首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.

Background

Sulphadoxine and pyrimethamine are anti-folate drugs that show synergistic anti-malarial effect. Point mutations in dihydrofolate reductase (dhfr) and dihydropteorate synthatase (dhps) cause anti-folate drug resistance phenotype in human malaria parasites. This study presents pattern of point mutations in dhfr/dhps genes among Indian sub-continent.

Methods

Microscopically diagnosed one hundred Plasmodium vivax field isolates were collected from five widely separated geographical regions of India. Dhfr and dhps genes were PCR amplified and sequenced. Previously published mutations data were collected and analyzed using Chi square test to identify geographical cluster of mutant/wild type genotypes.

Results

Sequence analysis revealed single (S58R), double (S58R/S117N) and quadruple (F57L/S58R/T61M/S117T/) point mutations at dhfr and single (A383G) to double (A383G/A553G) mutations at dhps in P. vivax field isolates. In addition, three new mutations were also observed at dhfr. Both, dhfr and dhps genes revealed tandem repeat variations in field isolates. Dhps revealed very low mutation frequency (14.0%) compared to dhfr (50.70%). Comparative analysis revealed a progressive increase in frequency of quadruple mutant dhfr genotype (p < 0.001) within five years in north-eastern state (Kamrup, Assam). Frequency of dhfr genotypes revealed three distinct geographical clusters of wild (northern India), double mutant (southern India), and quadruple mutant (north-eastern and island regions of India) on the Indian sub-continent.

Conclusion

Study suggests that SP may be susceptible to P. vivax in India, except Andaman and north-eastern state. The distinction of geographical regions with sensitive and resistant parasite phenotypes would be highly useful for designing and administering national anti-malarial drug policy.  相似文献   

2.

Background

Intermittent Preventive Treatment of malaria in infants using sulfadoxine-pyrimethamine (SP-IPTi) is recommended by WHO for implementation in settings where resistance to SP is not high. Here we examine the relationship between the protective efficacy of SP-IPTi and measures of SP resistance.

Methods and Results

We analysed the relationship between protective efficacy reported in the 7 SP-IPTi trials and contemporaneous data from 6 in vivo efficacy studies using SP and 7 molecular studies reporting frequency of dhfr triple and dhps double mutations within 50km of the trial sites. We found a borderline significant association between frequency of the dhfr triple mutation and protective efficacy to 12 months of age of SP-IPTi. This association is significantly biased due to differences between studies, namely number of doses of SP given and follow up times. However, fitting a simple probabilistic model to determine the relationship between the frequency of the dhfr triple, dhps double and dhfr/dhps quintuple mutations associated with resistance to SP and protective efficacy, we found a significant inverse relationship between the dhfr triple mutation frequency alone and the dhfr/dhps quintuple mutations and efficacy at 35 days post the 9 month dose and up to 12 months of age respectively.

Conclusions

A significant relationship was found between the frequency of the dhfr triple mutation and SP-IPTi protective efficacy at 35 days post the 9 month dose. An association between the protective efficacy to 12 months of age and dhfr triple and dhfr/dhps quintuple mutations was found but should be viewed with caution due to bias. It was not possible to define a more definite relationship based on the data available from these trials.  相似文献   

3.

Background

The emergence and spread of drug resistance represents one of the biggest challenges for malaria control in endemic regions. Sulfadoxine-pyrimethamine (SP) is currently deployed as intermittent preventive treatment in pregnancy (IPTp) to prevent the adverse effects of malaria on the mother and her offspring. Nevertheless, its efficacy is threatened by SP resistance which can be estimated by the prevalence of dihydropteroate synthase (dhps) and dihydrofolate reductase (dhfr) mutations. This was measured among pregnant women in the health district of Nanoro, Burkina Faso.

Methods

From June to December 2010, two hundred and fifty six pregnant women in the second and third trimester, attending antenatal care with microscopically confirmed malaria infection were invited to participate, regardless of malaria symptoms. A blood sample was collected on filter paper and analyzed by PCR-RFLP for the alleles 51, 59, 108, 164 in the pfdhfr gene and 437, 540 in the pfdhps gene.

