首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 408 毫秒
1.
For the past five years, genome-wide association studies (GWAS) have identified hundreds of common variants associated with human diseases and traits, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels. Approximately 95 loci associated with lipid levels have been identified primarily among populations of European ancestry. The Population Architecture using Genomics and Epidemiology (PAGE) study was established in 2008 to characterize GWAS-identified variants in diverse population-based studies. We genotyped 49 GWAS-identified SNPs associated with one or more lipid traits in at least two PAGE studies and across six racial/ethnic groups. We performed a meta-analysis testing for SNP associations with fasting HDL-C, LDL-C, and ln(TG) levels in self-identified European American (~20,000), African American (~9,000), American Indian (~6,000), Mexican American/Hispanic (~2,500), Japanese/East Asian (~690), and Pacific Islander/Native Hawaiian (~175) adults, regardless of lipid-lowering medication use. We replicated 55 of 60 (92%) SNP associations tested in European Americans at p<0.05. Despite sufficient power, we were unable to replicate ABCA1 rs4149268 and rs1883025, CETP rs1864163, and TTC39B rs471364 previously associated with HDL-C and MAFB rs6102059 previously associated with LDL-C. Based on significance (p<0.05) and consistent direction of effect, a majority of replicated genotype-phentoype associations for HDL-C, LDL-C, and ln(TG) in European Americans generalized to African Americans (48%, 61%, and 57%), American Indians (45%, 64%, and 77%), and Mexican Americans/Hispanics (57%, 56%, and 86%). Overall, 16 associations generalized across all three populations. For the associations that did not generalize, differences in effect sizes, allele frequencies, and linkage disequilibrium offer clues to the next generation of association studies for these traits.  相似文献   

2.
The prevalence of metabolic syndrome (MS) has been rising alarmingly worldwide, including in the United States, but knowledge on specific genetic determinants of MS is very limited. Therefore, we planned to identify the genetic determinants of MS as defined by National Cholesterol Education Program/Adult Treatment Panel III (NCEP/ATPIII) criteria. We performed linkage screen for MS using data from 692 Mexican Americans, who participated in the San Antonio Family Diabetes/Gallbladder Study (SAFDGS). We found strong evidence for linkage of MS on chromosome 7q (LOD = 3.6, empirical P = 6.0 × 10(-5)), between markers D7S2212 and D7S821. In addition, six chromosomal regions exhibited potential evidence for linkage (LOD ≥1.2) with MS. Furthermore, we examined 29 single-nucleotide polymorphisms (SNPs) from the fatty acid translocase (FAT or CD36, 18 SNPs) gene and guanine nucleotide binding protein, α transducing 3 (GNAT3, 11 SNPs) gene, located within the 1-LOD support interval region for their association with MS and its related traits. Several SNPs were associated with MS and its related traits. Remarkably, rs11760281 in GNAT3 and rs1194197 near CD36 exhibited the strongest associations with MS (P = 0.0003, relative risk (RR) = 1.6 and P = 0.004, RR = 1.7, respectively) and several other related traits. These two variants explained ~18% of the MS linkage evidence on chromosome 7q21, and together conferred approximately threefold increase in MS risk (RR = 2.7). In conclusion, our linkage and subsequent association studies implicate a region on chromosome 7q21 to influence MS in Mexican Americans.  相似文献   

