首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphotropic retrovirus vector system for human cell gene transfer.   总被引:37,自引:7,他引:30       下载免费PDF全文
Retroviral vectors have been constructed for gene transfer in mammalian and avian cells, however most retroviral vector systems are complicated by the spread of a replication-competent helper virus. This problem has been circumvented by segregating the viral genome into cis- and trans-acting components. By establishing helper cell lines that produce the trans-acting viral gene products, one can propagate the cis-acting component in them and harvest defective viral particles that contain only the cis-acting component. The cis-acting component can provide a useful vehicle for the highly efficient transfer of genes into target cells. The defective vector systems described to date, however, are restricted in host range to murine, avian, rat, and dog cells. We describe a helper-free vector system based entirely on an amphotropic murine virus with a wide mammalian host range, including the ability to carry out efficient gene transfer into human cells. We also describe a double mutation constructed in the trans-acting genome which reduces the frequency of replication-competent recombinant viruses to undetectable levels.  相似文献   

2.
Methods for construction of adenovirus vectors   总被引:40,自引:0,他引:40  
Adenoviruses are attracting increasing attention as general purpose mammalian cell expression vectors, as recombinant vaccines, and potentially as vectors for gene therapy. Not only is the adenovirus genome relatively easy to manipulate by recombinant DNA techniques, but adenovirus vectors are relatively stable, grow to high titers, and can transduce a variety of cell types in cell culture and in vivo. Vectors can be designed that are either replication competent or replication defective and, in the latter case, are highly efficient at delivering and expressing genes in mammalian cells without resulting in cell killing. Methods are described for growing, titrating, and purifying adenoviruses, for extracting viral DNA from purified virions and from infected cells, for rescuing inserts of foreign DNA into the viral genome, and for assessing expression of inserted genes in adenovirus vectors.  相似文献   

3.
Recombinant baculoviruses as mammalian cell gene-delivery vectors   总被引:20,自引:0,他引:20  
The baculovirus expression system has been used extensively for the expression of recombinant proteins in insect cells. Recently, recombinant baculovirus vectors engineered to contain mammalian cell-active promoter elements, have been used successfully for transient and stable gene delivery in a broad spectrum of primary and established mammalian cells. The application of modified baculoviruses for in vivo gene delivery has also been demonstrated. In contrast to other commonly used viral vectors, baculoviruses have the unique property of replicating in insect cells while being incapable of initiating a replication cycle and producing infectious virus in mammalian cells. The viruses can be readily manipulated, accommodate large insertions of foreign DNA, initiate little to no microscopically observable cytopathic effect in mammalian cells and have a good biosafety profile. These attributes will undoubtedly lead to the increased application and continued development of this system for efficient gene delivery into mammalian cells. Who said you can't teach an old dog new tricks?  相似文献   

4.
E1/E3缺失型腺病毒载体引起细胞周期G_2/M阻滞   总被引:2,自引:0,他引:2  
腺病毒载体广泛应用于基因治疗和转基因研究 ,目前常用的E1 E3缺失型复制缺陷腺病毒载体虽然失去了病毒复制必需的E1基因 ,但载体上的其它病毒基因仍能在宿主细胞内表达 .为研究这些基因对细胞的毒性作用 ,选择了 3种携带没有明显细胞毒性外源基因的腺病毒载体 ,观察感染 2种肿瘤细胞后细胞核形态改变 ,并用流式细胞仪检测细胞周期及凋亡情况 .发现大剂量重组缺陷型腺病毒感染细胞后引起细胞变圆 ,核增大 ,细胞周期阻滞于G2 M期 ,继而染色质凝聚 ,细胞发生坏死或凋亡 ;各种腺病毒载体造成G2 M阻滞所需感染量不同 ,但都随时间延长和感染量增加而加重 .这些结果提示腺病毒基因对细胞的影响是多方面的 ,在以此类病毒载体进行基因转移和基因治疗的研究中 ,精确滴定病毒滴度和转导效率非常重要 ,腺病毒基因表达造成的毒副作用给此类研究增加了变数  相似文献   