Results

The genes were successfully genotyped in all but one sample (99.6%; 255/256) for dhfr and in 90.2% (231/256) for dhps. The dhfr C59R and S108N mutations were the most common, with a prevalence of 61.2% (156/255) and 55.7% (142/255), respectively; 12.2% (31/255) samples had also the dhfr N51I mutation while the I164L mutation was absent. The dhps A437G mutation was found in 34.2% (79/231) isolates, but none of them carried the codon K540E. The prevalence of the dhfr double mutations NRNI and the triple mutations IRNI was 35.7% (91/255) and 11.4% (29/255), respectively.

Conclusion

Though the mutations in the pfdhfr and pfdhps genes were relatively common, the prevalence of the triple pfdhfr mutation was very low, indicating that SP as IPTp is still efficacious in Burkina Faso.  相似文献   

4.

Background

Single nucleotide polymorphisms (SNPs) in the dhfr and dhps genes are associated with sulphadoxine-pyrimethamine (SP) treatment failure and gametocyte carriage. This may result in enhanced transmission of mutant malaria parasites, as previously shown for chloroquine resistant parasites. In the present study, we determine the association between parasite mutations, submicroscopic P. falciparum gametocytemia and malaria transmission to mosquitoes.

Methodology/Principal Findings

Samples from children treated with SP alone or in combination with artesunate (AS) or amodiaquine were genotyped for SNPs in the dhfr and dhps genes. Gametocytemia was determined by microscopy and Pfs25 RNA–based quantitative nucleic acid sequence–based amplification (Pfs25 QT-NASBA). Transmission was determined by membrane-feeding assays. We observed no wild type infections, 66.5% (127/191) of the infections expressed mutations at all three dhfr codons prior to treatment. The presence of all three mutations was not related to higher Pfs25 QT-NASBA gametocyte prevalence or density during follow-up, compared to double mutant infections. The proportion of infected mosquitoes or oocyst burden was also not related to the number of mutations. Addition of AS to SP reduced gametocytemia and malaria transmission during follow-up.

Conclusions/Significance

In our study population where all infections had at least a double mutation in the dhfr gene, additional mutations were not related to increased submicroscopic gametocytemia or enhanced malaria transmission. The absence of wild-type infections is likely to have reduced our power to detect differences. Our data further support the use of ACT to reduce the transmission of drug-resistant malaria parasites.  相似文献   

5.

Background

The Plasmodium falciparum dihydrofolate reductase (DHFR) and dihydropteroate synthetase (DHPS) are enzymes of central importance in parasite metabolism. The dhfr and dhps gene mutations are known to be associated with sulphadoxine/pyrimethamine (SP) resistance.

Objective

To investigate the effects of dhfr/dhps mutations on parasite characteristics other than SP resistance.

Method

Parasite infections obtained from 153 Sudanese patients with uncomplicated falciparum malaria treated with SP or SP + chloroquine, were successfully genotyped at nine codons in the dhfr/dhps genes by PCR-ELISA.

Results & conclusion

Mutations were detected in dhfr at N51I, S108N and C59R, and in at dhps at A/S436F, A437G, K540E and A581G, the maximum number of mutations per infection were five. Based on number of mutant codons per infection (multiplicity of mutation, MOM), the infections were organized into six grades: wild-types (grade 0; frequency, 0.03) and infections with MOM grades of 1 to 5, with the following cumulative frequency; 0.97, 0.931, 0.866, 0.719, 0.121, respectively. There was no significant association between the MOM and SP response. Importantly, immunity, using age as a surrogate marker, contributed significantly to the clearance of parasites with multiple dhfr/dhps mutations. However, these mutations have a survival advantage as they were associated with increased gametocytogenesis. The above implications of dhfr/dhps mutations were associated with MOM 2 to 5, regardless of the gene/codon locus.  相似文献   

