首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to assess the effects of fen rewetting on carabid beetle and vascular plant assemblages within riverine fens along the river Peene in north‐eastern Germany. Drained (silage grassland), rewetted (restored formerly drained silage grassland), and near‐natural (fairly pristine) stands were compared. Eighty‐four beetle species (7,267 individuals) and 135 plant species were recorded. The richness of vascular plant species and the number of endangered species were highest on near‐natural fens. Fourteen years of rewetting did not increase plant species numbers compared with drained fens. For carabid beetles, however, species richness and the number of stenotopic species were highest on rewetted fens. Rewetting caused the replacement of generalist carabids by wetland specialists, but did not provide suitable habitat for specialist fen carabids or for plant species of oligo‐ or mesotrophic fen communities. Therefore, raising the water table on fens with nutrient‐rich, degraded peat was not sufficient for restoring species assemblages of intact fens, although water level was the most important environmental factor separating species assemblages. Our study illustrated that insects and plants may respond differentially to restoration, stressing the need to consider different taxa when assessing the efficiency of fen restoration. Furthermore, species assemblages of intact fens could not be restored within 14 years, highlighting the importance of conserving pristine habitat.  相似文献   

2.
Due to agricultural intensification and cessation of traditional land use, alkaline fens of the Caricion davallianae alliance (EU-FFH 7230) are among the most endangered ecosystems in Europe. This study exhibits a vegetation analysis of these systems in Schleswig-Holstein (Northern Germany). We analyzed across three scales the effects of grazing and mowing on phytodiversity of core areas and recorded their adjacent vegetation to estimate the capability for habitat enlargement of fen species. Results revealed that species richness, evenness and number of endangered species varied insignificantly between mowing and grazing treatments, regardless of scale. The high proportion of fen species and Red-Book-listed species in core areas, along with a state-wide representation of only 2 ha of these vegetation types, underlines the need for further conservation measures. Floristic differences between grazed and mowed sites derived from the individual appearance of species within one treatment. Thus, to preserve the species pool of alkaline fens, both management strategies have to be considered. Moreover, as most small sedge reed species are low-productive and light-demanding, sufficient biomass removal of dominant tall-growing species is required. One cut per year in late summer, the traditional management, does not satisfy the requirements of target species, which is indicated by an increase of Phragmitetea species at larger plot sizes. Additionally, in grazed fens, vegetation adjacent to the core areas consisted mainly of more eutrophic wet grasslands, and, in mowed fens, mainly of reeds or woods. We recommend therefore several changes in current conservation measures that include an increase to two cuts per year in mowed fens, and stocking rates of at least 2 LU ha−1 (summer grazing) or 0.7 LU ha−1 (year-round grazing).  相似文献   

3.
Many ecosystems of high conservation value have been shaped by human impacts over centuries. Today, traditional management of semi-natural habitats is a common conservation measure in Europe. However, despite traditional management, habitat remnants may still loose specialist species due to surrounding land-use change or atmospheric nitrogen deposition. To detect trends in species density (2-m2 plot scale) and habitat quality in calcareous fens in the pre-Alps of Switzerland, we surveyed 36 traditionally managed fens in 1995/97 and again in 2005/06 (five plots per fen). The fens occurred at three altitudinal levels (800–1000, 1000–1200, 1200–1400 m asl) and were either extensively grazed or mown once a year. Despite these traditional management regimes, species density of fen specialists and of all bryophytes decreased during this decade (vascular plant specialists: ?9.4%, bryophyte specialists: ?14.9%, all bryophytes: ?5.7%). Management had no effect on the number of Red-List species and habitat specialists of vascular plants per plot. However, bryophyte species density was more strongly reduced in grazed fens. Species density of vascular plant generalists increased between the two surveys (+8.2%) but not of bryophytes. Among vascular plants, Red-List species decreased from 1.01 to 0.78 species per plot. Furthermore, between the two surveys aboveground plant biomass, mean plant-community indicator values for nutrients and species density of nutrient indicators increased, whereas mean plant indicator values for soil moisture, light and peat, and species density for peat indicators, decreased. We attribute these changes and the loss of specialist species over the past decade mainly to land-use change in the surrounding area and to nutrient inputs. Thus, despite traditional management, calcareous fens in the pre-Alps suffer from ongoing habitat deterioration and endangered plant species remain threatened. For their long-term protection, we suggest to reduce nutrient inputs and, where necessary, to restore hydrology and adjust grazing management.  相似文献   

