首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Recent studies on parallel evolution have focused on the relative role of selection and historical contingency during adaptive divergence. Here, we study geographically separate and genetically independent lake populations of a freshwater isopod (Asellus aquaticus) in southern Sweden. In two of these lakes, a novel habitat was rapidly colonized by isopods from a source habitat. Rapid phenotypic changes in pigmentation, size and sexual behaviour have occurred, presumably in response to different predatory regimes. We partitioned the phenotypic variation arising from habitat ('selection': 81–94%), lake ('history': 0.1–6%) and lake × habitat interaction ('unique diversification': 0.4–13%) for several traits. There was a limited role for historical contingency but a strong signature of selection. We also found higher phenotypic variation in the source populations. Phenotype sorting during colonization and strong divergent selection might have contributed to these rapid changes. Consequently, phenotypic divergence was only weakly influenced by historical contingency.  相似文献   

2.
1. Behavioural adaptations to avoid and evade predators are common. Many studies have investigated population divergence in response to changes in predation regime within species, but studies exploring interspecific patterns are scant. Studies on interspecific divergence can infer common outcomes from evolutionary processes and highlight the role of environmental constraints in shaping species traits. 2. Species of the dragonfly genus Leucorrhinia underwent well‐studied shifts from habitats being dominated by predatory fish (fish lakes) to habitat being dominated by predatory invertebrates (dragonfly lakes). This change in top predators resulted in a set of adaptive trait modifications in response to the different hunting styles of both predator types: whereas predatory fish actively search and pursue prey, invertebrate predator follow a sit‐and‐wait strategy, not pursuing prey. 3. Here it is shown that the habitat shift‐related change in selection regime on larval Leucorrhinia caused species in dragonfly lakes to evolve increased larval foraging and activity, and results suggest that they lost the ability to recognise predatory fish. 4. The results of the present study highlight the impact of predators on behavioural trait diversification with habitat‐specific predation regimes selecting for distinct behavioural expression.  相似文献   

3.
Burst escape speed is an effective and widely used behaviour for evading predators, with burst escape speed relying on several different morphological features. However, we know little about how behavioural and underlying morphological attributes change in concert as a response to changes in selective predation regime. We studied intercorrelated trait differentiation of body shape and burst‐swim‐mediating morphology in response to a habitat shift‐related reduction in burst escape speed using larvae of the dragonfly genus Leucorrhinia. Species in this genus underwent a well‐known habitat shift from predatory fish lakes (fish lakes) to predatory fish‐free lakes dominated by large predatory dragonflies (dragonfly lakes) accompanied by relaxed selection on escape burst speed. Results revealed that species from fish lakes that possess faster burst speed have evolved a suite of functionally intercorrelated traits, expressing a wider abdomen, a higher abdominal muscles mass and a larger branchial chamber compared with species from dragonfly lakes. In contrast, populations within species did not show significant differences in muscle mass and branchial chamber size between lake types in three of the species. High multicollinearity among variables suggests that traits have evolved in concert rather than independently when Leucorrhinia shifted from fish lakes to dragonfly lakes. Thus, relaxed selection on burst escape speed in dragonfly‐lake species resulted in a correlated reduction of abdominal muscles and a smaller branchial chamber, likely to save production and/or maintenance costs. Our results highlight the importance of studying integrated behavioural and morphological traits to fully understand the evolution of complex phenotypes.  相似文献   

4.
Divergent natural selection is often thought to be the principal factor driving phenotypic differentiation between populations. We studied two ecotypes of the aquatic isopod Asellus aquaticus which have diverged in parallel in several Swedish lakes. In these lakes, isopods from reed belts along the shores colonized new stonewort stands in the centre of the lakes and rapid phenotypic changes in size and pigmentation followed after colonization. We investigated if selection was likely to be responsible for these observed phenotypic changes using indirect inferences of selection (FSTQST analysis). Average QST for seven quantitative traits were higher than the average FST between ecotypes for putatively neutral markers (AFLPs). This suggests that divergent natural selection has played an important role during this rapid diversification. In contrast, the average QST between the different reed ecotype populations was not significantly different from the mean FST. Genetic drift could therefore not be excluded as an explanation for the minor differences between allopatric populations inhabiting the same source habitat. We complemented this traditional FSTQST approach by comparing the FST distributions across all loci (n = 67–71) with the QST for each of the seven traits. This analysis revealed that pigmentation traits had diverged to a greater extent and at higher evolutionary rates than size‐related morphological traits. In conclusion, this extended and detailed type of FSTQST analysis provides a powerful method to infer adaptive phenotypic divergence between populations. However, indirect inferences about the operation of divergent selection should be analyzed on a per‐trait basis and complemented with detailed ecological information.  相似文献   