6.
Pneumocystis jirovecii pneumonia (PCP) is an important opportunistic infection in patients infected with HIV, but its burden is incompletely characterized in those areas of sub-Saharan Africa where HIV is prevalent. We explored the prevalence of both PCP in HIV-infected adults admitted with pneumonia to a tertiary-care hospital in Uganda and of putative P. jirovecii drug resistance by mutations in fungal dihydropteroate synthase (dhps) and dihydrofolate reductase (dhfr). In 129 consecutive patients with sputum smears negative for mycobacteria, 5 (3.9%) were diagnosed with PCP by microscopic examination of Giemsa-stained bronchoalveolar lavage fluid. Concordance was 100% between Giemsa stain and PCR (dhps and dhfr). PCP was more prevalent in patients newly-diagnosed with HIV (11.4%) than in patients with known HIV (1.1%; p = 0.007). Mortality at 2 months after discharge was 29% overall: 28% among PCP-negative patients, and 60% (3 of 5) among PCP-positive patients. In these 5 fungal isolates and an additional 8 from consecutive cases of PCP, all strains harbored mutant dhps haplotypes; all 13 isolates harbored the P57S mutation in dhps, and 3 (23%) also harbored the T55A mutation. No non-synonymous dhfr mutations were detected. PCP is an important cause of pneumonia in patients newly-diagnosed with HIV in Uganda, is associated with high mortality, and putative molecular evidence of drug resistance is prevalent. Given the reliability of field diagnosis in our cohort, future studies in sub-Saharan Africa can investigate the clinical impact of these genotypes.  相似文献   

7.
In Bangladesh, despite the official introduction of artemisinin combination therapy in 2004, chloroquine+sulfadoxine/pyrimethamine has been used for the treatment of uncomplicated malaria. To assess the distribution of pfcrt, pfmdr1, dhfr, and dhps genotypes in Plasmodium falciparum, we conducted hospital- and community-based surveys in Bandarban, Bangladesh (near the border with Myanmar) in 2007 and 2008. Using nested PCR followed by digestion, 139 P. falciparum isolates were genotyped. We found fixation of a mutation at position 76 in pfcrt and low prevalence of a mutation at position 86 in pfmdr1. In dhfr, the highest pyrimethamine resistant genotype quadruple mutant was found in 19% of isolates, which is significantly higher prevalence than reported in a previous study in Khagrachari (1%) in 2002. Microsatellite haplotypes flanking dhfr of the quadruple mutants in Bangladesh were identical or very similar to those found in Thailand and Cambodia, indicating a common origin for the mutant in these countries. These observations suggest that the higher prevalence of the dhfr quadruple mutant in Bandarban is because of parasite migration from Myanmar. However, continuous use of sulfadoxine/pyrimethamine would have also played a role through selection for the dhfr quadruple mutant. These results indicate an urgent need to collect molecular epidemiological information regarding dhfr and dhps genes, and a review of current sulfadoxine/pyrimethamine usage with the aim of avoiding the widespread distribution of high levels of resistant parasites in Bangladesh.  相似文献   

8.
Despite the clear public health benefit of insecticide-treated bednets (ITNs), the impact of malaria transmission-reduction by vector control on the spread of drug resistance is not well understood. In the present study, the effect of sustained transmission reduction by ITNs on the prevalence of Plasmodium falciparum gene mutations associated with resistance to the antimalarial drugs sulfadoxine-pyrimethamine (SP) and chloroquine (CQ) in children under the age of five years was investigated during an ITN trial in Asembo area, western Kenya. During the ITN trial, the national first line antimalarial treatment changed from CQ to SP. Smear-positive samples collected from cross sectional surveys prior to ITN introduction (baseline, n = 250) and five years post-ITN intervention (year 5 survey, n = 242) were genotyped for single nucleotide polymorphisms (SNPs) at dhfr-51, 59, 108, 164 and dhps-437, 540 (SP resistance), and pfcrt-76 and pfmdr1-86 (CQ resistance). The association between the drug resistance mutations and epidemiological variables was evaluated. There were significant increases in the prevalence of SP dhps mutations and the dhfr/dhps quintuple mutant, and a significant reduction in the proportion of mixed infections detected at dhfr-51, 59 and dhps-437, 540 SNPs from baseline to the year 5 survey. There was no change in the high prevalence of pfcrt-76 and pfmdr1-86 mutations. Multivariable regression analysis further showed that current antifolate use and year of survey were significantly associated with more SP drug resistance mutations. These results suggest that increased antifolate drug use due to drug policy change likely led to the high prevalence of SP mutations 5 years post-ITN intervention and reduced transmission had no apparent effect on the existing high prevalence of CQ mutations. There is no evidence from the current study that sustained transmission reduction by ITNs reduces the prevalence of genes associated with malaria drug resistance.  相似文献   