4.
The majority of fens in Europe have been transformed for agricultural purposes and have disappeared or become degraded. Fen meadows that developed under low-intensity management of fens also have become degraded. In this paper, we consider the available restoration methods, biotic constraints for restoration and new prospects and approaches for the restoration of severely degraded fens. Due to irreversible changes in landscape settings, hydrology, soil and trophic conditions, a full restoration to natural mires is unlikely. Yet, an improvement of the ecosystem functions and revival of biodiversity in degraded fens is possible. A restoration of semi-natural meadows is one of the alternative targets. Important for restoration efforts to succeed are a sufficient reduction of nutrient levels and preventing acidification. In general, a combination of topsoil removal and seed transfer is an effective measure for fen meadow restoration, provided that groundwater seepage can be re-established. There are also several biotic limitations to fen meadow restoration, due to limited propagule availability of target species and the legacy of the former vegetation in form of its soil seed bank and high seed production by unwanted species. Under the present environmental conditions, the re-development of fen meadows on degraded fens will result in species compositions different from those observed in the past and such restoration may require considerable time and effort.  相似文献   

5.
Top-soil removal followed by species introduction through hay transfer has appeared as a method to restore drained fens. This method addresses abiotic constraints by restoring hydrology and nutrient status, and biotic constraints by removing an unwanted seed bank and counteracting dispersal-limitation. Restoration works by altering environmental filters. Knowledge about the restoration actions effect on functional traits is necessary to understand which types of species may establish. In this study we analyse which factors in top-soil removal followed by hay transfer influence selection and composition of functional traits. Top-soil removal followed by hay transfer from reference sites was conducted at two sites in the Całowanie fen, 33 km SE of Warsaw, Poland. Species and abundance data were recorded for three consecutive years. These data, combined with data on functional traits were used to analyse the effect of the restoration actions on four functional diversity-indices and the community weighted mean of functional traits. Our results reveal a strong habitat filter in the restoration site that follows an elevation gradient. At low elevation this filter selects low values of autochory and specific leaf area and high values of clonal lateral spread, Ellenberg moisture values, and dispersal through hydrochory. The transferred hay differs in trait characteristics compared to the reference site vegetation by having species of higher specific leaf area, lower Ellenberg moisture value and lower dispersal by autochory and hydrochory. The result presented here has three important implications for fen restoration. First, the difference in trait-characteristics between the transferred hay and the reference site it was harvested from limits the restoration potential. Second, since for several fen species important functional traits are filtered along an elevation-gradient, careful planning regarding depth of top-soil removal is needed. Finally the results illustrate how a functional analysis can be used to detect environmental filters acting during ecological restoration.  相似文献   

6.
The definition of restoration targets and the evaluation of restoration success require a comprehensive, ecosystem-based analysis of all successional pathways, which proceed along gradients of land use intensification and continue after implementation of restoration measures. In the presented study, such analysis was applied to fen ecosystems. Study areas were river valleys and eutrophic lakes in The Netherlands and in Schleswig-Holstein, the northernmost state of Germany. At these sites high fen degradation has taken place and restoration strategies such as “recovery of peat-forming systems” and “development of species-rich fen grasslands” have recently been pursued. Based on an indirect successional analysis, we derived characteristic shifts of abiotic (hydrodynamics, soil parameter) and biotic (species composition, phytomass production) ecosystem traits relative to increasing land use intensity. Species richness and nature conservation value (NCV) initially increased and afterwards decreased during the process of land use intensification. This floristic change was accompanied by an initial decrease and subsequent increase in system productivity. Indicators for P-availability showed the same trend and there was evidence that nutrient limitation changed initially from N- (tall sedge reeds) to P- or P/N (co)-limitation (small sedge reeds) and afterwards again to N-limitation (wet and mesic grasslands). The successional analysis documented the abiotic requirements of vegetation types and their characteristic species, and thus, allowed for the use of these ecosystem traits as indicators to evaluate the success of specific restoration targets. For example, the decrease of Scheuchzerio-Caricetea species could be related more directly to reduced light availability than to an increase of the groundwater tables. Furthermore, we calculated threshold values of these traits for the occurrence of target species. For instance, a sustainable establishment of light-demanding mesotrophic species can only be expected if the standing crop value is less than 400 g m−2. In a further step, we estimated the restoration success in selected study areas by applying the findings of the successional analysis. Results showed that rewetting measures have to be carried out with caution if both restoration strategies are aspired in one specific area. Moreover, restoration success of both strategies is limited in initially highly degraded areas. Sources for target species are often missing and abiotic conditions such as nutrient levels and flooding periods are often inappropriate. Consequently, expectations for restoration success should be adapted to the realistic development potential of the individual system and a cost–benefit analysis has to be carried out to avoid unnecessary management costs.  相似文献   