3.
Proopiomelanocortin (POMC) has been found to be associated with rare Mendelian forms of obesity in children, and, in linkage studies, genomic regions containing the POMC locus have been linked to leptin levels, a predictor of obesity, in white, Mexican‐American, and African‐American families. POMC polymorphisms have not been investigated in detail for association with obesity in the general population. Five single nucleotide polymorphisms (SNPs) (G‐3460C, C17T, G3473A, C3755T, and A7069G) were genotyped on 811 Hispanic individuals in the Insulin Resistance Atherosclerosis Family Study and tested for association with multiple obesity quantitative traits. General and family‐based association analyses for each individual SNP and for haplotypes were performed using the generalized estimating equation and quantitative pedigree disequilibrium test (QPDT), respectively. Modest but consistent associations were observed for SNP C3755T, with p values ranging from 0.011 to 0.045 for association with BMI, waist, visceral adipose tissue, and subcutaneous adipose tissue. G‐3460C, G3473A, and A7069G were also found to be associated with additional obesity measurements (p value 0.025 to 0.04), with comparable levels of evidence observed for linkage disequilibrium between these traits and these SNPs. Results of the haplotype analyses were also consistent with the single SNP analysis, with haplotypes containing C3755T showing the greatest evidence of association (p values ranging 0.004 to 0.048). Monte Carlo simulations (gene dropping) that account for the number of comparisons and the correlation structure indicate that the multivariate significance for these obesity traits with these polymorphisms was p = 0.0091. Collectively, the POMC polymorphisms showed consistent evidence for association with obesity traits in Hispanic Americans across several analytical approaches using SNP and haplotype analysis. These results support the hypothesis that POMC contributes genetically to the development of obesity.  相似文献   

4.
The aim of this study was to investigate a series of single-nucleotide polymorphisms (SNPs) in the genes MC2R, MC3R, MC4R, MC5R, POMC, and ENPP1 for association with obesity. Twenty-five SNPs (2-7 SNPs/gene) were genotyped in 246 Finns with extreme obesity (BMI > or = 40 kg/m2) and in 481 lean subjects (BMI 20-25 kg/m2). Of the obese subjects, 23% had concomitant type 2 diabetes. SNPs and SNP haplotypes were tested for association with obesity and type 2 diabetes. Allele frequencies differed between obese and lean subjects for two SNPs in the ENPP1 gene, rs1800949 (P = 0.006) and rs943003 (P = 0.0009). These SNPs are part of a haplotype (rs1800949 C-rs943003 A), which was observed more frequently in lean subjects compared to obese subjects (P = 0.0007). Weaker associations were detected between the SNPs rs1541276 in the MC5R, rs1926065 in the MC3R genes and obesity (P = 0.04 and P = 0.03, respectively), and between SNPs rs2236700 in the MC5R, rs2118404 in the POMC, rs943003 in the ENPP1 genes and type 2 diabetes (P = 0.03, P = 0.02 and P = 0.02, respectively); these associations did not, however, remain significant after correction for multiple testing. In conclusion, a previously unexplored ENPP1 haplotype composed of SNPs rs1800949 and rs943003 showed suggestive evidence for association with adult-onset morbid obesity in Finns. In this study, we did not find association between the frequently studied ENPP1 K121Q variant, nor SNPs in the MCR or POMC genes and obesity or type 2 diabetes.  相似文献   

5.
Despite the evidence that human obesity has strong genetic determinants, efforts at identifying specific genes that influence human obesity have largely been unsuccessful. Using the sibship data obtained from 32 low income Mexican American pedigrees ascertained on a type II diabetic proband and a multipoint variance-components method, we tested for linkage between various obesity-related traits plus associated metabolic traits and 15 markers on human chromosome 7. We found evidence for linkage between markers in the OB gene region and various traits, as follows: D7S514 and extremity skinfolds (LOD = 3.1), human carboxypeptidase A1 (HCPA1) and 32,33-split proinsulin level (LOD = 4.2), and HCPA1 and proinsulin level (LOD = 3.2). A putative susceptibility locus linked to the marker D7S514 explained 56% of the total phenotypic variation in extremity skinfolds. Variation at the HCPA1 locus explained 64% of phenotypic variation in proinsulin level and approximately 73% of phenotypic variation in split proinsulin concentration, respectively. Weaker evidence for linkage to several other obesity-related traits (e.g., waist circumference, body-mass index, fat mass by bioimpedance, etc.) was observed for a genetic location, which is approximately 15 cM telomeric to OB. In conclusion, our study reveals that the OB region plays a significant role in determining the phenotypic variation of both insulin precursors and obesity-related traits, at least in Mexican Americans.  相似文献   