9.
North-east India, being a corridor to South-east Asia, is believed to play an important role in transmitting drug resistant Plasmodium falciparum malaria to India and South Asia. North-east India was the first place in India to record the emergence of drug resistance to chloroquine as well as sulphadoxine/pyrimethamine. Presently chloroquine resistance is widespread all over the North-east India and resistance to other anti-malarials is increasing. In this study both in vivo therapeutic efficacy and molecular assays were used to screen the spectrum of drug resistance to chloroquine and sulphadoxine/pyrimethamine in the circulating P. falciparum strains. A total of 220 P. falciparum positives subjects were enrolled in the study for therapeutic assessment of chloroquine and sulphadoxine/pyrimethamine and assessment of point mutations conferring resistances to these drugs were carried out by genotyping the isolates following standard methods. Overall clinical failures in sulphadoxine/pyrimethamine and chloroquine were found 12.6 and 69.5% respectively, while overall treatment failures recorded were 13.7 and 81.5% in the two arms. Nearly all (99.0%) the isolates had mutant pfcrt genotype (76T), while 68% had mutant pfmdr-1 genotype (86Y). Mutation in dhps 437 codon was the most prevalent one while dhfr codon 108 showed 100% mutation. A total of 23 unique haplotypes at the dhps locus and 7 at dhfr locus were found while dhps-dhfr combined loci revealed 49 unique haplotypes. Prevalence of double, triple and quadruple mutations were common while 1 haplotype was found with all five mutated codons (F/AGEGS/T) at dhps locus. Detection of quadruple mutants (51I/59R/108N/164L) in the present study, earlier recorded from Car Nicobar Island, India only, indicates the presence of high levels of resistance to sulphadoxine/pyrimethamine in north-east India. Associations between resistant haplotypes and the clinical outcomes and emerging resistance in sulphadoxine/pyrimethamine in relation to the efficacy of the currently used artemisinin combination therapy are discussed.  相似文献   

10.
The Thailand-Cambodia border is the epicenter for drug-resistant falciparum malaria. Previous studies have shown that chloroquine (CQ) and pyrimethamine resistance originated in this region and eventually spread to other Asian countries and Africa. However, there is a dearth in understanding the origin and evolution of dhps alleles associated with sulfadoxine resistance. The present study was designed to reveal the origin(s) of sulfadoxine resistance in Cambodia and its evolutionary relationship to African and South American dhps alleles. We sequenced 234 Cambodian Plasmodium falciparum isolates for the dhps codons S436A/F, A437G, K540E, A581G and A613S/T implicated in sulfadoxine resistance. We also genotyped 10 microsatellite loci around dhps to determine the genetic backgrounds of various alleles and compared them with the backgrounds of alleles prevalent in Africa and South America. In addition to previously known highly-resistant triple mutant dhps alleles SGEGA and AGEAA (codons 436, 437, 540, 581, 613 are sequentially indicated), a large proportion of the isolates (19.3%) contained a 540N mutation in association with 437G/581G yielding a previously unreported triple mutant allele, SGNGA. Microsatellite data strongly suggest the strength of selection was greater on triple mutant dhps alleles followed by the double and single mutants. We provide evidence for at least three independent origins for the double mutants, one each for the SGKGA, AGKAA and SGEAA alleles. Our data suggest that the triple mutant allele SGEGA and the novel allele SGNGA have common origin on the SGKGA background, whereas the AGEAA triple mutant was derived from AGKAA on multiple, albeit limited, genetic backgrounds. The SGEAA did not share haplotypes with any of the triple mutants. Comparative analysis of the microsatellite haplotypes flanking dhps alleles from Cambodia, Kenya, Cameroon and Venezuela revealed an independent origin of sulfadoxine resistant alleles in each of these regions.  相似文献   