7.
In recent years abandonment of traditional management of mountain grasslands has been observed throughout Central Europe. However, the impact of abandonment on vegetation of mountain grasslands is still unclear. In this study it was hypothesized that the cessation of traditional management of mesic mountain meadows causes changes in their species composition and a decrease in the biodiversity. In total, 260 plots were established in the Sudetes (SW Poland) on meadows with regular annual mowing, meadows with irregular mowing management, and abandoned meadows. Relevés (5 × 5 m) were performed, and the habitat properties were determined using Ellenberg indicator values. The study confirmed the hypothesis that the various ways of extensive management have an influence on species richness. The lowest species richness was observed on the irregularly managed meadows, while higher species numbers were found on the abandoned and regular managed meadows. The majority of patches on abandoned meadows exhibited degradation through the expansion of Solidago gigantea, Solidago canadensis, Lupinus polyphyllus, Heracleum sosnovsky, Calamagrostis epigejos, Deschampsia flexuosa, Festuca rubra and Hypericum maculatum. Meadows subjected to different management practices differed significantly in Ellenberg indicator values. The abandoned meadows had the highest values of the light index (L) and nitrogen availability (N), whereas the highest values of soil moisture (F) were noted on the irregularly managed meadows. The degradation of mountain mesic meadows requires regular mowing management, which stops ecological succession and preserves their high biodiversity.  相似文献   

8.
It has recently been stated that the global goal of halting the loss of biodiversity by 2010 has not been met highlighting the urgent need to monitor trends in biodiversity. Our study suggests that existing indicators of bird biodiversity in Denmark are inaccurate and we present a new objective method for accurately assessing trends in specific habitats using common bird species. Bird species were selected for creating habitat specific indicators by calculating their relative habitat use (RHU) in nine different habitat categories. RHU indicates the degree to which a habitat is preferred (RHU > 2) or avoided (RHU < 0.5) by a species, relative to other habitats. Indicator sets were constructed for each habitat type using species with an RHU > 2 and revealed that existing habitat indicators, based on species lists from the Pan-European Common Bird Monitoring Scheme (PECBMS), often included species that did not in fact have preferences for those particular habitats in Denmark. Habitat specific indicators based on the new species selection method showed significant negative trends in three of nine habitat categories: coniferous forest, bog/marsh and heath. Habitat classes were further combined to create overall indicators for forest, farmland and freshwater. A comparison of these indicators with the existing indicators revealed a negative overall trend for forest habitat, which had previously been overlooked, suggesting that species selection is crucial for the development of informative indicators. The habitat specific farmland indicator confirmed the negative trend in the current farmland indicator. The methodology for indicator species selection presented here could potentially be applied for use in a global context for a wider range of taxonomic groups.  相似文献   

9.
Question: How do moderate grazing, topsoil removal and hay transfer affect species diversity and abundance on a eutrophic fen grassland site? Location: Northern Germany. Method: A three-factorial field experiment with the factors grazing, topsoil removal and hay transfer of diaspore-rich material was established in 2001. Soil nutrients and seed bank were analysed at the beginning of the experiment, species composition and vegetation development was monitored for four years (2002–2005). Results: Topsoil removal had a significant effect on the abundance of different plant species groups: resident vegetation of agricultural grasslands was suppressed, while clonal reed species were facilitated in recolonising the area. The establishment of regionally rare and endangered species of nutrient-poor fens and wet meadows introduced with hay was achieved mainly on plots with topsoil removal, with the exception of Rhinan-thus angustifolius, which also established on plots with intact topsoil. Effects of grazing after four years of experiments were of minor influence on species composition. Conclusion: The establishment of target plant species of nutrient-poor fens is most successful when both an adequate number of viable diaspores and suitable sites for germination and establishment are available. In our experiment this was achieved by the combination of topsoil removal and hay transfer. We recommend this combination, together with continuous management (grazing/cutting), for further restoration in fen grasslands.  相似文献   