6.
Despite evidence of the clustering of metabolic syndrome components, current approaches for identifying unifying genetic mechanisms typically evaluate clinical categories that do not provide adequate etiological information. Here, we used data from 19,486 European American and 6,287 African American Candidate Gene Association Resource Consortium participants to identify loci associated with the clustering of metabolic phenotypes. Six phenotype domains (atherogenic dyslipidemia, vascular dysfunction, vascular inflammation, pro-thrombotic state, central obesity, and elevated plasma glucose) encompassing 19 quantitative traits were examined. Principal components analysis was used to reduce the dimension of each domain such that >55% of the trait variance was represented within each domain. We then applied a statistically efficient and computational feasible multivariate approach that related eight principal components from the six domains to 250,000 imputed SNPs using an additive genetic model and including demographic covariates. In European Americans, we identified 606 genome-wide significant SNPs representing 19 loci. Many of these loci were associated with only one trait domain, were consistent with results in African Americans, and overlapped with published findings, for instance central obesity and FTO. However, our approach, which is applicable to any set of interval scale traits that is heritable and exhibits evidence of phenotypic clustering, identified three new loci in or near APOC1, BRAP, and PLCG1, which were associated with multiple phenotype domains. These pleiotropic loci may help characterize metabolic dysregulation and identify targets for intervention.  相似文献   

7.
Genome-wide association studies show that cholesteryl ester transfer protein (CETP) single nucleotide polymorphisms (SNPs) are more strongly associated with HDL cholesterol (HDL-C) concentrations than any other loci across the genome. However, gene-environment interactions for clinical applications are still largely unknown. We studied gene-environment interactions between CETP SNPs and dietary fat intake, adherence to the Mediterranean diet, alcohol consumption, smoking, obesity, and diabetes on HDL-C in 4,210 high cardiovascular risk subjects from a Mediterranean population. We focused on the −4,502C>T and the TaqIB SNPs in partial linkage disequilibrium (D''= 0.88; P < 0.001). They were independently associated with higher HDL-C (P < 0.001); this clinically relevant association was greater when their diplotype was considered (14% higher in TT/B2B2 vs. CC/B1B1). No gene-gene interaction was observed. We also analyzed the association of these SNPs with blood pressure, and no clinically relevant associations were detected. No statistically significant interactions of these SNPs with obesity, diabetes, and smoking in determining HDL-C concentrations were found. Likewise, alcohol, dietary fat, and adherence to the Mediterranean diet did not statistically interact with the CETP variants (independently or as diplotype) in determining HDL-C. In conclusion, the strong association of the CETP SNPs and HDL-C was not statistically modified by diet or by the other environmental factors.  相似文献   

8.
Genetic determinants of obesity-related lipid traits   总被引:1,自引:0,他引:1  
In our ongoing effort to identify genes influencing the biological pathways that underlie the metabolic disturbances associated with obesity, we performed genome-wide scanning in 2,209 individuals distributed over 507 Caucasian families to localize quantitative trait loci (QTLs), which affect variation of plasma lipids. Pedigree-based analysis using a quantitative trait variance component linkage method that localized a QTL on chromosome 7q35-q36, which linked to variation in levels of plasma triglyceride [TG, logarithm of odds (LOD) score = 3.7] and was suggestive of linkage to LDL-cholesterol (LDL-C, LOD = 2.2). Covariates of the TG linkage included waist circumference, fasting insulin, and insulin:glucose, but not body mass index or hip circumference. Plasma HDL-cholesterol (HDL-C) levels were suggestively linked to a second QTL on chromosome 12p12.3 (LOD = 2.6). Five other QTLs with lower LOD scores were identified for plasma levels of LDL-C, HDL-C, and total cholesterol. These newly identified loci likely harbor genetic elements that influence traits underlying lipid adversities associated with obesity.  相似文献   

9.
Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES). Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05). The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10-4) gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B) that was significantly enriched (P < 10-60) as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10-9), BMI (5.4 x 10-6), and fasting plasma insulin (P < 0.001). These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits.  相似文献   