11.
Malaria is a major public health concern in Northeast India with a preponderance of drug-resistant strains. Until recently the partner drug for artemisinin combination therapy (ACT) was sulphadoxine pyrimethamine (SP). Antifolate drug resistance has been associated with the mutations at dihydropteroate synthase (dhps) and dihydrofolatereductase (dhfr) genes. This study investigated antifolate drug resistance at the molecular level. A total of 249 fever cases from Arunachal Pradesh, NE India, were screened for malaria, and of these, 75 were found to be positive for Plasmodium falciparum. Samples were sequenced and analysed with the help of BioEdit and ClustalW. Three novel point mutations were found in the dhps gene with 10 haplotypes along with the already reported mutations. A single haplotype having quadruple mutation was found in the dhfr gene. The study reports higher degree of antifolate drug resistance as evidenced by the presence of multiple point mutations in dhps and dhfr genes. The findings of this study strongly discourage the use SP as a partner drug in ACT.  相似文献   

12.

Background

Sulphadoxine-pyrimethamine (SP) a widely used treatment for uncomplicated malaria and recommended for intermittent preventive treatment of malaria in pregnancy, is being investigated for intermittent preventive treatment of malaria in infants (IPTi). High levels of drug resistance to SP have been reported from north-eastern Tanzania associated with mutations in parasite genes. This study compared the in vivo efficacy of SP in symptomatic 6–59 month children with uncomplicated malaria and in asymptomatic 2–10 month old infants.

Methodology and Principal Findings

An open label single arm (SP) standard 28 day in vivo WHO antimalarial efficacy protocol was used in 6 to 59 months old symptomatic children and a modified protocol used in 2 to 10 months old asymptomatic infants. Enrolment was stopped early (87 in the symptomatic and 25 in the asymptomatic studies) due to the high failure rate. Molecular markers were examined for recrudescence, re-infection and markers of drug resistance and a review of literature of studies looking for the 581G dhps mutation was carried out. In symptomatic children PCR-corrected early treatment failure was 38.8% (95% CI 26.8–50.8) and total failures by day 28 were 82.2% (95% CI 72.5–92.0). There was no significant difference in treatment failures between asymptomatic and symptomatic children. 96% of samples carried parasites with mutations at codons 51, 59 and 108 in the dhfr gene and 63% carried a double mutation at codons 437 and 540. 55% carried a third mutation with the addition of a mutation at codon 581 in the dhps gene. This triple: triple haplotype maybe associated with earlier treatment failure.

Conclusion

In northern Tanzania SP is a failed drug for treatment and its utility for prophylaxis is doubtful. The study found a new combination of parasite mutations that maybe associated with increased and earlier failure.

Trial Registration

ClinicalTrials.gov NCT00361114  相似文献   

13.
The global spread of sulfadoxine (Sdx, S) and pyrimethamine (Pyr, P) resistance is attributed to increasing number of mutations in DHPS and DHFR enzymes encoded by malaria parasites. The association between drug resistance mutations and SP efficacy is complex. Here we provide an overview of the geographical spread of SP resistance mutations in Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) encoded dhps and dhfr genes. In addition, we have collated the mutation data and mapped it on to the three-dimensional structures of DHPS and DHFR which have become available. Data from genomic databases and 286 studies were collated to provide a comprehensive landscape of mutational data from 2005 to 2019. Our analyses show that the Pyr-resistant double mutations are widespread in Pf/PvDHFR (P. falciparum ~61% in Asia and the Middle East, and in the Indian sub-continent; in P. vivax ~33% globally) with triple mutations prevailing in Africa (~66%) and South America (~33%). For PfDHPS, triple mutations dominate South America (~44%), Asia and the Middle East (~34%) and the Indian sub-continent (~27%), while single mutations are widespread in Africa (~45%). Contrary to the status for P. falciparum, Sdx-resistant single point mutations in PvDHPS dominate globally. Alarmingly, highly resistant quintuple and sextuple mutations are rising in Africa (PfDHFR-DHPS) and Asia (Pf/PvDHFR-DHPS). Structural analyses of DHFR and DHPS proteins in complexes with substrates/drugs have revealed that resistance mutations map proximal to Sdx and Pyr binding sites. Thus new studies can focus on discovery of novel inhibitors that target the non-substrate binding grooves in these two validated malaria parasite drug targets.  相似文献   