5.
Colonization of new habitats can relax selection pressures, and traits or trait combinations no longer selected for might become reduced or lost. We investigated behavioural differentiation and behavioural trait integration in the freshwater isopod Asellus aquaticus. This isopod has recently colonized a novel habitat and diverged into two ecotypes which encounter different predator faunas. We investigated sex-specific behavioural differences and phenotypic integration in three behavioural assays: (i) time to emerge (TE) from a shelter, (ii) activity and (iii) escape behaviour. General activity and escape behaviour differed between ecotypes. Furthermore, general activity and TE differed between sexes. Behavioural traits were more frequently correlated in the ancestral habitat, and phenotypic integration tended to be higher in this habitat as well. Our study suggests that different predator types, but also other ecological factors such as habitat matrices and population densities, might explain the differences in behavioural integration in these ecotypes.  相似文献   

6.
Pigmentation in the freshwater isopod Asellus aquaticus (Crustacea) differed between habitats in two Swedish lakes. In both lakes, isopods had lighter pigmentation in stands of submerged vegetation, consisting of stoneworts (Chara spp.), than in nearby stands of reed (Phragmites australis). Experimental crossings of light and dark isopods in a common environment showed that pigmentation had a genetic basis and that genetic variance was additive. Environmental effects of diet or chromatophore adjustment to the background had minor influence on pigmentation, as shown by laboratory rearing of isopods on stonewort or reed substrates, as well as analyses of stable isotope ratios for isopods collected in the field. In both study lakes, the average phenotype became lighter with time (across generations) in recently established stonewort stands. Taken together, these results indicate that altered phenotype pigmentation result from evolutionary responses to local differences in natural selection. Based on the assumption of two generations per year, the evolutionary rate of change in pigmentation was 0.08 standard deviations per generation (haldanes) over 20 generations in one lake and 0.22 haldanes over two generations in the other lake. This genetic change occurred during an episode of population growth in a novel habitat, a situation known to promote adaptive evolution. In addition, stonewort stands constitute large and persistent patches, characteristics that tend to preserve local adaptations produced by natural selection. Results from studies on selective forces behind the adaptive divergence suggest that selective predation from visually oriented predators is a possible selective agent. We found no indications of phenotype-specific movements between habitats. Mating within stonewort stands was random with respect to pigmentation, but on a whole-lake scale it is likely that mating is assortative, as a result of local differences in phenotype distribution.  相似文献   

7.
Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat‐specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments.  相似文献   

8.
芦苇生态型研究进展   总被引:21,自引:4,他引:17  
芦苇生态幅极广,适生于多种生境类型。不同的环境选择压力如水深、盐度、养分、气候等交互影响致使芦苇个体及种群间发生不同程度的分化和变异,形成了形态、生理或遗传上互有差异、异地性的不同生态型。尽管基于芦苇表型变异以及遗传变异进行生态型划分的研究已开展很多,但针对芦苇生态型变异规律及其可能的形成机制的认知仍存在较多分歧。在总结近年来有关芦苇生态型研究文献的基础上,通过对影响芦苇生态型变异的主要因素——环境因素和遗传因素的分析,以期为芦苇生态型的划分及其可能的形成机制提供新的研究思路。(1)空间尺度的选择应成为研究者分析、划分芦苇生态型的首要定位。在较大的地理空间尺度上,高度异质性的生境导致某些性状的变异式样具有相对的不连续性,可作为不同芦苇生态型鉴别与描述的主要依据;(2)在合理的尺度定位、取样设计和统计分析的基础上开展的表型变异研究,及进一步基于种群水平的分子标记研究(分子指纹特征或特有等位基因),可为芦苇生态型的鉴定、划分提供更为可靠的参考数据,并且可以甄别生境差异(环境响应)和遗传变异对芦苇不同生态型分化的贡献;(3)应同时进行不同生态型的特定性状与功能(株高、茎粗、生物量、生理抗逆性、水体污染物净化能力等)的定位,推动优良基因型的选育与扩繁。  相似文献   