10.
Ectonucleotide Pyrophosphatase Phosphodiesterase 1 (ENPP1) downregulates insulin signaling by inhibiting the insulin receptor's tyrosine-kinase. K121Q and other ENPP1 single-nucleotide polymorphisms (SNPs), IVS20delT-11 and A/G+1044TGA, have been previously associated with obesity in French children, and the risk haplotype QdelTG has also been associated with this condition in both French and German children. Our aim was to perform a case-control replication study in order to assess the possible association of childhood obesity and overweight with the above-mentioned ENPP1 SNPs, and with the QdelTG haplotype, in the Italian population. A total of 865 healthy Italian children were studied: 453 normal-weight, 243 overweight and 169 obese subjects. Genotyping was performed by Taq-Man or Light-Cycler Technology. The Q variant of K121Q showed a negative association with overweight-obesity under both additive (odds ratio (OR) = 0.74, 95% confidence interval (CI) = 0.57-0.97, P = 0.030) and recessive (OR = 0.32, 95% CI = 0.10-0.97, P = 0.035) modes of inheritance. The Z-score of BMI showed a significant decreasing trend from children K/K homozygous to K/Q heterozygous, and to Q/Q homozygous (0.45 vs. 0.28 vs. -0.19; P = 0.009), according to the additive model. The two other SNPs and the QdelTG haplotype did not exhibit any association with overweight/obesity. This is the first child-based study showing a protective role of the 121Q variant of ENPP1 against overweight/obesity.  相似文献   

11.
The K121Q polymorphism of the ectoenzyme nucleotide pyrophosphate phosphodiesterase 1 (ENPP1) gene has been variably associated with insulin resistance and type 2 diabetes (T2D) in several populations. However, this association has not been studied in Iranian subjects and we hypothesized that the K121Q variant might be associated with T2D and related metabolic traits in this population. The K121Q genotypes were determined by PCR-restriction fragment length polymorphism in 377 normoglycemic controls and 155 T2D patients. T2D patients had significantly higher values for systolic and diastolic blood pressure, BMI, glucose, cholesterol, triglyceride, LDL, apoB, insulin, and HOMA-IR, and lower levels of HDL than the normoglycemic subjects. The frequency of the Q allele did not differ between T2D and normoglycemic subjects (OR 0.96, 95% CI 0.90-2.00, P?=?0.70). The Q allele frequency was 16.5% in T2D and 15.2% in normoglycemic subjects. The ENPP1 genotype (KQ?+?QQ) was not associated with the systolic and diastolic blood pressure, glucose, triglyceride, cholesterol, LDL-C and HDL-C, apo B, BMI, HOMA-IR, and insulin levels in both normoglycemic and T2D groups. Our results suggest that the ENPP1 121Q allele might not be associated with T2D and related metabolic traits among Iranian subjects.  相似文献   

12.
Plasma levels of adiponectin are decreased in type 2 diabetes, obesity and hypertension. Our aim was to use a family-based analysis to identify the genetic variants of the adiponectin (ADIPOQ) gene that are associated with obesity, insulin resistance, dyslipidemia and hypertension, among Arabs. We screened 328 Arabs in one large extended family for single nucleotide polymorphisms (SNPs) in the promoter region of the ADIPOQ gene. Two common SNPs were detected: rs17300539 and rs266729. Evidences of association between traits related to the metabolic syndrome and the SNPs were studied by implementing quantitative genetic association analysis. Results showed that SNP rs266729 was significantly associated with body weight (p-value = 0.001), waist circumference (p-value = 0.037), BMI (p-value = 0.015) and percentage of total body fat (p-value = 0.003). Up to 4.1% of heritability of obesity traits was explained by the rs266729 locus. Further cross-sectional analysis showed that carriers of the G allele had significantly higher values of waist circumference, BMI and percentage of total body fat (p-values 0.014, 0.004 and 0.032, respectively). No association was detected between SNP rs266729 and other clusters of metabolic syndrome or their traits except for HOMA-IR and fasting plasma insulin levels, p-values 0.035 and 0.004, respectively. In contrast, both measured genotype and cross-sectional analysis failed to detect an association between the SNP rs17300539 with traits and clusters of metabolic syndrome. In conclusion, we showed family-based evidence of association of SNP rs266729 at ADIPOQ gene with traits defining obesity in Arab population. This is important for future prediction and prevention of obesity in population where obesity is in an increasing trend.  相似文献   