5.
Techniques in plant molecular biology--progress and problems   总被引:1,自引:0,他引:1  
Progress in plant molecular biology has been dependent on efficient methods of introducing foreign DNA into plant cells. Gene transfer into plant cells can be achieved by either direct uptake of DNA or the natural process of gene transfer carried out by the soil bacterium Agrobacterium. Versatile gene-transfer vectors have been developed for use with Agrobacterium and more recently vectors based on the genomes of plant viruses have become available. Using this technology the expression of foreign DNA, the functional analysis of plant DNA sequences, the investigation of the mechanism of viral DNA replication and cell to cell spread, as well as the study of transposition, can be carried out. In addition, the versatility of the gene-transfer vectors is such that they may be used to isolate genes not amenable to isolation using conventional protocols. This review concentrates on these aspects of plant molecular biology and discusses the limitations of the experimental systems that are currently available.  相似文献   

6.
Retroviral-mediated gene transfer into mammalian cells   总被引:2,自引:0,他引:2  
Retroviruses may be used as genetic vectors to transfer genes into mammalian cells with high efficiency. We have shown that the N2 vector will transfer a functional bacterial gene for neomycin resistance (NeoR) into more than 80% of mouse spleen foci. A derivative of the N2 vector was constructed to study transfer and expression of the human gene for adenosine deaminase (ADA) in mammalian lymphoid and hematopoietic stem cells. This vector, termed SAX, contains the human ADA cDNA with an SV40 promoter in addition to the NeoR gene. The SAX vector was found to efficiently transfer and express the ADA gene in an ADA-deficient human T-cell line. Gene transfer by SAX using an autologous nonhuman primate bone marrow transplant model resulted in expression of the human ADA gene in peripheral blood cells of treated animals. Human bone marrow treated with SAX produced 1%-2% of colonies in vitro that were expressing the vector genes. Transfer of genes into circulating hematopoietic stem cells of fetal sheep in utero was most efficient; vector gene expression was evident in 20%-40% of hematopoietic colonies. Therefore, retroviral vectors are capable of transferring functional genes into a wide variety of mammalian lymphoid and hematopoietic cells. Such vectors may be useful for clinical trials of gene therapy, that is, the correction of genetic diseases by insertion of a normal gene into a patient's defective cells.  相似文献   

7.
The great majority of plant viruses encapsidate messenger-sense ssRNA and have no natural DNA phase in their life cycle. Despite their RNA nature, essentially any desired change can be introduced into such genomes by using recombinant DNA techniques with suitably constructed, expressible viral cDNA clones. For some viruses such as brome mosaic virus, these methods have been used to define the sequences controlling RNA-directed genomic RNA replication and the expression of internal genes via subgenomic mRNAs. The results suggest a surprising degree of genetic flexibility, which appears to be reflected in the varied gene complements and genetic organizations of presumably related plant and animal RNA viruses sharing conserved replication genes. Foreign genes inserted in such RNA virus genomes can be amplified and expressed to a high level in transfected plant cells. In addition to the potential use of such viruses as episomal expression vectors, it should be possible to couple the viral pathways of RNA-dependent RNA synthesis to amplify and to further regulate the expression of genes transformed into plant chromosomes.  相似文献   

8.
J E Nelson  M A Kay 《Journal of virology》1997,71(11):8902-8907
Recombinant adenovirus vectors represent an efficient means of transferring genes into many different organs. The first-generation E1-deleted vector genome remains episomal and, in the absence of host immunity, persists long-term in quiescent tissues such as the liver. The mechanism(s) which allows for persistence has not been established; however, vector DNA replication may be important because replication has been shown to occur in tissue culture systems. We have utilized a site-specific methylation strategy to monitor the replicative fate of E1-deleted adenovirus vectors in vitro and in vivo. Methylation-marked adenovirus vectors were produced by the addition of a methyl group onto the N6 position of the adenine base of XhoI sites, CTCGAG, by propagation of vectors in 293 cells expressing the XhoI isoschizomer PaeR7 methyltransferase. The methylation did not affect vector production or transgene expression but did prevent cleavage by XhoI. Loss of methylation through viral replication restores XhoI cleavage and was observed by Southern analysis in a wide variety of, but not all, cell culture systems studied, including hepatoma and mouse and macaque primary hepatocyte cultures. In contrast, following liver-directed gene transfer of methylated vector in C57BL/6 mice, adenovirus vector DNA was not cleaved by XhoI and therefore did not replicate, even after a period of 3 weeks. Although replication may occur in some tissues, these results show that stabilization of the vector within the target tissue prior to clearance by host immunity is not dependent upon replication of the vector, demonstrating that the input transduced DNA genomes were the persistent molecules. This information will be useful for the design of optimal adenovirus vectors and perhaps nonviral episomal vectors for clinical gene therapy.  相似文献   