14.

Background

In late 2002, the health authorities of Mozambique implemented sulphadoxine-pyrimethamine (SP)/amodiaquine (AQ) as first-line treatment against uncomplicated falciparum malaria. In 2004, this has been altered to SP/artesunate in line with WHO recommendations of using Artemisinin Combination Therapies (ACTs), despite the fact that all the neighbouring countries have abandoned SP-drug combinations due to high levels of SP drug resistance. In the study area, one year prior to the change to SP/AQ, SP alone was used to treat uncomplicated malaria cases. The study described here investigated the immediate impact of the change to SP on the frequency of SP and CQ resistance-related haplotypes in the Plasmodium falciparum genes Pfdhfr, Pfdhps and Pfcrt before and a year after the introduction of SP.

Methods

Samples were collected during two cross sectional surveys in early 2002 and 2003 involving 796 and 692 children one year or older and adults randomly selected living in Maciana, an area located in Manhiça district, Southern Mozambique. Out of these, 171 and 173 P. falciparum positive samples were randomly selected to measure the frequency of resistance- related haplotypes in Pfdhfr, Pfdhps and Pfcrt based on results obtained by nested PCR followed by sequence-specific oligonucleotide probe (SSOP)-ELISA.

Results

The frequency of the SP-resistance associated Pfdhps double mutant (SGEAA) haplotype increased significantly from 14% to 35% (P < 0.001), while the triple mutant Pfdhfr haplotype (CIRNI) remained high and only changed marginally from 46% to 53% (P = 0.405) after one year with SP as first-line treatment in the study area. Conversely, the combined Pfdhfr/Pfdhps quintuple mutant haplotype increased from 8% to 26% (P = 0.005). The frequency of the chloroquine resistance associated Pfcrt -CVIET haplotype was above 90% in both years.

Conclusion

These retrospective findings add to the general concern on the lifespan of the combination of SP/artesunate in Mozambique. The high frequency of quintuple Pfdhfr/Pfdhps haplotypes found here as early as 2002 most likely cause ideal conditions for the development of artesunate tolerance in the P. falciparum populations and may even endanger the sensitivity to the second-line drug, Coartem®.  相似文献   

15.
In malaria parasites, mutations in two genes of folate biosynthesis encoding dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) modify responses to antifolate therapies which target these enzymes. However, the involvement of other genes which modify the availability of exogenous folate, for example, has been proposed. Here, we used short-read whole-genome re-sequencing to determine the mutations in a clone of the rodent malaria parasite, Plasmodium chabaudi, which has altered susceptibility to both sulphadoxine and pyrimethamine. This clone bears a previously identified S106N mutation in dhfr and no mutation in dhps. Instead, three additional point mutations in genes on chromosomes 2, 13 and 14 were identified. The mutated gene on chromosome 13 (mdr2 K392Q) encodes an ABC transporter. Because Quantitative Trait Locus analysis previously indicated an association of genetic markers on chromosome 13 with responses to individual and combined antifolates, MDR2 is proposed to modulate antifolate responses, possibly mediated by the transport of folate intermediates.  相似文献   