9.
Identifying mechanisms behind assortative mating is central to the understanding of ecological divergence and speciation. Recent studies show that populations of the freshwater isopod Asellus aquaticus can rapidly become locally differentiated when submerged Chara vegetation expands in lakes. In the novel Chara habitat, isopods have become lighter pigmented and smaller than in ancestral reed stands. In this study, we used a laboratory multiple-choice experiment to investigate assortative mating as a possible prezygotic reproductive barrier between Chara and reed isopods. Mating was assortative when Chara isopods were experimentally mixed with isopods from an adjacent reed site with large-size individuals, suggesting a partial prezygotic reproductive barrier. No deviation from random mating could, however, be detected when Chara isopods were mixed with smaller sized isopods from another reed site. In both experiments, assortative mating was apparently based on size, as Chara isopods were larger and reed isopods smaller in mixed pairs than in assortative pairs. Pigmentation did not have any clear influence on mating. We suggest that divergence in pigmentation evolved through natural selection in conjunction with size-assortative mating indirectly causing assortative mating between Chara and reed isopods. Size-assortative mating is likely a by-product of natural selection, but its importance may hypothetically be transient, if selection erodes the correlation between pigmentation and size over time.  相似文献   

10.
The threespine stickleback fish, Gasterosteus aculeatus, has undergone a remarkable postglacial adaptive radiation in which an ancient oceanic ancestor has given rise to uncountable freshwater populations. The radiation is characterized by repeated, independent evolution of similar derived phenotypes under similar environmental conditions. A common pattern of divergence is caused by differences in habitat that favor morphological and behavioral features that enhance efficiency of feeding on plankton (limnetic ecotypes) vs. those that enhance efficiency of feeding on benthic invertebrates (benthic ecotypes). These two ecotypes exhibit consistently different patterns of courtship and of foraging and cannibalistic behavior (divergent behavioral syndromes). Here, we demonstrate that there also exist differences in aggression toward conspecifics that are likely to be characteristic of the ecotypes. We report differences in patterns of aggression toward rivals between the ecotypes and offer evidence of differences in the patterns of phenotypic plasticity (norms of reaction) for these traits across population types, and of differences in the incorporation of aggressive elements of behavior in courtship. These data support an earlier suggestion that differences in aggressive tendencies could have facilitated assortative mating between the four benthic–limnetic species pairs found in British Columbia lakes, and they demonstrate the need to evaluate divergent behavioral phenotypes in this radiation as phenotypic norms of reaction rather than as fixed traits.  相似文献   

11.
Although changes in magnitude of single traits responding to selective agents have been studied intensively, little is known about selection shaping networks of traits and their patterns of covariation. However, this is central for our understanding of phenotypic evolution as traits are embedded in a multivariate environment with selection affecting a multitude of traits simultaneously rather than individually. Here, we investigate inter‐ and intraspecific patterns of trait integration (trait correlations) in the larval abdomen of dragonflies as a response to a change in predator selection. Species of the dragonfly genus Leucorrhinia underwent a larval habitat shift from predatory fish to predatory dragonfly‐dominated lakes with an associated relaxation in selection pressure from fish predation. Our results indicate that the habitat‐shift‐induced relaxed selection pressure caused phenotypic integration of abdominal traits to be reduced. Intraspecific findings matched patterns comparing species from both habitats with higher abdominal integration in response to predatory fish. This higher integration is probably a result of faster burst swimming speed. The abdomen holds the necessary morphological machinery to successfully evade predatory fish via burst swimming. Hence, abdominal traits have to function in a tight coordinated manner, as maladaptive variation and consequently nonoptimal burst swimming would cause increased mortality. In predatory dragonfly‐dominated lakes, no such strong link between burst swimming and mortality is present. Our findings highlight the importance of studying multivariate trait relationships as a response to selection for understanding patterns of phenotypic diversification.  相似文献   