13.
The ectoenzyme ENPP1 (also termed membrane glycoprotein PC-1 or ENPP1/PC-1) is an inhibitor of insulin-induced activation of the insulin receptor. There is evidence from previous studies that coding variants of ENPP1/PC-1 (K121Q) are associated with type 2 diabetes (T2D) and obesity. Studies in the general Turkish population have demonstrated: unique plasma lipid characteristics, a high prevalence of cardiovascular risk factors, and an increased prevalence of obesity and T2D. We investigated, therefore, the association of ENPP1/PC-1 variants with obesity and T2D in Turkish individuals. The TaqMan allelic discrimination assay was used for genotyping the relationship of ENPP1/PC-1 variants to obesity and T2D in a genetic association study of 1,553 genotyped, randomly selected subjects from the Turkish Heart Study. The K121Q (rs1044498) variant and other previously reported variants (rs997509, rs1799774, rs1044548, rs11964389, rs7754561) were analyzed. In this cohort, the minor allele frequency (MAF) of the K121Q variant was associated with obesity in male, but not in female subjects (male, odds ratio 1.64, 95% confidence interval 1.004-2.698, P = 0.048; female, odds ratio 1.003, 95% confidence interval 0.684-1.471, P = ns). In addition, the previously reported ENPP1/PC-1 "risk haplotype" (Q (rs1044498), delT (rs1799774), and G (rs7754561) alleles) was found to be associated with obesity in male, but not in female, subjects (P = 0.035). In contrast, there was no association of either the K121Q variant or the ENPP1/PC-1 haplotype with T2D. We find evidence that variants of ENPP1/PC-1 are associated with obesity in the male Turkish population; thus, these variants may contribute to the development of the obesity in these individuals.  相似文献   

14.
Lower plasma levels of high-density lipoprotein cholesterol (HDL-C) are associated with the metabolic syndrome (insulin resistance, obesity, hypertension) and higher cardiovascular risk. Recent association studies have suggested rare alleles responsible for very low HDL-C levels. However, for individual cardiovascular risk factors, the majority of population-attributable deaths are associated with average rather than extreme levels. Therefore, genetic factors that determine the population variation of HDL-C are particularly relevant. We undertook genome-wide and fine mapping to identify linkage to HDL-C in healthy adult nuclear families from the Victorian Family Heart Study. In 274 adult sibling pairs (average age 24 years, average plasma HDL-C 1.4 mmol/l), genome-wide mapping revealed suggestive evidence for linkage on chromosome 4 (Z score=3.5, 170 cM) and nominal evidence for linkage on chromosomes 1 (Z=2.1, 176 cM) and 6 (Z=2.6, 29 cM). Using genotypes and phenotypes from 932 subjects (233 of the sibling pairs and their parents), finer mapping of the locus on chromosome 4 strengthened our findings with a peak probability (Z score=3.9) at 169 cM. Our linkage data suggest that chromosome 4q32.3 is linked with normal population variation in HDL-C. This region coincides with previous reports of linkage to apolipoprotein AII (a major component of HDL) and encompasses the gene encoding the carboxypeptidase E, relevant to the metabolic syndrome and HDL-C. These findings are relevant for further understanding of the genetic determinants of cardiovascular risk at a population level.  相似文献   

15.
To identify genetic loci influencing blood lipid levels in Caribbean Hispanics, we first conducted a genome-wide linkage scan in 1,211 subjects from 100 Dominican families on five lipid quantitative traits: total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), triglycerides (TG), and LDL-C/HDL-C ratio. We then investigated the association between blood lipid levels and 21,361 single nucleotide polymorphisms (SNP) under the 1-logarithm of odds (LOD) unit down regions of linkage peaks in an independent community-based subcohort (N = 814, 42% Dominican) from the Northern Manhattan Study (NOMAS). We found significant linkage evidence for LDL-C/HDL-C on 7p12 (multipoint LOD = 3.91) and for TC on 16q23 (LOD = 3.35). In addition, we identified suggestive linkage evidence of LOD > 2.0 on 15q23 for TG, 16q23 for LDL-C, 19q12 for TC and LDL-C, and 20p12 for LDL-C. In the association analysis of the linkage peaks, we found that seven SNPs near FLJ45974 were associated with LDL-C/HDL-C with a nominal P < 3.5 × 10(-5), in addition to associations (P < 0.0001) for other lipid traits with SNPs in or near CDH13, SUMF2, TLE3, FAH, ARNT2, TSHZ3, ZNF343, RPL7AL2, and TMC3. Further studies are warranted to perform in-depth investigations of functional genetic variants in these regions.  相似文献   

