroids, the changes in lipid metabolism appear to be reversible.  相似文献   

19.
Lipoprotein composition of human suction-blister interstitial fluid   总被引:2,自引:0,他引:2  
Interstitial fluid (IF) was obtained in 27 apparently healthy subjects (12 males, 15 females) by applying mild suction (200-250 mm Hg) on the skin either on the midvolar forearm or on the paraumbilical region of the abdomen. The IF concentrations of lipids and apolipoproteins (apo) were studied and compared with those of serum (S). The mean ratio between interstitial fluid and serum (IF/S ratio) varied from 0.14 for forearm apoE to 0.29 for apoA-II on the abdomen. This ratio was consistently lower for apoE, C-II, C-III, and B than for apoA-I and A-II, and significantly lower on the arm than on the abdomen for all apolipoproteins studied. The IF/S ratios showed marked variations among individuals. However, interstitial fluid apolipoprotein concentrations at different blister sites were highly correlated within each individual. Studies with agarose gel electrophoresis and density gradient ultracentrifugation revealed that large triglyceride-rich particles were virtually lacking in interstitial fluid and that the relation between the low density lipoproteins (LDL) and high density lipoproteins (HDL) was shifted towards a greater proportion of HDL. The lipoprotein distribution in the HDL range of interstitial fluid differed from that of serum showing one maximum at a density of about 1.070 g/ml (serum HDL2 about 1.090 g/ml) and one at a density of 1.130-1.140 g/ml (serum HDL3, 1.110-1.120 g/ml). The former subfraction contained most of the lipoprotein-bound apoE while the latter contained the major part of apoA-I and apoA-II. Studies of the lipoproteins of interstitial fluid may add to our understanding of the development of atherosclerosis and xanthomatosis and may also provide valuable information on the permeability of the capillary membrane in normo- and pathophysiological states.  相似文献   

20.
The laying hen represents a physiological model in which the mechanisms of action of estrogens on lipid transport can be evaluated. The plasma lipoproteins in the laying hen were subfractionated into discrete particle species by isopycnic density gradient ultracentrifugation and the physicochemical properties and apolipoprotein contents of individual subfractions evaluated. The qualitative and quantitative aspects of this estrogen-specific profile were then compared to those of the immature chicken. As observed earlier, estrogens induced dramatic elevation in very-low-density lipoproteins (VLDL) (up to 900 mg/dl). Indeed, triglyceride-rich lipoproteins with densities up to 1.035 g/ml, i.e. VLDL and their remnants, behaved as a continuum which displayed little variation in size (20.5-21 nm), electrophoretic mobility (beta-like) and apolipoprotein content; apo B-100 (540 kDa) predominated while apo A-I (27 kDa), apo VLDL-II (19 kDa) and an apo-C-like protein (13 kDa) were present as minor components. The typical high-density lipoproteins (HDL) in the immature chicken were replaced by a lipoprotein population whose physicochemical properties were quite distinct. Thus these particles were distributed as a single, asymmetric peak over the density range 1.030-1.158 g/ml, a wide interval which overlapped that of apo-B-rich particles at its lower limit. The rho 1.030-1.158 g/ml lipoproteins were present at concentrations (approximately equal to 200 mg/dl) some twofold to threefold lower than those of HDL in immature birds. Furthermore, they displayed physical and chemical properties in common with both low-density lipoproteins (LDL) and HDL and were LDL-like in exhibiting beta mobility but HDL-like in size (9-15 nm diameter). Their protein moiety was also HDL-like in its predominant content of apo A-I; small amounts of apo VLDL-II and the apo-C-like protein were also detected. Substantial amounts of lipid were found at rho greater than 1.195 g/ml: such substances are absent in the immature chicken and may reflect the presence of vitellogenins. The hyperestrogenic state in the laying hen is therefore associated with major modifications in lipoprotein and apolipoprotein profile. Such modifications may be of relevance to clinical disorders involving estrogen-induced hyperlipidemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号