16.
Previous work suggests that Brazilian Plasmodium falciparum has limited genetic diversity and a history of bottlenecks, multiple reintroductions due to human migration, and clonal expansions. We hypothesized that Brazilian P. falciparum would exhibit clonal structure. We examined isolates collected across two decades from Amapá, Rondônia, and Pará state (n = 190). By examining more microsatellites markers on more chromosomes than previous studies, we hoped to define the extent of low diversity, linkage disequilibrium, bottlenecks, population structure, and parasite migration within Brazil. We used retrospective genotyping of samples from the 1980s and 1990s to explore the population genetics of SP resistant dhfr and dhps alleles. We tested an existing hypothesis that the triple mutant dhfr mutations 50R/51I/108N and 51I/108N/164L developed in southern Amazon from a single origin of common or similar parasites. We found that Brazilian P. falciparum had limited genetic diversity and isolation by distance was rejected, which suggests it underwent bottlenecks followed by migration between sites. Unlike Peru, there appeared to be gene flow across the Brazilian Amazon basin. We were unable to divide parasite populations by clonal lineages and pairwise FST were common. Most parasite diversity was found within sites in the Brazilian Amazon, according to AMOVA. Our results challenge the hypothesis that triple mutant alleles arose from a single lineage in the Southern Amazon. SP resistance, at both the double and triple mutant stages, developed twice and potentially in different regions of the Brazilian Amazon. We would have required samples from before the 1980s to describe how SP resistance spread across the basin or describe the complex internal migration of Brazilian parasites after the colonization efforts of past decades. The Brazilian Amazon basin may have sufficient internal migration for drug resistance reported in any particular region to rapidly spread to other parts of basin under similar drug pressure.  相似文献   

17.
Sulfadoxine-pyrimethamine (SP) is currently the drug of choice for intermittent preventive treatment of Plasmodiumfalciparum both in pregnancy and infancy. A prolonged parasite clearance time conferred by dhfr and dhps mutations is believed to be responsible for increased gametocyte prevalence in SP treated individuals. However, using a direct feeding assay in Mali, we showed that gametocytes present in peripheral venous blood post-SP treatment had reduced infectivity for Anophelesgambiae sensu stricto (ss) mosquitoes. We investigated the potential mechanisms involved in the dhfr and dhps quintuple mutant NF-135 and the single dhps 437 mutant NF-54. Concentrations of sulfadoxine (S) and pyrimethamine (P) equivalent to the serum levels of the respective drugs on day 3 (S = 61 μg/ml, P = 154.7 ng/ml) day 7 (S = 33.8 μg/ml, P = 66.6 ng/ml) and day 14 (S = 14.2 μg/ml, P = 15.7 ng/ml) post-SP treatment were used to study the effect on gametocytogenesis, gametocyte maturation and infectivity to Anophelesstephensi mosquitoes fed through an artificial membrane. The drugs readily induced gametocytogenesis in the mutant NF-135 strain but effectively killed the wild-type NF-54. However, both drugs impaired gametocyte maturation yielding odd-shaped non-exflagellating mature gametocytes. The concomitant ingestion of both S and P together with gametocytemic blood-meal significantly reduced the prevalence of oocyst positivity as well as oocyst density when compared to controls (< 0.001). In addition, day 3 concentrations of SP decreased mosquito survival by up to 65% (< 0.001). This study demonstrates that SP is deleterious in vitro for gametocyte infectivity as well as mosquito survival.  相似文献   

18.

Background

In order to prepare the field site for future interventions, the prevalence of asymptomatic Plasmodium falciparum infection was evaluated in a cohort of children living in Brazzaville. Plasmodium falciparum merozoite surface protein 2 gene (msp2) was used to characterize the genetic diversity and the multiplicity of infection. The prevalence of mutant P. falciparum chloroquine resistance transporter (pfcrt) allele in isolates was also determined.

Methods

Between April and June 2010, 313 children below 10 years of age enrolled in the cohort for malaria surveillance were screened for P. falciparum infection using microscopy and polymerase chain reaction (PCR). The children were selected on the basis of being asymptomatic. Plasmodium falciparum msp2 gene was genotyped by allele-specific nested PCR and the pfcrt K76T mutation was detected using nested PCR followed by restriction endonuclease digestion.