16.
The BEACON gene was initially identified using the differential display polymerase chain reaction on hypothalamic mRNA samples collected from lean and obese Psammomys obesus, a polygenic animal model of obesity. Hypothalamic BEACON gene expression was positively correlated with percentage of body fat, and intracerebroventricular infusion of the Beacon protein resulted in a dose-dependent increase in food intake and body weight. The human homolog of BEACON, UBL5, is located on chromosome 19p in a region previously linked to quantitative traits related to obesity. Our previous studies showed a statistically significant association between UBL5 sequence variation and several obesity- and diabetes-related quantitative physiological measures in Asian Indian and Micronesian cohorts. Here we undertake a replication study in a Mexican American cohort where the original linkage signal was first detected. We exhaustively resequenced the complete gene plus the putative promoter region for genetic variation in 55 individuals and identified five single nucleotide polymorphisms (SNPs), one of which was novel. These SNPs were genotyped in a Mexican American cohort of 900 individuals from 40 families. Using a quantitative trait linkage disequilibrium test, we found significant associations between UBL5 genetic variants and waist-to-hip ratio (p = 0.027), and the circulating concentrations of insulin (p = 0.018) and total cholesterol (p = 0.023) in fasted individuals. These data are consistent with our earlier published studies and further support a functional role for the UBL5 gene in influencing physiological traits that underpin the development of metabolic syndrome.  相似文献   

17.
Apolipoprotein H (apoH, also named beta-2 glycoprotein I) is found on several classes of lipoproteins, and is involved in the activation of lipoprotein lipase in lipid metabolism. We have comprehensively investigated the association of variation in the apoH gene (APOH) with lipid traits in hepatic cholesterol transport, dietary cholesterol transport (DCT), and reverse cholesterol transport (RCT). Our study population consisted of families from the Genetic Epidemiology Network of Arteriopathy multicenter study that include African Americans, Mexican Americans, and European Americans. We individually tested 36 single-nucleotide polymorphisms (SNPs) that span the APOH locus, including nonsynonymous variants that result in known apoH charge isoforms. In addition, we constructed haplotypes from SNPs in the 5' promoter region that comprise cis-acting regulatory elements, as well as haplotypes for multiple amino acid substitutions. We found point-wise significant associations of APOH variants with various lipid measures in the three racial groups. The strongest associations were found for DCT traits (triglyceride and apoE levels) in Mexican Americans with a nonsynonymous variant (SNP 14917, Cys306Gly) that may alter apoH protein folding in a region involved in phospholipid binding. In conclusion, family-based analyses of APOH variants have identified associations with measures of lipid metabolism in three American racial groups.  相似文献   