10.
《Acta Oecologica》2007,31(2):216-222
We investigated whether agri-environmental incentive payments help to maintain biodiversity. We studied the effect of agricultural management intensity on vascular plant species richness and plant assemblages of mountain meadows in Switzerland. Other factors such as slope, altitude or accessibility (distance from farmyard) were also taken into account. Vegetation sampling was conducted at 69 sites representing five different management types, differing with respect to nutrient input and soil moisture: (i) dry extensive meadows; (ii) extensive meadows; (iii) dry low-intensive meadows; (iv) low-intensive meadows; (v) intensive meadows. There was a significant negative relationship between plant species richness and management intensity: The mean number of plant species per management type declined markedly when management intensity increased, although dry sites harboured slightly more species regardless of management intensity (dry extensive > dry low intensive > extensive > low intensive >> intensive meadows). Species richness was clearly affected by management intensity, but not so by slope, altitude or accessibility. There was a gradual shift in plant assemblages among management types with only intensive meadows differing from the other four types of differently managed meadows. We therefore found, in contrast to many studies done in the European lowlands, positive effects of incentive payments on plant species richness.  相似文献   

11.
Environmental stress is the main cause of the decline of species diversity in low‐productive fen meadows in the Netherlands. Attempts to restore species diverse fen meadows e.g. by sod cutting frequently fail. We supposed that unsuccessful efforts are due to ignoring the impact of environmental stress on the performance of soil biota, which play a key role in N‐immobilization and keeping available‐N for primary production low. We investigated both pristine and degraded natural sites and successfully and unsuccessfully restored sites of poor and rich fen meadows. We determined plant species composition, soil chemical properties, N‐pools in soil biota, N‐mineralization rates, and N‐fluxes. In pristine rich and poor fen meadows, mineral‐N was poorly available for primary production due to a strong N‐immobilization by soil biota. Annual N‐immobilization fluxes exceeded by far the annual N‐harvest by primary production. N‐immobilization in pristine fens was higher than in degraded fens. In successfully restored rich fens, net N‐mineralization was lower and N‐immobilization higher than in the unsuccessful category. From our results, we derived the hypothesis that in degraded or in unsuccessfully restored fens the soils internal N‐balance shifted from N‐immobilization to net N‐mineralization, favoring biomass production but disadvantaging plant species diversity. N‐retention driven by an active N‐immobilizing soil biological community, is likely a decisive process for successful recovery of plant species diversity in low productive fen meadows. We recommend that restoration techniques should stimulate a functionally diverse soil fauna, as this may enhance the storage of available nutrients in the soil food web.  相似文献   

12.
The niche of introduced species and that of native ones may overlap, thus causing detrimental effects on the latter through competitive interactions. We used radio telemetry to investigate habitat partitioning during the active period by the introduced American eastern cottontail (Sylvilagus floridanus) and the native European hare (Lepus europaeus) in sympatric conditions. Home ranges of cottontails varied from 1.1–2.2 ha in autumn to 3.0–3.6 ha in summer. In hares, home ranges were 30.5–33.8 ha in summer and increased to 49.5–85.9 ha in winter. Both species used an overall area composed of about 27% of natural habitats (i.e., meadows, woodlands, shrubby habitats, shores, and uncultivated land) and over 70% of field crops. The coexistence of the two species appeared to be facilitated by habitat partitioning. Habitat use of cottontails was characterized by a preference for natural habitats at the study area level as well as within the home ranges, while hares showed a preference for crop fields at both spatial scales and a seasonal selection of meadows within home ranges. Habitat overlap measured with the Pianka index was 0.57–0.64 in autumn and winter, and increased in summer and spring to 0.73–0.78. Our results provide evidence of different resource selection strategies adopted by these two sympatric lagomorph species. Hare populations are often found in agricultural landscapes at low-densities, while cottontails are currently spreading throughout Northern Italy to such an extent that an eradication programme appears unfeasible. In this situation, conservation measures for hares and other species should also take into consideration the presence or possible arrival of cottontails. Habitat restoration measures that would increase the amount of fallow lands and shrublands may favour cottontails more than hares. In areas where introduced lagomorphs are present, the necessity of natural open landscapes for hares may be better faced by increasing the presence of meadows, that are seasonally used by hares and not by cottontails.  相似文献   