9.
Abstract

Adenovirus has been used in vivo and in vitro as a vector to carry a foreign gene for gene transfer. Two kinds of replication defective human recombinant adenovirus vectors were used in this study, the first containing β‐galactosidase reporter gene (AdCMVLac‐Z) and the second carrying a gene for porcine leptin gene (AdCMVpLeptin). AdCMVLac‐Z was tested for its ability to transfer DNA into pig kidney and pituitary cells. These cells expressed Lac‐Z transiently 48 hours after the infection. In addition, when the pig kidney cells expressing the Lac‐Z were replated with low density for the formation of colonies from each cell, colonies of blue cells expressing Lac‐Z were observed. These results demonstrate that human recombinant adenovirus can be used as a transducing viral vector for inducing long‐term expression in pig kidney cells. We also constructed a recombinant adenovirus (AdCMVpLeptin) which contained a pig leptin gene for the expression of pig leptin in vitro in the 293 human kidney cell line. 293 cells transfected with AdCMVpLeptin produced both a 15 KDa of a secretory form of porcine leptin and an 18 KDa long form containing signal peptide. Our study demonstrated that the recombinant adenovirus system offers a method for gene transfer and expression in pig cells.  相似文献   

10.
11.
T M Chambers  K Essani  R G Webster 《Gene》1990,95(2):275-278
To assess the utility of two temperature-sensitive (ts) mutant vaccinia viruses as vectors for the conditional in vitro expression of recombinant foreign genes, we have studied the kinetics of expression of foreign genes incorporated into these viruses. At nonpermissive temperature, 40 degrees C, these viruses were defective either in DNA synthesis or in virus assembly. Foreign gene expression was affected by the nature of the ts lesion and by the nature of the vaccinia promoter positioned upstream from the foreign gene. With both vector viruses, a foreign gene controlled by the p7.5 early-late promoter was expressed at both 33 degrees and 40 degrees C. With the DNA synthesis-defective vector virus, foreign gene expression controlled by the p11 DNA synthesis-dependent late promoter was inhibited at 40 degrees C, but could be turned on by shift to 33 degrees C. This ts expression system provides an alternative to use of drugs that inhibit DNA synthesis as a means for experimental manipulation of gene expression. Both vector viruses can be used with existing vaccinia virus expression technology.  相似文献   

12.
Gene therapy vectors have been developed from autonomous rodent parvoviruses that carry a therapeutic gene or a marker gene in place of the genes encoding the capsid proteins. These vectors are currently evaluated in preclinical experiments. The infectivity of the vector particles deriving from the fibroblastic strain of minute virus of mice (MVMp) (produced by transfection in human cells) was found to be far less (approximately 50-fold-less) infectious than that of wild-type virus particles routinely produced by infection of A9 mouse fibroblasts. Similarly, wild-type MVMp produced by transfection also had a low infectivity in mouse cells, indicating that the method and producer cells influence the infectivity of the virus produced. Interestingly, producer cells made as many full vector particles as wild-type particles, arguing against deficient packaging being responsible for the low infectivity of viruses recovered from transfected cells. The hurdle to infection with full particles produced through transfection was found to take place at an early step following entry and limiting viral DNA replication and gene expression. Infections with transfection or infection-derived virus stocks normalized for their replication ability yielded similar monomer and dimer DNA amplification and gene expression levels. Surprisingly, at equivalent replication units, the capacity of parvovirus vectors to kill tumor cells was lower than that of the parental wild-type virus produced under the same transfection conditions, suggesting that beside the viral nonstructural proteins, the capsid proteins, assembled capsids, or the corresponding coding region contribute to the lytic activity of these viruses.  相似文献   