18.
We performed a Phenome-wide association study (PheWAS) utilizing diverse genotypic and phenotypic data existing across multiple populations in the National Health and Nutrition Examination Surveys (NHANES), conducted by the Centers for Disease Control and Prevention (CDC), and accessed by the Epidemiological Architecture for Genes Linked to Environment (EAGLE) study. We calculated comprehensive tests of association in Genetic NHANES using 80 SNPs and 1,008 phenotypes (grouped into 184 phenotype classes), stratified by race-ethnicity. Genetic NHANES includes three surveys (NHANES III, 1999–2000, and 2001–2002) and three race-ethnicities: non-Hispanic whites (n = 6,634), non-Hispanic blacks (n = 3,458), and Mexican Americans (n = 3,950). We identified 69 PheWAS associations replicating across surveys for the same SNP, phenotype-class, direction of effect, and race-ethnicity at p<0.01, allele frequency >0.01, and sample size >200. Of these 69 PheWAS associations, 39 replicated previously reported SNP-phenotype associations, 9 were related to previously reported associations, and 21 were novel associations. Fourteen results had the same direction of effect across more than one race-ethnicity: one result was novel, 11 replicated previously reported associations, and two were related to previously reported results. Thirteen SNPs showed evidence of pleiotropy. We further explored results with gene-based biological networks, contrasting the direction of effect for pleiotropic associations across phenotypes. One PheWAS result was ABCG2 missense SNP rs2231142, associated with uric acid levels in both non-Hispanic whites and Mexican Americans, protoporphyrin levels in non-Hispanic whites and Mexican Americans, and blood pressure levels in Mexican Americans. Another example was SNP rs1800588 near LIPC, significantly associated with the novel phenotypes of folate levels (Mexican Americans), vitamin E levels (non-Hispanic whites) and triglyceride levels (non-Hispanic whites), and replication for cholesterol levels. The results of this PheWAS show the utility of this approach for exposing more of the complex genetic architecture underlying multiple traits, through generating novel hypotheses for future research.  相似文献   

19.
We sought to identify novel pharmacogenomic markers for HDL-C response to atenolol in participants with mild to moderate hypertension. We genotyped 768 hypertensive participants from the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study on the Illumina HumanCVD Beadchip. During PEAR, participants were randomized to receive atenolol or hydrochlorothiazide. Blood pressure and cholesterol levels were evaluated at baseline and after treatment. This study focused on participants treated with atenolol monotherapy. Association with atenolol induced HDL-C change was evaluated in 232 whites and 152 African Americans using linear regression. No SNPs achieved a Bonferroni corrected P-value. However, we identified 13 regions with consistent association across whites and African Americans. The most interesting of these regions were seven with prior associations with HDL-C, other metabolic traits, or functional implications in the lipid pathway: GALNT2, FTO, ABCB1, LRP5, STARD3NL, ESR1, and LIPC. Examples are rs2144300 in GALNT2 in whites (P=2.29x10-4, β=-1.85 mg/dL) and rs12595985 in FTO in African Americans (P=2.90x10-4, β=4.52 mg/dL), both with consistent regional association (P<0.05) in the other race group. Additionally, baseline GALNT2 expression differed by rs2144300 genotype in whites (P=0.0279). In conclusion, we identified multiple gene regions associated with atenolol induced HDL-C change that were consistent across race groups, several with functional implications or prior associations with HDL-C.  相似文献   

20.
Adiponectin, coded for by the APM1 gene, is a novel adipocyte-derived hormone implicated in energy homeostasis and obesity. Several genetic studies have observed evidence of association between APM1 gene polymorphisms and features of the metabolic syndrome, such as insulin resistance and obesity. As part of a comprehensive genetic analysis of the APM1 gene, we have screened 96 unrelated individuals for polymorphisms in the promoter, coding regions, and 3untranslated region (UTR). Three promoter single-nucleotide polymorphisms (SNPs), two rare coding SNPs (G113A and T1233C), and 13 SNPs in the 3UTR were identified. Eighteen SNPs were genotyped in 811 Hispanic individuals from 45 families in the IRAS Family Study (IRASFS). SNPs were tested for association with six obesity quantitative traits (body mass index, waist, waist:hip ratio, subcutaneous adipose tissue, visceral adipose tissue, and visceral:subcutaneous ratio). Significant evidence of association to at least one of the obesity traits was identified in seven of the 18 SNPs (<0.001–0.05). The promoter SNP INS CA-11156 was the most consistently associated SNP and was associated significantly with all measures of obesity, except the visceral:subcutaneous ratio (P-values 0.009–0.03). Haplotype analysis supported this evidence of association, with haplotypes containing an insertion of one CA repeat at position –11156 consistently being associated with lower obesity values (P-value <0.001–0.05). The adiponectin polymorphisms, in particular those in the promoter region, thus show significant association with obesity measures in the Hispanic population. Additional studies are needed to confirm our findings and determine which polymorphism causes the functional effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号