13.
14.
Rewetted, previously drained fens often remain sources rather than sinks for carbon and nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction (Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a release of inorganic compounds. We collected intact soil cores in two iron-poor and two iron-rich drained fens, half of which were subjected to a rewetting treatment while the other half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3-, > 1 mmol L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Additionally, ammonium (NH4+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC and NH4+ was absent in the rewetted iron-poor cores, indicating a strong interaction between waterlogging and iron-mediated breakdown of organic matter. Concentrations of dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low throughout the experiment. Our results suggest that large pools of iron in the top soil of drained fens can hamper the restoration of the fen’s sink-service for ammonium and carbon upon rewetting. We argue that negative effects of iron should be most apparent in fens with fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+. We conclude that rewetting of iron-poor fens may be more feasible for restoration.  相似文献   

15.
《Acta Oecologica》2007,31(1):86-92
Shrub encroachment due to overgrazing has led to dramatic changes of savanna landscapes and is considered to be one of the most threatening forms of rangeland degradation e.g. via habitat fragmentation. Mammalian carnivores are particularly vulnerable to local extinction in fragmented landscapes. However, our understanding of how shrub encroachment affects mammalian carnivores is poor. Here we investigated the relative sensitivities of ten native carnivores to different levels of shrub cover ranging from low (<5%) to high shrub cover (>25%) in 20 southern Kalahari rangeland sites. Relative abundance of carnivores was monitored along 40 sand transects (5 m × 250 m) for each site.Our results show that increasing shrub cover affects carnivore species differently. African wild cats, striped polecats, cape foxes and suricates were negatively affected, whereas we found hump-shaped responses for yellow mongooses, bat-eared foxes and small-spotted genets with maximum abundance at shrub covers between 10 and 18%. In contrast, black-backed jackals, slender mongooses and small spotted cats were not significantly affected by increasing shrub cover. However, a negative impact of high shrub cover above 18% was congruent for all species.We conclude that intermediate shrub cover (10–18%) in savanna landscapes sustain viable populations of small carnivores.  相似文献   

16.
17.
Upland heathland is an internationally important habitat but a large area in the UK has been degraded to acid grassland by intensive livestock grazing. Re-establishment of dwarf shrubs, particularly Calluna vulgaris (L.) Hull, is a key objective for restoring heathland on these sites. A replicated plot-scale experiment was set up to examine effects of disturbance and seed addition on C. vulgaris establishment in a Nardus stricta L. grassland under three grazing regimes: sheep only (1.5 ewes ha?1 for 10 months per year); cattle only (0.5 heifers ha?1 in summer only); and, the cattle regime combined with sheep (1.0 ewes ha?1 for 10 months per year). Early results of the experiment have been reported previously but it was not known if these results were an indication of the longer-term restoration success. Here we evaluate the success of the restoration methods (disturbance, seeding treatments and grazing regime) eight years after the treatments began. In seeded plots, young C. vulgaris plants had greatest above-ground height, dry weight and shoot length if grazing was excluded or the cattle-only regime was applied. C. vulgaris cover was greatest, and increased most, in plots that had been disturbed, seeded and ungrazed or subjected to the cattle-only regime. The vegetation in these plots also became more similar to reference sites with 50% or more cover of C. vulgaris. The invasive Juncus effusus L. was more frequent in disturbed and grazed plots but less frequent in plots with C. vulgaris established from added seed. Previous results that showed the benefits of disturbance and seeding treatments were still valid but changes in the vegetation composition were still occurring and longer-term studies will be needed to determine when grazing regimes including sheep might be reintroduced.  相似文献   

18.
Removal of shrubs and trees is an important management and restoration practice to promote openness and light‐dependent vegetation in fens, especially as tree cover is increasing in previously open wetlands. The effects of woody vegetation removal on target species have been poorly documented in wetlands up to now. In this study, I investigated the effect of tree and shrub removal (especially of Juniperus communis) on the target vegetation in a partly overgrown and degraded grazed rich fen after 6 years. I also tested whether additional intensified management by mowing could promote initial recovery. Shrub removal resulted in a rapid recovery of species‐rich fen vegetation such that after 6 years brown moss cover more than tripled and target species richness doubled and became similar to values of a reference area in a favorable conservation status. Additional mowing resulted in a much higher abundance of the target rich fen vascular plants. The reasons for the success at this site may be the proximity to well‐developed rich fen vegetation, presence of cattle that dispersed diaspores, and presence of bare, colonizable substrate. Thus, it may be more beneficial to restore and expand already existing sites in a partly favorable status than to restore severely deteriorated sites. Extensive management by woody vegetation removal may be an alternative method to maintain high conservation values of open mires and other wetlands, where grazing or mowing is not necessary or feasible to meet future needs in response to overgrowth caused by global warming.  相似文献   