13.
Three mutants of herpes simplex virus type 1 (HSV-1) were used to deliver and express the Escherichia coli lacZ gene in cells of the rat central nervous system. Because the lacZ gene was inserted in place of the genes encoding one of the immediate-early viral proteins ICP0 or ICP4 or the early viral protein thymidine kinase, these mutants were compromised or defective in their ability to replicate. All mutant vectors exhibited reduced pathogenesis in animals as compared to the wild type HSV-1 strain KOS. In all cases lacZ was under the control of immediate-early or early viral promoters that are active in the early phase of infection. Expression of beta-galactosidase was observed in cortical neurons following stereotactic inoculation of mutant viruses into adult rat brains; distinct patterns of expression were observed with each mutant vector. Injection of the ICP0 mutant in the frontal cortex and caudate nucleus resulted in beta-galactosidase expression in a substantial number of cells around the inoculation site and at some distance from it for 14 days, with maximum expression after 3 days. The ICP0 vector appeared to have reached the ipsilateral and contralateral cingulate cortex by retrograde transport. Following inoculations of the ICP4 and thymidine kinase vectors into the same brain regions, only a few cells in areas immediately adjacent to the injection track expressed beta-galactosidase and they did so for only a few days. These herpes virus-derived vectors provide a means for the in situ delivery and expression of specific genes in neurons in the central nervous system with little adverse effect on animals.  相似文献   

14.
Vaccinia viruses defective in the essential gene coding for the enzyme uracil DNA glycosylase (UDG) do not undergo DNA replication and do not express late genes in wild-type cells. A UDG-deficient vaccinia virus vector carrying the tick-borne encephalitis (TBE) virus prM/E gene, termed vD4-prME, was constructed, and its potential as a vaccine vector was evaluated. High-level expression of the prM/E antigens could be demonstrated in infected complementing cells, and moderate levels were found under noncomplementing conditions. The vD4-prME vector was used to vaccinate mice; animals receiving single vaccination doses as low as 10(4) PFU were fully protected against challenge with high doses of virulent TBE virus. Single vaccination doses of 10(3) PFU were sufficient to induce significant neutralizing antibody titers. With the corresponding replicating virus, doses at least 10-fold higher were needed to achieve protection. The data indicate that late gene expression of the vaccine vector is not required for successful vaccination; early vaccinia virus gene expression induces a potent protective immune response. The new vaccinia virus-based defective vectors are therefore promising live vaccines for prophylaxis and cancer immunotherapy.  相似文献   

15.
The utility of adenovirus vectors for gene therapy is limited by the transience of expression that has been observed in various in vivo models. Immunological responses to viral targets can eliminate transduced cells and cause the loss of transgene expression. We previously described the characterization of an E4 modified adenovirus, Ad2E4ORF6, which is replication defective in cotton rats. We reasoned that gene transfer vectors based on Ad2E4ORF6 would have a reduced potential for viral gene expression in vivo which might be beneficial for achieving persistence of transgene expression. E1 replacement vectors expressing the cystic fibrosis transmembrane regulator or beta-galactosidase were constructed as series of vectors that differed with respect to the E4 region. Vectors containing a wild-type E4 region, E4 open reading frame 6, or a complete E4 deletion were compared in the lungs of BALB/c mice for persistence of expression. Results obtained with nude mice indicate that nonimmunological factors have a major influence on the longevity of transgene expression. Expression was transient from the E1a promoter with all vectors but persisted from the cytomegalovirus promoter only with a vector containing a wild-type E4 region. Transience of expression did not correlate with the disappearance of vector DNA, suggesting that promoter down-regulation may be involved. Coinfection studies indicate an E4 product(s) could be supplied in trans to allow persistent expression from the cytomegalovirus promoter. In summary, the choice of promoter is important for achieving persistence of expression; in addition, some promoters are highly influenced by the context of the vector backbone.  相似文献   