12.
Predators can cause a shift in both density and frequency of a prey phenotype that may lead to phenotypic divergence through natural selection. What is less investigated is that predators have a variety of indirect effects on prey that could potentially have large evolutionary responses. We conducted a pond experiment to test whether differences in predation risk in different habitats caused shifts in behavior of prey that, in turn, would affect their morphology. We also tested whether the experimental data could explain the morphological variation of perch in the natural environment. In the experiment, predators caused the prey fish to shift to the habitat with the lower predation risk. The prey specialized on habitat-specific resources, and there was a strong correlation between diet of the prey fish and morphological variation, suggesting that resource specialization ultimately affected the morphology. The lack of differences in competition and mortality suggest that the morphological variation among prey was induced by differences in predation risk among habitats. The field study demonstrated that there are differences in growth related to morphology of perch in two different habitats. Thus, a trade-off between foraging and predator avoidance could be responsible for adaptive morphological variation of young perch.  相似文献   

13.
The ability to express phenotypically plastic responses to environmental cues might be adaptive in changing environments. We studied phenotypic plasticity in mating behaviour as a response to population density and adult sex ratio in a freshwater isopod (Asellus aquaticus). A. aquaticus has recently diverged into two distinct ecotypes, inhabiting different lake habitats (reed Phragmites australis and stonewort Chara tomentosa, respectively). In field surveys, we found that these habitats differ markedly in isopod population densities and adult sex ratios. These spatially and temporally demographic differences are likely to affect mating behaviour. We performed behavioural experiments using animals from both the ancestral ecotype (“reed” isopods) and from the novel ecotype (“stonewort” isopods) population. We found that neither ecotype adjusted their behaviour in response to population density. However, the reed ecotype had a higher intrinsic mating propensity across densities. In contrast to the effects of density, we found ecotype differences in plasticity in response to sex ratio. The stonewort ecotype show pronounced phenotypic plasticity in mating propensity to adult sex ratio, whereas the reed ecotype showed a more canalised behaviour with respect to this demographic factor. We suggest that the lower overall mating propensity and the phenotypic plasticity in response to sex ratio have evolved in the novel stonewort ecotype following invasion of the novel habitat. Plasticity in mating behaviour may in turn have effects on the direction and intensity of sexual selection in the stonewort habitat, which may fuel further ecotype divergence.  相似文献   

14.
Ecological factors can have profound effects on mating system and mating behaviour. We investigated the effect of altered ecological conditions, following colonization of a novel habitat, on precopulatory mate guarding in a freshwater isopod (Asellus aquaticus). This isopod occurs in two different ecotypes, which coexist within several different lakes in Sweden but which utilize different habitats. These ecotypes have rapidly (ca. 40 generations) diverged in parallel among lakes in several phenotypic characters, presumably as a response to different predatory pressures. Here, we demonstrate that also mate guarding characteristics have diverged in parallel between the ecotypes in different lakes. This is one of the few studies reporting parallel evolution of mating behaviour. Furthermore, our results also indicate a potential sexual conflict, as the length of mate guarding appears to lower components of female fitness. We discuss how novel environments might have strong and rapid effects on mate guarding dynamics and mating behaviour.  相似文献   

15.
Waterborne chemical cues are an important source of information for many aquatic organisms, in particular when assessing the current risk of predation. The ability to use chemical cues to detect and respond to potential predators before an actual encounter can improve prey chances of survival. We investigated predator recognition and the impact of chemical cues on predator avoidance in the freshwater isopod Asellus aquaticus. This isopod has recently colonised a novel habitat and diverged into two distinct ecotypes, which encounter different predator communities. Using laboratory-based choice experiments, we have quantified behavioural responses to chemical cues from predators typical of the two predator communities (larval dragonflies in the ancestral habitat, perch in the newly colonised habitat) in wild-caught and lab-reared Asellus of the two ecotypes. Individuals with prior experience of predators showed strong predator avoidance to cues from both predator types. Both ecotypes showed similar antipredator responses, but sexes differed in terms of threat-sensitive responses with males avoiding areas containing predator cues to a larger extent than females. Overall, chemical cues from fish elicited stronger predator avoidance than cues from larval dragonflies. Our results indicate that in these isopods, prior exposure to predators is needed to develop antipredator behaviour based on waterborne cues. Furthermore, the results emphasise the need to analyse predator avoidance in relation to waterborne cues in a sex-specific context, because of potential differences between males and females in terms of vulnerability and life history strategies.  相似文献   