19.
The spread of competitive grasses, changes in species composition and vegetation structure are direct consequences of grassland and heathland abandonment. As an alternative to more costly management measures such as traditional pastoralism, year-round low-intensity grazing with large herbivores is increasingly used to restore and maintain semi-open habitats. However, the suitability of this grazing regime has not yet been investigated for long-abandoned, highly degraded but nutrient-poor sandy grassland and heathland communities. In particular, it is unclear if year-round grazing is suitable for preventing the further spread of highly competitive grasses such as Calamagrostis epigejos while simultaneously maintaining or improving characteristic species richness and vegetation structure. Hence, we conducted a comprehensive field study on two spatial scales (plot-level: 25 m2, macroplot-level: 1 ha) to analyse the impacts of year-round low-intensity cattle and horse grazing on the development of the highly competitive grass Calamagrostis epigejos, as well as the vegetation structure and plant species richness of long-abandoned but nutrient-poor dry sandy grassland and heathland communities, their mosaics and Calamagrostis stands within an 800 ha heathland between 2008 and 2015. Finally, we assessed the local conservation status of the habitat types after seven years of grazing in comparison to long-abandoned sites.Grazing successfully reduced the coverage of Calamagrostis epigejos, whereby Calamagrostis stands developed towards species-rich sandy grasslands after seven years of grazing. In addition, the quality of the vegetation structure was improved by enhancing the proportion of bare soil, while litter and grass cover, litter thickness and height of the field layer as well as the coverage of ruderal indicators were significantly reduced on grazed sites in comparison to ungrazed sites in 2015. Moreover, we found an overall positive grazing effect on species richness: Total species number, number of target species as well as subordinated target species significantly increased within the vegetation types over time.Thus, year-round low-intensity cattle and horse grazing is a suitable management tool for restoring, maintaining and even improving long-abandoned, nutrient-poor sandy grassland and heathland communities, and thus to enhance the local conservation status of the habitat types. However, if there is a high initial cover of woody species (e.g. shrubs, tree rejuvenation), then an extensive shrub and tree clearance will be necessary, with manual shrub cutting being crucial to reduce the heavy regrowth of the woody species. In addition, a one-time mowing should be implemented in highly degraded heaths to facilitate the vegetative rejuvenation of degenerate stands of Calluna vulgaris, thus improving its attractiveness for the grazing animals.  相似文献   

20.
Texture information from passive remote sensing images provides surrogates for habitat structure, which is relevant for modeling biodiversity across space and time and for developing effective ecological indicators. However, the applicability of this information might differ among taxa and diversity measures. We compared the ability of indicators developed from texture analysis of remotely sensed images to predict species richness and species turnover of six taxa (trees, pyraloid moths, geometrid moths, arctiinae moths, ants, and birds) in a megadiverse Andean mountain rainforest ecosystem. Partial least-squares regression models were fitted using 12 predictors that characterize the habitat and included three topographical metrics derived from a high-resolution digital elevation model and nine texture metrics derived from very high-resolution multi-spectral orthophotos. We calculated image textures derived from mean, correlation, and entropy statistics within a relatively broad moving window (102 m × 102 m) of the near infra-red band and two vegetation indices. The model performances of species richness were taxon dependent, with the lowest predictive power for arctiinae moths (4%) and the highest for ants (78%). Topographical metrics sufficiently modeled species richness of pyraloid moths and ants, while models for species richness of trees, geometrid moths, and birds benefited from texture metrics. When more complexity was added to the model such as additional texture statistics calculated from a smaller moving window (18 m × 18 m), the predictive power for trees and birds increased significantly from 12% to 22% and 13% to 27%, respectively. Gradients of species turnover, assessed by non-metric two-dimensional scaling (NMDS) of Bray-Curtis dissimilarities, allowed the construction of models with far higher predictability than species richness across all taxonomic groups, with predictability for the first response variable of species turnover ranging from 64% (birds) to 98% (trees) of the explained change in species composition, and predictability for the second response variable of species turnover ranging from 33% (trees) to 74% (pyraloid moths). The two NMDS axes effectively separated compositional change along the elevational gradient, explained by a combination of elevation and texture metrics, from more subtle, local changes in habitat structure surrogated by varying combinations of texture metrics. The application of indicators arising from texture analysis of remote sensing images differed among taxa and diversity measures. However, these habitat indicators improved predictions of species diversity measures of most taxa, and therefore, we highly recommend their use in biodiversity research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号