16.
Infection-dependent replication assays have been used to identify numerous putative origins of baculovirus replication. However, plasmid DNA, when cotransfected into insect cells with Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) DNA, replicates independently of any viral sequence in cis (11). Cotransfection of transfer plasmids and baculovirus DNA is a common procedure used in generating recombinant viruses and in measuring the level of gene expression in transient-expression assays. We have examined the fate of a series of vector plasmids in cotransfection experiments. The data reveal that these plasmids replicate following cotransfection and the replication of plasmid DNA is not due to acquisition of viral putative origin sequences. The conformation of plasmid DNA replicating in the cotransfected cells was analyzed and found to exist as high-molecular-weight concatemers. Ten to 25% of the replicated plasmid DNA was integrated into multiple locations on the viral genome and was present in progeny virions following serial passage. Sequence analysis of plasmid-viral DNA junction sites revealed no homologous or conserved sequences in the proximity of the integration sites, suggesting that nonhomologous recombination was involved during the integration process. These data suggest that while a rolling-circle mechanism could be used for baculovirus DNA replication, recombination may also be involved in this process. Plasmid integration may generate large deletions of the viral genome, suggesting that the process of DNA replication in baculovirus may be prone to generation of defective genomes.  相似文献   

17.
The use of viral vectors as agents for gene delivery provides a direct approach to manipulate gene expression in the mammalian central nervous system (CNS). The present article describes in detail the methodology for the injection of viral vectors, in particular adeno-associated virus (AAV) vectors, into the adult rat brain and spinal cord to obtain reproducible and successful transduction of neural tissue. Surgical and injection procedures are based on the extensive experience of our laboratory to deliver viral vectors to the adult rat CNS and have been optimized over the years. First, a brief overview is presented on the use and potential of viral vectors to treat neurological disorders or trauma of the CNS. Next, methods to deliver AAV vectors to the rat brain and spinal cord are described in great detail with the intent of providing a practical guide to potential users. Finally, some data on the experimental outcomes following AAV vector-mediated gene transfer to the adult rat CNS are presented as is a brief discussion on both the advantages and limitations of AAV vectors as tools for somatic gene transfer.  相似文献   

18.
Viral vector transfection systems are among the simplest of biological agents with the ability to transfer genes into the central nervous system.In brain research,a series of powerful and novel gene editing technologies are based on these systems.Although many viral vectors are used in rodents,their full application has been limited in non-human primates.To identify viral vectors that can stably and effectively express exogenous genes within nonhuman primates,eleven commonly used recombinant adeno-associated viral and lentiviral vectors,each carrying a gene to express green or red fluorescence,were injected into the parietal cortex of four rhesus monkeys.The expression of fluorescent cells was used to quantify transfection efficiency.Histological results revealed that recombinant adeno-associated viral vectors,especially the serotype 2/9 coupled with the cytomegalovirus,human synapsin Ⅰ,or Ca2+/calmodulin-dependent protein kinase Ⅱ promoters,and lentiviral vector coupled with the human ubiquitin C promoter,induced higher expression of fluorescent cells,representing high transfection efficiency.This is the first comparison of transfection efficiencies of different viral vectors carrying different promoters and serotypes in non-human primates (NHPs).These results can be used as an aid to select optimal vectors to transfer exogenous genes into the central nervous system of non-human primates.  相似文献   

19.
One of the greatest challenges to gene therapy is the targetting of gene delivery selectively to the sites of disease and regulation of transgene expression without adverse effects. Ultimately, the successful realization of these goals is dependent upon improvements in vector design. Over the years, viral vector design has progressed from various types of replication-defective viral mutants to replication-conditioned viruses and, more recently, to 'gutted' and hybrid vectors, which have, respectively, eliminated expression of non-relevant or toxic viral genes and incorporated desired elements of different viruses so as to increase the efficacy of gene delivery in vivo. This review will focus on the different viral and cellular elements which have been incorporated into virus vectors to: improve transduction efficiencies; alter the entry specificity of virions; control the fate of transgenes in the host cells; and regulate transgene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号