16.
Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio) shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake) and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast) of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and other ecological factors.  相似文献   

17.
Habitat use was examined in six Alaskan populations of three-spined sticklebacks Gasterosteus aculeatus . In three lakes with predatory fishes, gravid female sticklebacks remained closer to refuge than did non-gravid females, while those in lakes devoid of piscivores did not display this shift in behaviour. Gravid females in a lake with predatory rainbow trout Oncorhynchus mykiss used different evasive manoeuvres than did non-gravid females during in situ encounters with a model rainbow trout. Gravid females were more likely to incorporate a protean element in their flight moffements than were non-gravid females. Offerall, these data suggest that gravid female three-spined sticklebacks modify habitat use and escape behaviour to reduce vulnerability to predators.  相似文献   

18.
Predators strongly influence species assemblages and shape morphological defenses of prey. Interestingly, adaptations that constitute effective defenses against one type of predator may render the prey susceptible to other types of predators. Hence, prey may evolve different strategies to escape predation, which may facilitate adaptive radiation of prey organisms. Larvae of different species in the dragonfly genus Leucorrhinia have various morphological defenses. We studied the distribution of these larvae in relation to the presence of predatory fish. In addition, we examined the variation in morphological defenses within species with respect to the occurrence of fish. We found that well-defended species, those with more and longer spines, were more closely associated with habitats inhabited by predatory fish and that species with weakly developed morphological defenses were more abundant in habitats without fish. The species predominantly connected to lakes with or without fish, respectively, were not restricted to a single clade in the phylogeny of the genus. Our data is suggestive of phenotypic plasticity in morphological defense in three of the studied species since these species showed longer spines in lakes with fish. We suggest that adaptive phenotypic plasticity may have broadened the range of habitats accessible to Leucorrhinia. It may have facilitated colonization of new habitats with different types of predators, and ultimately, speciation through adaptive radiation.  相似文献   

19.
Strong evidence affirms that incubation temperatures can influence the phenotype of hatchling reptiles, but few studies have examined the fitness consequences of such modifications. Vulnerability to predation is one plausible way that phenotypic shifts could affect an organism's fitness. We incubated the eggs of three sympatric lizard species at temperatures similar to the thermal extremes of natural nests, and measured several traits that are likely to influence a hatchling's susceptibility to a natural (snake) predator. We also examined the lizards' actual vulnerability to snake predators in direct encounters in the laboratory. Our results show that incubation temperature can affect an individual's date of hatching, morphology, locomotor performance, chemosensory responses to snake scent, and ability to avoid a snake predator during staged laboratory encounters. Incubation temperature did not modify the hatchling's `attractiveness' to snakes (as measured via chemical cues) or its antipredator tactics (propensity to escape predation through fleeing or caudal autotomy). The magnitude and direction of incubation- induced phenotypic shifts varied among the three species (even those with similar life histories, thermoregulatory preferences, and microhabitat requirements), and depended on body temperatures and hatchling age. We conclude that incubation-induced modifications to a lizard's phenotype affect a suite of traits that are likely to influence its vulnerability, and also its actual ability to escape from a predator. This result suggests that incubation regimes can influence organismal fitness via their effects on predator-prey interactions. Received: 21 December 1998 / Accepted: 23 March 1999  相似文献   

20.
The evolution of ecological specialization has been a central topic in ecology because specialized adaptations to divergent environments can result in reproductive isolation and facilitate speciation. However, the order in which different aspects of habitat adaptation and habitat preference evolve is unclear. Timema walking-stick insects feed and mate on the host plants on which they rest. Previous studies of T. cristinae ecotypes have documented divergent, host-specific selection from visual predators and the evolution of divergent host and mate preferences between populations using different host-plant species (Ceanothus or Adenostoma). Here we present new data that show that T. podura, a nonsister species of T. cristinae, has also formed ecotypes on these host genera and that in both species these ecotypes exhibit adaptive divergence in color-pattern and host preference. Color-pattern morphs exhibit survival trade-offs on different hosts due to differential predation. In contrast, fecundity trade-offs on different hosts do not occur in either species. Thus, host preference in both species has evolved before divergent physiological adaptation but in concert with morphological adaptations. Our results shed light onto which traits are involved in the initial stages of ecological specialization and ecologically based reproductive isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号