Results

The prevalence of asymptomatic P. falciparum infections was 8.6% and 16% by microscopy and by PCR respectively. Allele typing of the msp2 gene detected 55% and 45% of 3D7 and FC27 allelic families respectively. The overall multiplicity of infections (MOI) was 1.3. A positive correlation between parasite density and multiplicity of infection was found. The prevalence of the mutant pfcrt allele (T76) in the isolates was 92%.

Conclusion

This is the first molecular characterization of P. falciparum field isolates in Congolese children, four years after changing the malaria treatment policy from chloroquine (CQ) to artemisinin-based combination therapy (ACT). The low prevalence of asymptomatic infections and MOI is discussed in the light of similar studies conducted in Central Africa.  相似文献   

19.

Background

Lamivudine is an oral nucleoside analogue widely used for the treatment of chronic hepatitis B. The main limitation of lamivudine use is the selection of resistant mutations that increases with time of utilization. Hepatitis B virus (HBV) isolates have been classified into eight genotypes (A to H) with distinct geographical distributions. HBV genotypes may also influence pathogenic properties and therapeutic features. Here, we analyzed the HBV genotype distribution and the nature and frequency of lamivudine resistant mutations among 36 patients submitted to lamivudine treatment for 12 to 84 months.

Results

Half of the patients were homosexual men. Only 4/36 (11%) patients were HBV DNA negative. As expected for a Brazilian group, genotypes A (24/32 positive individuals, 75%), D (3/32, 9.3%) and F (1/32, 3%) were present. One sample was from genotype C, which is a genotype rarely found in Brazil. Three samples were from genotype G, which had not been previously detected in Brazil. Lamivudine resistance mutations were identified in 20/32 (62%) HBV DNA positive samples. Mean HBV loads of patients with and without lamivudine resistance mutations were not very different (2.7 × 107 and 6.9 × 107 copies/mL, respectively). Fifteen patients showed the L180M/M204V lamivudine resistant double mutation. The triple mutant rt173V/180M/204V, which acts as a vaccine escape mutant, was found in two individuals. The three isolates of genotype G were entirely sequenced. All three showed the double mutation L180M/M204V and displayed a large genetic divergence when compared with other full-length genotype G isolates.

Conclusion

A high (55%) proportion of patients submitted to long term lamivudine therapy displayed resistant mutations, with elevated viral load. The potential of transmission of such HBV mutants should be monitored. The identification of genotypes C and G, rarely detected in South America, seems to indicate a genotype distribution different to that observed in non treated patients. Disparities in routes of transmission (genotype G seems to be linked to homosexual behavior) and in pathogenic properties (genotype C is very aggressive) among HBV genotypes may explain the presence of rare genotypes in the present work.  相似文献   

20.

Aims

The allelopathic activity of canola (Brassica napus) germplasm was investigated using the important Australian weed, annual ryegrass (Lolium rigidum) as the target species.

Methods

Three different canola plant densities (10, 20, and 30 seedlings/beaker) of each of 70 world-wide genotypes were tested in vitro in close proximity to annual ryegrass seedlings.

Results

The allelopathic activity of canola, as measured by reduction in annual ryegrass root and shoot growth, increased with canola crop seedling densities. Density did not consistently influence shoot length of annual ryegrass. Greater shoot length suppression was observed in genotype cv. Rivette and BLN3343CO0402. The Australian genotype cv. Av-opal and the breeding line Pak85388-502 suppressed root length of ryegrass more than other genotypes, even at low densities. At the lowest density, the least allelopathic genotypes were cv. Barossa and cv. Cescaljarni-repka, although they became more allelopathic at higher density. An overall inhibition index was calculated to rank each of the canola genotypes. There were significant differences between canola genotypes in their ability to inhibit root and shoot growth in ryegrass.

Conclusion

Considerable genetic variation exists among canola genotypes for their allelopathic effects on annual ryegrass. Further investigation is required to determine the allelopathic mechanisms, particularly to identify the responsible allelochemical(s) and the gene(s) controlling the trait. This research suggests that highly allelopathic canola genotypes can be potential for controlling weeds such as annual ryegrass in integrated weed management programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号